mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-06-05 14:54:54 +00:00
Added the service deployment code of FastAPI, including key authentication, task submission, task details viewing, and task canceling
This commit is contained in:
parent
679ccc6c68
commit
0961b7b888
151
I2V-FastAPI文档.md
Normal file
151
I2V-FastAPI文档.md
Normal file
@ -0,0 +1,151 @@
|
||||
|
||||
# 图像到视频生成服务API文档
|
||||
|
||||
## 一、功能概述
|
||||
基于Wan2.1-I2V-14B-480P模型实现图像到视频生成,核心功能包括:
|
||||
1. **异步任务队列**:支持多任务排队和并发控制(最大2个并行任务)
|
||||
2. **智能分辨率适配**:
|
||||
- 支持自动计算最佳分辨率(保持原图比例)
|
||||
- 支持手动指定分辨率(480x832/832x480)
|
||||
3. **资源管理**:
|
||||
- 显存优化(bfloat16精度)
|
||||
- 生成文件自动清理(默认1小时)
|
||||
4. **安全认证**:基于API Key的Bearer Token验证
|
||||
5. **任务控制**:支持任务提交/状态查询/取消操作
|
||||
|
||||
技术栈:
|
||||
- FastAPI框架
|
||||
- CUDA加速
|
||||
- 异步任务处理
|
||||
- Diffusers推理库
|
||||
|
||||
---
|
||||
|
||||
## 二、接口说明
|
||||
|
||||
### 1. 提交生成任务
|
||||
**POST /video/submit**
|
||||
```json
|
||||
{
|
||||
"model": "Wan2.1-I2V-14B-480P",
|
||||
"prompt": "A dancing cat in the style of Van Gogh",
|
||||
"image_url": "https://example.com/input.jpg",
|
||||
"image_size": "auto",
|
||||
"num_frames": 81,
|
||||
"guidance_scale": 3.0,
|
||||
"infer_steps": 30
|
||||
}
|
||||
```
|
||||
|
||||
**响应示例**:
|
||||
```json
|
||||
{
|
||||
"requestId": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6"
|
||||
}
|
||||
```
|
||||
|
||||
### 2. 查询任务状态
|
||||
**POST /video/status**
|
||||
```json
|
||||
{
|
||||
"requestId": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6"
|
||||
}
|
||||
```
|
||||
|
||||
**响应示例**:
|
||||
```json
|
||||
{
|
||||
"status": "Succeed",
|
||||
"results": {
|
||||
"videos": [{"url": "http://localhost:8088/videos/abcd1234.mp4"}],
|
||||
"timings": {"inference": 90},
|
||||
"seed": 123456
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 3. 取消任务
|
||||
**POST /video/cancel**
|
||||
```json
|
||||
{
|
||||
"requestId": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6"
|
||||
}
|
||||
```
|
||||
|
||||
**响应示例**:
|
||||
```json
|
||||
{
|
||||
"status": "Succeed"
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 三、Postman使用指南
|
||||
|
||||
### 1. 基础配置
|
||||
- 服务器地址:`http://ip地址:8088`
|
||||
- 认证方式:Bearer Token
|
||||
- Token值:需替换为有效API Key
|
||||
|
||||
### 2. 提交任务
|
||||
1. 选择POST方法,URL填写`/video/submit`
|
||||
2. Headers添加:
|
||||
```text
|
||||
Authorization: Bearer YOUR_API_KEY
|
||||
Content-Type: application/json
|
||||
```
|
||||
3. Body示例(图像生成视频):
|
||||
```json
|
||||
{
|
||||
"prompt": "Sunset scene with mountains",
|
||||
"image_url": "https://example.com/mountain.jpg",
|
||||
"image_size": "auto",
|
||||
"num_frames": 50
|
||||
}
|
||||
```
|
||||
|
||||
### 3. 特殊处理
|
||||
- **图像下载失败**:返回400错误,包含具体原因(如URL无效/超时)
|
||||
- **显存不足**:返回500错误并提示降低分辨率
|
||||
|
||||
---
|
||||
|
||||
## 四、参数规范
|
||||
| 参数名 | 允许值范围 | 必填 | 说明 |
|
||||
|------------------|-------------------------------|------|------------------------------------------|
|
||||
| image_url | 有效HTTP/HTTPS URL | 是 | 输入图像地址 |
|
||||
| prompt | 10-500字符 | 是 | 视频内容描述 |
|
||||
| image_size | "480x832", "832x480", "auto" | 是 | auto模式自动适配原图比例 |
|
||||
| num_frames | 24-120 | 是 | 视频总帧数 |
|
||||
| guidance_scale | 1.0-20.0 | 是 | 文本引导强度 |
|
||||
| infer_steps | 20-100 | 是 | 推理步数 |
|
||||
| seed | 0-2147483647 | 否 | 随机种子 |
|
||||
|
||||
---
|
||||
|
||||
## 五、状态码说明
|
||||
| 状态码 | 含义 |
|
||||
|--------|-----------------------------------|
|
||||
| 202 | 任务已接受 |
|
||||
| 400 | 图像下载失败/参数错误 |
|
||||
| 401 | 认证失败 |
|
||||
| 404 | 任务不存在 |
|
||||
| 422 | 参数校验失败 |
|
||||
| 500 | 服务端错误(显存不足/模型异常等) |
|
||||
|
||||
---
|
||||
|
||||
## 六、特殊功能说明
|
||||
1. **智能分辨率适配**:
|
||||
- 当`image_size="auto"`时,自动计算符合模型要求的最优分辨率
|
||||
- 保持原始图像宽高比,最大像素面积不超过399,360(约640x624)
|
||||
|
||||
2. **图像预处理**:
|
||||
- 自动转换为RGB模式
|
||||
- 根据目标分辨率进行等比缩放
|
||||
|
||||
|
||||
**重要提示**:输入图像URL需保证公开可访问,私有资源需提供有效鉴权
|
||||
|
||||
**提示** :访问`http://服务器地址:8088/docs`可查看交互式API文档,支持在线测试所有接口
|
133
T2V-FastAPI文档.md
Normal file
133
T2V-FastAPI文档.md
Normal file
@ -0,0 +1,133 @@
|
||||
|
||||
# 视频生成服务API文档
|
||||
|
||||
## 一、功能概述
|
||||
本服务基于Wan2.1-T2V-1.3B模型实现文本到视频生成,包含以下核心功能:
|
||||
1. **异步任务队列**:支持多任务排队和并发控制(最大2个并行任务)
|
||||
2. **资源管理**:
|
||||
- 显存优化(使用bfloat16精度)
|
||||
- 生成视频自动清理(默认1小时后删除)
|
||||
3. **安全认证**:基于API Key的Bearer Token验证
|
||||
4. **任务控制**:支持任务提交/状态查询/取消操作
|
||||
|
||||
技术栈:
|
||||
- FastAPI框架
|
||||
- CUDA加速
|
||||
- 异步任务处理
|
||||
- Diffusers推理库
|
||||
|
||||
---
|
||||
|
||||
## 二、接口说明
|
||||
|
||||
### 1. 提交生成任务
|
||||
**POST /video/submit**
|
||||
```json
|
||||
{
|
||||
"model": "Wan2.1-T2V-1.3B",
|
||||
"prompt": "A beautiful sunset over the mountains",
|
||||
"image_size": "480x832",
|
||||
"num_frames": 81,
|
||||
"guidance_scale": 5.0,
|
||||
"infer_steps": 50
|
||||
}
|
||||
```
|
||||
|
||||
**响应示例**:
|
||||
```json
|
||||
{
|
||||
"requestId": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6"
|
||||
}
|
||||
```
|
||||
|
||||
### 2. 查询任务状态
|
||||
**POST /video/status**
|
||||
```json
|
||||
{
|
||||
"requestId": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6"
|
||||
}
|
||||
```
|
||||
|
||||
**响应示例**:
|
||||
```json
|
||||
{
|
||||
"status": "Succeed",
|
||||
"results": {
|
||||
"videos": [{"url": "http://localhost:8088/videos/abcd1234.mp4"}],
|
||||
"timings": {"inference": 120}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 3. 取消任务
|
||||
**POST /video/cancel**
|
||||
```json
|
||||
{
|
||||
"requestId": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6"
|
||||
}
|
||||
```
|
||||
|
||||
**响应示例**:
|
||||
```json
|
||||
{
|
||||
"status": "Succeed"
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 三、Postman使用指南
|
||||
|
||||
### 1. 基础配置
|
||||
- 服务器地址:`http://ip地址:8088`
|
||||
- 认证方式:Bearer Token
|
||||
- Token值:需替换为有效API Key
|
||||
|
||||
### 2. 提交任务
|
||||
1. 选择POST方法,输入URL:`/video/submit`
|
||||
2. Headers添加:
|
||||
```text
|
||||
Authorization: Bearer YOUR_API_KEY
|
||||
Content-Type: application/json
|
||||
```
|
||||
3. Body选择raw/JSON格式,输入请求参数
|
||||
|
||||
### 3. 查询状态
|
||||
1. 新建请求,URL填写`/video/status`
|
||||
2. 使用相同认证头
|
||||
3. Body中携带requestId
|
||||
|
||||
### 4. 取消任务
|
||||
1. 新建DELETE请求,URL填写`/video/cancel`
|
||||
2. Body携带需要取消的requestId
|
||||
|
||||
### 注意事项
|
||||
1. 所有接口必须携带有效API Key
|
||||
2. 视频生成耗时约2-5分钟(根据参数配置)
|
||||
3. 生成视频默认保留1小时
|
||||
|
||||
---
|
||||
|
||||
## 四、参数规范
|
||||
| 参数名 | 允许值范围 | 必填 | 说明 |
|
||||
|------------------|-------------------------------|------|--------------------------|
|
||||
| prompt | 10-500字符 | 是 | 视频内容描述 |
|
||||
| image_size | "480x832" 或 "832x480" | 是 | 分辨率 |
|
||||
| num_frames | 24-120 | 是 | 视频总帧数 |
|
||||
| guidance_scale | 1.0-20.0 | 是 | 文本引导强度 |
|
||||
| infer_steps | 20-100 | 是 | 推理步数 |
|
||||
| seed | 0-2147483647 | 否 | 随机种子 |
|
||||
|
||||
---
|
||||
|
||||
## 五、状态码说明
|
||||
| 状态码 | 含义 |
|
||||
|--------|--------------------------|
|
||||
| 202 | 任务已接受 |
|
||||
| 401 | 认证失败 |
|
||||
| 404 | 任务不存在 |
|
||||
| 422 | 参数校验失败 |
|
||||
| 500 | 服务端错误(显存不足等) |
|
||||
|
||||
|
||||
**提示**:建议使用Swagger文档进行接口测试,访问`http://服务器地址:8088/docs`可查看自动生成的API文档界面
|
526
i2v_api.py
Normal file
526
i2v_api.py
Normal file
@ -0,0 +1,526 @@
|
||||
import os
|
||||
import torch
|
||||
import uuid
|
||||
import time
|
||||
import asyncio
|
||||
import numpy as np
|
||||
from threading import Lock
|
||||
from typing import Optional, Dict, List
|
||||
from fastapi import FastAPI, HTTPException, status, Depends
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
from pydantic import BaseModel, Field, field_validator, ValidationError
|
||||
from diffusers.utils import export_to_video, load_image
|
||||
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline
|
||||
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
||||
from transformers import CLIPVisionModel
|
||||
from PIL import Image
|
||||
import requests
|
||||
from io import BytesIO
|
||||
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
||||
from contextlib import asynccontextmanager
|
||||
from requests.exceptions import RequestException
|
||||
|
||||
# 创建存储目录
|
||||
os.makedirs("generated_videos", exist_ok=True)
|
||||
os.makedirs("temp_images", exist_ok=True)
|
||||
|
||||
# ======================
|
||||
# 生命周期管理
|
||||
# ======================
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
"""资源管理器"""
|
||||
try:
|
||||
# 初始化认证系统
|
||||
app.state.valid_api_keys = {
|
||||
"密钥"
|
||||
}
|
||||
|
||||
# 初始化模型
|
||||
model_id = "./Wan2.1-I2V-14B-480P-Diffusers"
|
||||
|
||||
# 加载图像编码器
|
||||
image_encoder = CLIPVisionModel.from_pretrained(
|
||||
model_id,
|
||||
subfolder="image_encoder",
|
||||
torch_dtype=torch.float32
|
||||
)
|
||||
|
||||
# 加载VAE
|
||||
vae = AutoencoderKLWan.from_pretrained(
|
||||
model_id,
|
||||
subfolder="vae",
|
||||
torch_dtype=torch.float32
|
||||
)
|
||||
|
||||
# 配置调度器
|
||||
scheduler = UniPCMultistepScheduler(
|
||||
prediction_type='flow_prediction',
|
||||
use_flow_sigmas=True,
|
||||
num_train_timesteps=1000,
|
||||
flow_shift=3.0
|
||||
)
|
||||
|
||||
# 创建管道
|
||||
app.state.pipe = WanImageToVideoPipeline.from_pretrained(
|
||||
model_id,
|
||||
vae=vae,
|
||||
image_encoder=image_encoder,
|
||||
torch_dtype=torch.bfloat16
|
||||
).to("cuda")
|
||||
app.state.pipe.scheduler = scheduler
|
||||
|
||||
# 初始化任务系统
|
||||
app.state.tasks: Dict[str, dict] = {}
|
||||
app.state.pending_queue: List[str] = []
|
||||
app.state.model_lock = Lock()
|
||||
app.state.task_lock = Lock()
|
||||
app.state.base_url = "ip地址+端口"
|
||||
app.state.semaphore = asyncio.Semaphore(2) # 并发限制
|
||||
|
||||
# 启动后台处理器
|
||||
asyncio.create_task(task_processor())
|
||||
|
||||
print("✅ 系统初始化完成")
|
||||
yield
|
||||
|
||||
finally:
|
||||
# 资源清理
|
||||
if hasattr(app.state, 'pipe'):
|
||||
del app.state.pipe
|
||||
torch.cuda.empty_cache()
|
||||
print("♻️ 资源已释放")
|
||||
|
||||
# ======================
|
||||
# FastAPI应用
|
||||
# ======================
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
app.mount("/videos", StaticFiles(directory="generated_videos"), name="videos")
|
||||
# 认证模块
|
||||
security = HTTPBearer(auto_error=False)
|
||||
|
||||
# ======================
|
||||
# 数据模型--查询参数模型
|
||||
# ======================
|
||||
class VideoSubmitRequest(BaseModel):
|
||||
model: str = Field(
|
||||
default="Wan2.1-I2V-14B-480P",
|
||||
description="模型版本"
|
||||
)
|
||||
prompt: str = Field(
|
||||
...,
|
||||
min_length=10,
|
||||
max_length=500,
|
||||
description="视频描述提示词,10-500个字符"
|
||||
)
|
||||
image_url: str = Field(
|
||||
...,
|
||||
description="输入图像URL,需支持HTTP/HTTPS协议"
|
||||
)
|
||||
image_size: str = Field(
|
||||
default="auto",
|
||||
description="输出分辨率,格式:宽x高 或 auto(自动计算)"
|
||||
)
|
||||
negative_prompt: Optional[str] = Field(
|
||||
default=None,
|
||||
max_length=500,
|
||||
description="排除不需要的内容"
|
||||
)
|
||||
seed: Optional[int] = Field(
|
||||
default=None,
|
||||
ge=0,
|
||||
le=2147483647,
|
||||
description="随机数种子,范围0-2147483647"
|
||||
)
|
||||
num_frames: int = Field(
|
||||
default=81,
|
||||
ge=24,
|
||||
le=120,
|
||||
description="视频帧数,24-89帧"
|
||||
)
|
||||
guidance_scale: float = Field(
|
||||
default=3.0,
|
||||
ge=1.0,
|
||||
le=20.0,
|
||||
description="引导系数,1.0-20.0"
|
||||
)
|
||||
infer_steps: int = Field(
|
||||
default=30,
|
||||
ge=20,
|
||||
le=100,
|
||||
description="推理步数,20-100步"
|
||||
)
|
||||
|
||||
@field_validator('image_size')
|
||||
def validate_image_size(cls, v):
|
||||
allowed_sizes = {"480x832", "832x480", "auto"}
|
||||
if v not in allowed_sizes:
|
||||
raise ValueError(f"支持的分辨率: {', '.join(allowed_sizes)}")
|
||||
return v
|
||||
|
||||
class VideoStatusRequest(BaseModel):
|
||||
requestId: str = Field(
|
||||
...,
|
||||
min_length=32,
|
||||
max_length=32,
|
||||
description="32位任务ID"
|
||||
)
|
||||
|
||||
class VideoStatusResponse(BaseModel):
|
||||
status: str = Field(..., description="任务状态: Succeed, InQueue, InProgress, Failed,Cancelled")
|
||||
reason: Optional[str] = Field(None, description="失败原因")
|
||||
results: Optional[dict] = Field(None, description="生成结果")
|
||||
queue_position: Optional[int] = Field(None, description="队列位置")
|
||||
|
||||
class VideoCancelRequest(BaseModel):
|
||||
requestId: str = Field(
|
||||
...,
|
||||
min_length=32,
|
||||
max_length=32,
|
||||
description="32位任务ID"
|
||||
)
|
||||
|
||||
# ======================
|
||||
# 核心逻辑
|
||||
# ======================
|
||||
async def verify_auth(credentials: HTTPAuthorizationCredentials = Depends(security)):
|
||||
"""统一认证验证"""
|
||||
if not credentials:
|
||||
raise HTTPException(
|
||||
status_code=401,
|
||||
detail={"status": "Failed", "reason": "缺少认证头"},
|
||||
headers={"WWW-Authenticate": "Bearer"}
|
||||
)
|
||||
if credentials.scheme != "Bearer":
|
||||
raise HTTPException(
|
||||
status_code=401,
|
||||
detail={"status": "Failed", "reason": "无效的认证方案"},
|
||||
headers={"WWW-Authenticate": "Bearer"}
|
||||
)
|
||||
if credentials.credentials not in app.state.valid_api_keys:
|
||||
raise HTTPException(
|
||||
status_code=401,
|
||||
detail={"status": "Failed", "reason": "无效的API密钥"},
|
||||
headers={"WWW-Authenticate": "Bearer"}
|
||||
)
|
||||
return True
|
||||
|
||||
async def task_processor():
|
||||
"""任务处理器"""
|
||||
while True:
|
||||
async with app.state.semaphore:
|
||||
task_id = await get_next_task()
|
||||
if task_id:
|
||||
await process_task(task_id)
|
||||
else:
|
||||
await asyncio.sleep(0.5)
|
||||
|
||||
async def get_next_task():
|
||||
"""获取下一个任务"""
|
||||
with app.state.task_lock:
|
||||
return app.state.pending_queue.pop(0) if app.state.pending_queue else None
|
||||
|
||||
async def process_task(task_id: str):
|
||||
"""处理单个任务"""
|
||||
task = app.state.tasks.get(task_id)
|
||||
if not task:
|
||||
return
|
||||
|
||||
try:
|
||||
# 更新任务状态
|
||||
task['status'] = 'InProgress'
|
||||
task['started_at'] = int(time.time())
|
||||
print(task['request'].image_url)
|
||||
# 下载输入图像
|
||||
image = await download_image(task['request'].image_url)
|
||||
image_path = f"temp_images/{task_id}.jpg"
|
||||
image.save(image_path)
|
||||
|
||||
# 生成视频
|
||||
video_path = await generate_video(task['request'], task_id, image)
|
||||
|
||||
# 生成下载链接
|
||||
download_url = f"{app.state.base_url}/videos/{os.path.basename(video_path)}"
|
||||
|
||||
# 更新任务状态
|
||||
task.update({
|
||||
'status': 'Succeed',
|
||||
'download_url': download_url,
|
||||
'completed_at': int(time.time())
|
||||
})
|
||||
|
||||
# 安排清理
|
||||
asyncio.create_task(cleanup_files([image_path, video_path]))
|
||||
except Exception as e:
|
||||
handle_task_error(task, e)
|
||||
|
||||
def handle_task_error(task: dict, error: Exception):
|
||||
"""错误处理(包含详细错误信息)"""
|
||||
error_msg = str(error)
|
||||
|
||||
# 1. 显存不足错误
|
||||
if isinstance(error, torch.cuda.OutOfMemoryError):
|
||||
error_msg = "显存不足,请降低分辨率"
|
||||
|
||||
# 2. 网络请求相关错误
|
||||
elif isinstance(error, (RequestException, HTTPException)):
|
||||
# 从异常中提取具体信息
|
||||
if isinstance(error, HTTPException):
|
||||
# 如果是 HTTPException,获取其 detail 字段
|
||||
error_detail = getattr(error, "detail", "")
|
||||
error_msg = f"图像下载失败: {error_detail}"
|
||||
|
||||
elif isinstance(error, Timeout):
|
||||
error_msg = "图像下载超时,请检查网络"
|
||||
|
||||
elif isinstance(error, ConnectionError):
|
||||
error_msg = "无法连接到服务器,请检查 URL"
|
||||
|
||||
elif isinstance(error, HTTPError):
|
||||
# requests 的 HTTPError(例如 4xx/5xx 状态码)
|
||||
status_code = error.response.status_code
|
||||
error_msg = f"服务器返回错误状态码: {status_code}"
|
||||
|
||||
else:
|
||||
# 其他 RequestException 错误
|
||||
error_msg = f"图像下载失败: {str(error)}"
|
||||
|
||||
# 3. 其他未知错误
|
||||
else:
|
||||
error_msg = f"未知错误: {str(error)}"
|
||||
|
||||
# 更新任务状态
|
||||
task.update({
|
||||
'status': 'Failed',
|
||||
'reason': error_msg,
|
||||
'completed_at': int(time.time())
|
||||
})
|
||||
# ======================
|
||||
# 视频生成逻辑
|
||||
# ======================
|
||||
async def download_image(url: str) -> Image.Image:
|
||||
"""异步下载图像(包含详细错误信息)"""
|
||||
loop = asyncio.get_event_loop()
|
||||
try:
|
||||
response = await loop.run_in_executor(
|
||||
None,
|
||||
lambda: requests.get(url) # 将 timeout 传递给 requests.get
|
||||
)
|
||||
|
||||
# 如果状态码非 200,主动抛出 HTTPException
|
||||
if response.status_code != 200:
|
||||
raise HTTPException(
|
||||
status_code=response.status_code,
|
||||
detail=f"服务器返回状态码 {response.status_code}"
|
||||
)
|
||||
|
||||
return Image.open(BytesIO(response.content)).convert("RGB")
|
||||
|
||||
except RequestException as e:
|
||||
# 将原始 requests 错误信息抛出
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail=f"请求失败: {str(e)}"
|
||||
)
|
||||
async def generate_video(request: VideoSubmitRequest, task_id: str, image: Image.Image):
|
||||
"""异步生成入口"""
|
||||
loop = asyncio.get_event_loop()
|
||||
return await loop.run_in_executor(
|
||||
None,
|
||||
sync_generate_video,
|
||||
request,
|
||||
task_id,
|
||||
image
|
||||
)
|
||||
|
||||
def sync_generate_video(request: VideoSubmitRequest, task_id: str, image: Image.Image):
|
||||
"""同步生成核心"""
|
||||
with app.state.model_lock:
|
||||
try:
|
||||
# 解析分辨率
|
||||
mod_value = 16 # 模型要求的模数
|
||||
print(request.image_size)
|
||||
print('--------------------------------')
|
||||
if request.image_size == "auto":
|
||||
# 原版自动计算逻辑
|
||||
aspect_ratio = image.height / image.width
|
||||
print(image.height,image.width)
|
||||
max_area = 399360 # 模型基础分辨率
|
||||
|
||||
# 计算理想尺寸
|
||||
height = round(np.sqrt(max_area * aspect_ratio))
|
||||
width = round(np.sqrt(max_area / aspect_ratio))
|
||||
|
||||
# 应用模数调整
|
||||
height = height // mod_value * mod_value
|
||||
width = width // mod_value * mod_value
|
||||
resized_image = image.resize((width, height))
|
||||
else:
|
||||
width_str, height_str = request.image_size.split('x')
|
||||
width = int(width_str)
|
||||
height = int(height_str)
|
||||
mod_value = 16
|
||||
# 调整图像尺寸
|
||||
resized_image = image.resize((width, height))
|
||||
|
||||
|
||||
# 设置随机种子
|
||||
generator = None
|
||||
# 修改点1: 使用属性访问seed
|
||||
if request.seed is not None:
|
||||
generator = torch.Generator(device="cuda")
|
||||
generator.manual_seed(request.seed) # 修改点2
|
||||
print(f"🔮 使用随机种子: {request.seed}")
|
||||
print(resized_image)
|
||||
print(height,width)
|
||||
|
||||
# 执行推理
|
||||
output = app.state.pipe(
|
||||
image=resized_image,
|
||||
prompt=request.prompt,
|
||||
negative_prompt=request.negative_prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_frames=request.num_frames,
|
||||
guidance_scale=request.guidance_scale,
|
||||
num_inference_steps=request.infer_steps,
|
||||
generator=generator
|
||||
).frames[0]
|
||||
|
||||
# 导出视频
|
||||
video_id = uuid.uuid4().hex
|
||||
output_path = f"generated_videos/{video_id}.mp4"
|
||||
export_to_video(output, output_path, fps=16)
|
||||
return output_path
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"视频生成失败: {str(e)}") from e
|
||||
|
||||
# ======================
|
||||
# API端点
|
||||
# ======================
|
||||
@app.post("/video/submit",
|
||||
response_model=dict,
|
||||
status_code=status.HTTP_202_ACCEPTED,
|
||||
tags=["视频生成"])
|
||||
async def submit_task(
|
||||
request: VideoSubmitRequest,
|
||||
auth: bool = Depends(verify_auth)
|
||||
):
|
||||
"""提交生成任务"""
|
||||
# 参数验证
|
||||
if request.image_url is None:
|
||||
raise HTTPException(
|
||||
status_code=422,
|
||||
detail={"status": "Failed", "reason": "需要图像URL参数"}
|
||||
)
|
||||
|
||||
# 创建任务记录
|
||||
task_id = uuid.uuid4().hex
|
||||
with app.state.task_lock:
|
||||
app.state.tasks[task_id] = {
|
||||
"request": request,
|
||||
"status": "InQueue",
|
||||
"created_at": int(time.time())
|
||||
}
|
||||
app.state.pending_queue.append(task_id)
|
||||
|
||||
return {"requestId": task_id}
|
||||
|
||||
@app.post("/video/status",
|
||||
response_model=VideoStatusResponse,
|
||||
tags=["视频生成"])
|
||||
async def get_status(
|
||||
request: VideoStatusRequest,
|
||||
auth: bool = Depends(verify_auth)
|
||||
):
|
||||
"""查询任务状态"""
|
||||
task = app.state.tasks.get(request.requestId)
|
||||
if not task:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail={"status": "Failed", "reason": "无效的任务ID"}
|
||||
)
|
||||
|
||||
# 计算队列位置(仅当在队列中时)
|
||||
queue_pos = 0
|
||||
if task['status'] == "InQueue" and request.requestId in app.state.pending_queue:
|
||||
queue_pos = app.state.pending_queue.index(request.requestId) + 1
|
||||
|
||||
response = {
|
||||
"status": task['status'],
|
||||
"reason": task.get('reason'),
|
||||
"queue_position": queue_pos if task['status'] == "InQueue" else None # 非排队状态返回null
|
||||
}
|
||||
|
||||
# 成功状态的特殊处理
|
||||
if task['status'] == "Succeed":
|
||||
response["results"] = {
|
||||
"videos": [{"url": task['download_url']}],
|
||||
"timings": {
|
||||
"inference": task['completed_at'] - task['started_at']
|
||||
},
|
||||
"seed": task['request'].seed
|
||||
}
|
||||
# 取消状态的补充信息
|
||||
elif task['status'] == "Cancelled":
|
||||
response["reason"] = task.get('reason', "用户主动取消") # 确保原因字段存在
|
||||
|
||||
return response
|
||||
|
||||
@app.post("/video/cancel",
|
||||
response_model=dict,
|
||||
tags=["视频生成"])
|
||||
async def cancel_task(
|
||||
request: VideoCancelRequest,
|
||||
auth: bool = Depends(verify_auth)
|
||||
):
|
||||
"""取消排队中的生成任务"""
|
||||
task_id = request.requestId
|
||||
|
||||
with app.state.task_lock:
|
||||
task = app.state.tasks.get(task_id)
|
||||
|
||||
# 检查任务是否存在
|
||||
if not task:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail={"status": "Failed", "reason": "无效的任务ID"}
|
||||
)
|
||||
|
||||
current_status = task['status']
|
||||
|
||||
# 仅允许取消排队中的任务
|
||||
if current_status != "InQueue":
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail={"status": "Failed", "reason": f"仅允许取消排队任务,当前状态: {current_status}"}
|
||||
)
|
||||
|
||||
# 从队列移除
|
||||
try:
|
||||
app.state.pending_queue.remove(task_id)
|
||||
except ValueError:
|
||||
pass # 可能已被处理
|
||||
|
||||
# 更新任务状态
|
||||
task.update({
|
||||
"status": "Cancelled",
|
||||
"reason": "用户主动取消",
|
||||
"completed_at": int(time.time())
|
||||
})
|
||||
|
||||
return {"status": "Succeed"}
|
||||
|
||||
async def cleanup_files(paths: List[str], delay: int = 3600):
|
||||
"""定时清理文件"""
|
||||
await asyncio.sleep(delay)
|
||||
for path in paths:
|
||||
try:
|
||||
if os.path.exists(path):
|
||||
os.remove(path)
|
||||
except Exception as e:
|
||||
print(f"清理失败 {path}: {str(e)}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run(app, host="0.0.0.0", port=8088)
|
450
t2v-api.py
Normal file
450
t2v-api.py
Normal file
@ -0,0 +1,450 @@
|
||||
import os
|
||||
import torch
|
||||
import uuid
|
||||
import time
|
||||
import asyncio
|
||||
from enum import Enum
|
||||
from threading import Lock
|
||||
from typing import Optional, Dict, List
|
||||
from contextlib import asynccontextmanager
|
||||
from fastapi import FastAPI, HTTPException, status, Depends
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
from pydantic import BaseModel, Field, field_validator, ValidationError
|
||||
from diffusers.utils import export_to_video
|
||||
from diffusers import AutoencoderKLWan, WanPipeline
|
||||
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
|
||||
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
||||
from fastapi.responses import JSONResponse
|
||||
|
||||
# 创建视频存储目录
|
||||
os.makedirs("generated_videos", exist_ok=True)
|
||||
|
||||
# 生命周期管理器
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
"""管理应用生命周期"""
|
||||
# 初始化模型和资源
|
||||
try:
|
||||
# 初始化认证密钥
|
||||
app.state.valid_api_keys = {
|
||||
"密钥"
|
||||
}
|
||||
|
||||
# 初始化视频生成模型
|
||||
model_id = "./Wan2.1-T2V-1.3B-Diffusers"
|
||||
vae = AutoencoderKLWan.from_pretrained(
|
||||
model_id,
|
||||
subfolder="vae",
|
||||
torch_dtype=torch.float32
|
||||
)
|
||||
|
||||
scheduler = UniPCMultistepScheduler(
|
||||
prediction_type='flow_prediction',
|
||||
use_flow_sigmas=True,
|
||||
num_train_timesteps=1000,
|
||||
flow_shift=3.0
|
||||
)
|
||||
|
||||
app.state.pipe = WanPipeline.from_pretrained(
|
||||
model_id,
|
||||
vae=vae,
|
||||
torch_dtype=torch.bfloat16
|
||||
).to("cuda")
|
||||
app.state.pipe.scheduler = scheduler
|
||||
|
||||
# 初始化任务系统
|
||||
app.state.tasks: Dict[str, dict] = {}
|
||||
app.state.pending_queue: List[str] = []
|
||||
app.state.model_lock = Lock()
|
||||
app.state.task_lock = Lock()
|
||||
app.state.base_url = "ip地址+端口"
|
||||
app.state.max_concurrent = 2
|
||||
app.state.semaphore = asyncio.Semaphore(app.state.max_concurrent)
|
||||
|
||||
# 启动后台任务处理器
|
||||
asyncio.create_task(task_processor())
|
||||
|
||||
print("✅ 应用初始化完成")
|
||||
yield
|
||||
|
||||
finally:
|
||||
# 清理资源
|
||||
if hasattr(app.state, 'pipe'):
|
||||
del app.state.pipe
|
||||
torch.cuda.empty_cache()
|
||||
print("♻️ 已释放模型资源")
|
||||
|
||||
# 创建FastAPI应用
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
app.mount("/videos", StaticFiles(directory="generated_videos"), name="videos")
|
||||
|
||||
# 认证模块
|
||||
security = HTTPBearer(auto_error=False)
|
||||
|
||||
# ======================
|
||||
# 数据模型--查询参数模型
|
||||
# ======================
|
||||
class VideoSubmitRequest(BaseModel):
|
||||
model: str = Field(default="Wan2.1-T2V-1.3B",description="使用的模型版本")
|
||||
prompt: str = Field(
|
||||
...,
|
||||
min_length=10,
|
||||
max_length=500,
|
||||
description="视频描述提示词,10-500个字符"
|
||||
)
|
||||
image_size: str = Field(
|
||||
...,
|
||||
description="视频分辨率,仅支持480x832或832x480"
|
||||
)
|
||||
negative_prompt: Optional[str] = Field(
|
||||
default=None,
|
||||
max_length=500,
|
||||
description="排除不需要的内容"
|
||||
)
|
||||
seed: Optional[int] = Field(
|
||||
default=None,
|
||||
ge=0,
|
||||
le=2147483647,
|
||||
description="随机数种子,范围0-2147483647"
|
||||
)
|
||||
num_frames: int = Field(
|
||||
default=81,
|
||||
ge=24,
|
||||
le=120,
|
||||
description="视频帧数,24-120帧"
|
||||
)
|
||||
guidance_scale: float = Field(
|
||||
default=5.0,
|
||||
ge=1.0,
|
||||
le=20.0,
|
||||
description="引导系数,1.0-20.0"
|
||||
)
|
||||
infer_steps: int = Field(
|
||||
default=50,
|
||||
ge=20,
|
||||
le=100,
|
||||
description="推理步数,20-100步"
|
||||
)
|
||||
|
||||
@field_validator('image_size', mode='before')
|
||||
@classmethod
|
||||
def validate_image_size(cls, value):
|
||||
allowed_sizes = {"480x832", "832x480"}
|
||||
if value not in allowed_sizes:
|
||||
raise ValueError(f"仅支持以下分辨率: {', '.join(allowed_sizes)}")
|
||||
return value
|
||||
|
||||
class VideoStatusRequest(BaseModel):
|
||||
requestId: str = Field(
|
||||
...,
|
||||
min_length=32,
|
||||
max_length=32,
|
||||
description="32位任务ID"
|
||||
)
|
||||
|
||||
class VideoSubmitResponse(BaseModel):
|
||||
requestId: str
|
||||
|
||||
class VideoStatusResponse(BaseModel):
|
||||
status: str = Field(..., description="任务状态: Succeed, InQueue, InProgress, Failed,Cancelled")
|
||||
reason: Optional[str] = Field(None, description="失败原因")
|
||||
results: Optional[dict] = Field(None, description="生成结果")
|
||||
queue_position: Optional[int] = Field(None, description="队列位置")
|
||||
|
||||
class VideoCancelRequest(BaseModel):
|
||||
requestId: str = Field(
|
||||
...,
|
||||
min_length=32,
|
||||
max_length=32,
|
||||
description="32位任务ID"
|
||||
)
|
||||
|
||||
# # 自定义HTTP异常处理器
|
||||
# @app.exception_handler(HTTPException)
|
||||
# async def http_exception_handler(request, exc):
|
||||
# return JSONResponse(
|
||||
# status_code=exc.status_code,
|
||||
# content=exc.detail, # 直接返回detail内容(不再包装在detail字段)
|
||||
# headers=exc.headers
|
||||
# )
|
||||
|
||||
# ======================
|
||||
# 后台任务处理
|
||||
# ======================
|
||||
async def task_processor():
|
||||
"""处理任务队列"""
|
||||
while True:
|
||||
async with app.state.semaphore:
|
||||
task_id = await get_next_task()
|
||||
if task_id:
|
||||
await process_task(task_id)
|
||||
else:
|
||||
await asyncio.sleep(0.5)
|
||||
|
||||
async def get_next_task():
|
||||
"""获取下一个待处理任务"""
|
||||
with app.state.task_lock:
|
||||
if app.state.pending_queue:
|
||||
return app.state.pending_queue.pop(0)
|
||||
return None
|
||||
|
||||
async def process_task(task_id: str):
|
||||
"""处理单个任务"""
|
||||
task = app.state.tasks.get(task_id)
|
||||
if not task:
|
||||
return
|
||||
|
||||
try:
|
||||
# 更新任务状态
|
||||
task['status'] = 'InProgress'
|
||||
task['started_at'] = int(time.time())
|
||||
|
||||
# 执行视频生成
|
||||
video_path = await generate_video(task['request'], task_id)
|
||||
|
||||
# 生成下载链接
|
||||
download_url = f"{app.state.base_url}/videos/{os.path.basename(video_path)}"
|
||||
|
||||
# 更新任务状态
|
||||
task.update({
|
||||
'status': 'Succeed',
|
||||
'download_url': download_url,
|
||||
'completed_at': int(time.time())
|
||||
})
|
||||
|
||||
# 安排自动清理
|
||||
asyncio.create_task(auto_cleanup(video_path))
|
||||
except Exception as e:
|
||||
handle_task_error(task, e)
|
||||
|
||||
def handle_task_error(task: dict, error: Exception):
|
||||
"""统一处理任务错误"""
|
||||
error_msg = str(error)
|
||||
if isinstance(error, torch.cuda.OutOfMemoryError):
|
||||
error_msg = "显存不足,请降低分辨率或减少帧数"
|
||||
elif isinstance(error, ValidationError):
|
||||
error_msg = "参数校验失败: " + str(error)
|
||||
|
||||
task.update({
|
||||
'status': 'Failed',
|
||||
'reason': error_msg,
|
||||
'completed_at': int(time.time())
|
||||
})
|
||||
|
||||
# ======================
|
||||
# 视频生成核心逻辑
|
||||
# ======================
|
||||
async def generate_video(request: dict, task_id: str) -> str:
|
||||
"""异步执行视频生成"""
|
||||
loop = asyncio.get_event_loop()
|
||||
return await loop.run_in_executor(
|
||||
None,
|
||||
sync_generate_video,
|
||||
request,
|
||||
task_id
|
||||
)
|
||||
|
||||
def sync_generate_video(request: dict, task_id: str) -> str:
|
||||
"""同步生成视频"""
|
||||
with app.state.model_lock:
|
||||
try:
|
||||
generator = None
|
||||
if request.get('seed') is not None:
|
||||
generator = torch.Generator(device="cuda")
|
||||
generator.manual_seed(request['seed'])
|
||||
print(f"🔮 使用随机种子: {request['seed']}")
|
||||
|
||||
# 执行模型推理
|
||||
result = app.state.pipe(
|
||||
prompt=request['prompt'],
|
||||
negative_prompt=request['negative_prompt'],
|
||||
height=request['height'],
|
||||
width=request['width'],
|
||||
num_frames=request['num_frames'],
|
||||
guidance_scale=request['guidance_scale'],
|
||||
num_inference_steps=request['infer_steps'],
|
||||
generator=generator
|
||||
)
|
||||
|
||||
# 导出视频文件
|
||||
video_id = uuid.uuid4().hex
|
||||
output_path = f"generated_videos/{video_id}.mp4"
|
||||
export_to_video(result.frames[0], output_path, fps=16)
|
||||
|
||||
return output_path
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"视频生成失败: {str(e)}") from e
|
||||
|
||||
# ======================
|
||||
# API端点
|
||||
# ======================
|
||||
async def verify_auth(credentials: HTTPAuthorizationCredentials = Depends(security)):
|
||||
"""认证验证"""
|
||||
if not credentials:
|
||||
raise HTTPException(
|
||||
status_code=401,
|
||||
detail={"status": "Failed", "reason": "缺少认证头"},
|
||||
headers={"WWW-Authenticate": "Bearer"}
|
||||
)
|
||||
if credentials.scheme != "Bearer":
|
||||
raise HTTPException(
|
||||
status_code=401,
|
||||
detail={"status": "Failed", "reason": "无效的认证方案"},
|
||||
headers={"WWW-Authenticate": "Bearer"}
|
||||
)
|
||||
if credentials.credentials not in app.state.valid_api_keys:
|
||||
raise HTTPException(
|
||||
status_code=401,
|
||||
detail={"status": "Failed", "reason": "无效的API密钥"},
|
||||
headers={"WWW-Authenticate": "Bearer"}
|
||||
)
|
||||
return True
|
||||
|
||||
@app.post("/video/submit",
|
||||
response_model=VideoSubmitResponse,
|
||||
status_code=status.HTTP_202_ACCEPTED,
|
||||
tags=["视频生成"],
|
||||
summary="提交视频生成请求")
|
||||
async def submit_video_task(
|
||||
request: VideoSubmitRequest,
|
||||
auth: bool = Depends(verify_auth)
|
||||
):
|
||||
"""提交新的视频生成任务"""
|
||||
try:
|
||||
# 解析分辨率参数
|
||||
width, height = map(int, request.image_size.split('x'))
|
||||
|
||||
# 创建任务记录
|
||||
task_id = uuid.uuid4().hex
|
||||
task_data = {
|
||||
'request': {
|
||||
'prompt': request.prompt,
|
||||
'negative_prompt': request.negative_prompt,
|
||||
'width': width,
|
||||
'height': height,
|
||||
'num_frames': request.num_frames,
|
||||
'guidance_scale': request.guidance_scale,
|
||||
'infer_steps': request.infer_steps,
|
||||
'seed': request.seed
|
||||
},
|
||||
'status': 'InQueue',
|
||||
'created_at': int(time.time())
|
||||
}
|
||||
|
||||
# 加入任务队列
|
||||
with app.state.task_lock:
|
||||
app.state.tasks[task_id] = task_data
|
||||
app.state.pending_queue.append(task_id)
|
||||
|
||||
return {"requestId": task_id}
|
||||
|
||||
except ValidationError as e:
|
||||
raise HTTPException(
|
||||
status_code=422,
|
||||
detail={"status": "Failed", "reason": str(e)}
|
||||
)
|
||||
|
||||
@app.post("/video/status",
|
||||
response_model=VideoStatusResponse,
|
||||
tags=["视频生成"],
|
||||
summary="查询任务状态")
|
||||
async def get_video_status(
|
||||
request: VideoStatusRequest,
|
||||
auth: bool = Depends(verify_auth)
|
||||
):
|
||||
"""查询任务状态"""
|
||||
task = app.state.tasks.get(request.requestId)
|
||||
if not task:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail={"status": "Failed", "reason": "无效的任务ID"}
|
||||
)
|
||||
|
||||
# 计算队列位置(仅当在队列中时)
|
||||
queue_pos = 0
|
||||
if task['status'] == "InQueue" and request.requestId in app.state.pending_queue:
|
||||
queue_pos = app.state.pending_queue.index(request.requestId) + 1
|
||||
|
||||
response = {
|
||||
"status": task['status'],
|
||||
"reason": task.get('reason'),
|
||||
"queue_position": queue_pos if task['status'] == "InQueue" else None # 非排队状态返回null
|
||||
}
|
||||
|
||||
# 成功状态的特殊处理
|
||||
if task['status'] == "Succeed":
|
||||
response["results"] = {
|
||||
"videos": [{"url": task['download_url']}],
|
||||
"timings": {
|
||||
"inference": task['completed_at'] - task['started_at']
|
||||
},
|
||||
"seed": task['request']['seed']
|
||||
}
|
||||
# 取消状态的补充信息
|
||||
elif task['status'] == "Cancelled":
|
||||
response["reason"] = task.get('reason', "用户主动取消") # 确保原因字段存在
|
||||
|
||||
return response
|
||||
|
||||
|
||||
@app.post("/video/cancel",
|
||||
response_model=dict,
|
||||
tags=["视频生成"])
|
||||
async def cancel_task(
|
||||
request: VideoCancelRequest,
|
||||
auth: bool = Depends(verify_auth)
|
||||
):
|
||||
"""取消排队中的生成任务"""
|
||||
task_id = request.requestId
|
||||
|
||||
with app.state.task_lock:
|
||||
task = app.state.tasks.get(task_id)
|
||||
|
||||
# 检查任务是否存在
|
||||
if not task:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail={"status": "Failed", "reason": "无效的任务ID"}
|
||||
)
|
||||
|
||||
current_status = task['status']
|
||||
|
||||
# 仅允许取消排队中的任务
|
||||
if current_status != "InQueue":
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail={"status": "Failed", "reason": f"仅允许取消排队任务,当前状态: {current_status}"}
|
||||
)
|
||||
|
||||
# 从队列移除
|
||||
try:
|
||||
app.state.pending_queue.remove(task_id)
|
||||
except ValueError:
|
||||
pass # 可能已被处理
|
||||
|
||||
# 更新任务状态
|
||||
task.update({
|
||||
"status": "Cancelled",
|
||||
"reason": "用户主动取消",
|
||||
"completed_at": int(time.time())
|
||||
})
|
||||
|
||||
return {"status": "Succeed"}
|
||||
|
||||
|
||||
# ======================
|
||||
# 工具函数
|
||||
# ======================
|
||||
async def auto_cleanup(file_path: str, delay: int = 3600):
|
||||
"""自动清理生成的视频文件"""
|
||||
await asyncio.sleep(delay)
|
||||
try:
|
||||
if os.path.exists(file_path):
|
||||
os.remove(file_path)
|
||||
print(f"已清理文件: {file_path}")
|
||||
except Exception as e:
|
||||
print(f"文件清理失败: {str(e)}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
uvicorn.run(app, host="0.0.0.0", port=8088)
|
Loading…
Reference in New Issue
Block a user