From 14d68bbc9152f35c00a55750cc15327680a03dd5 Mon Sep 17 00:00:00 2001 From: DeepBeepMeep Date: Thu, 25 Sep 2025 09:40:51 +0200 Subject: [PATCH] fixed double Vace controlnets with no mask --- models/wan/diffusion_forcing copy.py | 479 ------------------ models/wan/text2video fuse attempt.py | 698 -------------------------- wgp.py | 11 +- 3 files changed, 7 insertions(+), 1181 deletions(-) delete mode 100644 models/wan/diffusion_forcing copy.py delete mode 100644 models/wan/text2video fuse attempt.py diff --git a/models/wan/diffusion_forcing copy.py b/models/wan/diffusion_forcing copy.py deleted file mode 100644 index 753fd45..0000000 --- a/models/wan/diffusion_forcing copy.py +++ /dev/null @@ -1,479 +0,0 @@ -import math -import os -from typing import List -from typing import Optional -from typing import Tuple -from typing import Union -import logging -import numpy as np -import torch -from diffusers.image_processor import PipelineImageInput -from diffusers.utils.torch_utils import randn_tensor -from diffusers.video_processor import VideoProcessor -from tqdm import tqdm -from .modules.model import WanModel -from .modules.t5 import T5EncoderModel -from .modules.vae import WanVAE -from wan.modules.posemb_layers import get_rotary_pos_embed -from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler, - get_sampling_sigmas, retrieve_timesteps) -from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler - -class DTT2V: - - - def __init__( - self, - config, - checkpoint_dir, - rank=0, - model_filename = None, - text_encoder_filename = None, - quantizeTransformer = False, - dtype = torch.bfloat16, - ): - self.device = torch.device(f"cuda") - self.config = config - self.rank = rank - self.dtype = dtype - self.num_train_timesteps = config.num_train_timesteps - self.param_dtype = config.param_dtype - - self.text_encoder = T5EncoderModel( - text_len=config.text_len, - dtype=config.t5_dtype, - device=torch.device('cpu'), - checkpoint_path=text_encoder_filename, - tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), - shard_fn= None) - - self.vae_stride = config.vae_stride - self.patch_size = config.patch_size - - - self.vae = WanVAE( - vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), - device=self.device) - - logging.info(f"Creating WanModel from {model_filename}") - from mmgp import offload - - self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False, forcedConfigPath="config.json") - # offload.load_model_data(self.model, "recam.ckpt") - # self.model.cpu() - # offload.save_model(self.model, "recam.safetensors") - if self.dtype == torch.float16 and not "fp16" in model_filename: - self.model.to(self.dtype) - # offload.save_model(self.model, "t2v_fp16.safetensors",do_quantize=True) - if self.dtype == torch.float16: - self.vae.model.to(self.dtype) - self.model.eval().requires_grad_(False) - - self.scheduler = FlowUniPCMultistepScheduler() - - @property - def do_classifier_free_guidance(self) -> bool: - return self._guidance_scale > 1 - - def encode_image( - self, image: PipelineImageInput, height: int, width: int, num_frames: int, tile_size = 0, causal_block_size = 0 - ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: - - # prefix_video - prefix_video = np.array(image.resize((width, height))).transpose(2, 0, 1) - prefix_video = torch.tensor(prefix_video).unsqueeze(1) # .to(image_embeds.dtype).unsqueeze(1) - if prefix_video.dtype == torch.uint8: - prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0 - prefix_video = prefix_video.to(self.device) - prefix_video = [self.vae.encode(prefix_video.unsqueeze(0), tile_size = tile_size)[0]] # [(c, f, h, w)] - if prefix_video[0].shape[1] % causal_block_size != 0: - truncate_len = prefix_video[0].shape[1] % causal_block_size - print("the length of prefix video is truncated for the casual block size alignment.") - prefix_video[0] = prefix_video[0][:, : prefix_video[0].shape[1] - truncate_len] - predix_video_latent_length = prefix_video[0].shape[1] - return prefix_video, predix_video_latent_length - - def prepare_latents( - self, - shape: Tuple[int], - dtype: Optional[torch.dtype] = None, - device: Optional[torch.device] = None, - generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, - ) -> torch.Tensor: - return randn_tensor(shape, generator, device=device, dtype=dtype) - - def generate_timestep_matrix( - self, - num_frames, - step_template, - base_num_frames, - ar_step=5, - num_pre_ready=0, - casual_block_size=1, - shrink_interval_with_mask=False, - ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, list[tuple]]: - step_matrix, step_index = [], [] - update_mask, valid_interval = [], [] - num_iterations = len(step_template) + 1 - num_frames_block = num_frames // casual_block_size - base_num_frames_block = base_num_frames // casual_block_size - if base_num_frames_block < num_frames_block: - infer_step_num = len(step_template) - gen_block = base_num_frames_block - min_ar_step = infer_step_num / gen_block - assert ar_step >= min_ar_step, f"ar_step should be at least {math.ceil(min_ar_step)} in your setting" - # print(num_frames, step_template, base_num_frames, ar_step, num_pre_ready, casual_block_size, num_frames_block, base_num_frames_block) - step_template = torch.cat( - [ - torch.tensor([999], dtype=torch.int64, device=step_template.device), - step_template.long(), - torch.tensor([0], dtype=torch.int64, device=step_template.device), - ] - ) # to handle the counter in row works starting from 1 - pre_row = torch.zeros(num_frames_block, dtype=torch.long) - if num_pre_ready > 0: - pre_row[: num_pre_ready // casual_block_size] = num_iterations - - while torch.all(pre_row >= (num_iterations - 1)) == False: - new_row = torch.zeros(num_frames_block, dtype=torch.long) - for i in range(num_frames_block): - if i == 0 or pre_row[i - 1] >= ( - num_iterations - 1 - ): # the first frame or the last frame is completely denoised - new_row[i] = pre_row[i] + 1 - else: - new_row[i] = new_row[i - 1] - ar_step - new_row = new_row.clamp(0, num_iterations) - - update_mask.append( - (new_row != pre_row) & (new_row != num_iterations) - ) # False: no need to update, True: need to update - step_index.append(new_row) - step_matrix.append(step_template[new_row]) - pre_row = new_row - - # for long video we split into several sequences, base_num_frames is set to the model max length (for training) - terminal_flag = base_num_frames_block - if shrink_interval_with_mask: - idx_sequence = torch.arange(num_frames_block, dtype=torch.int64) - update_mask = update_mask[0] - update_mask_idx = idx_sequence[update_mask] - last_update_idx = update_mask_idx[-1].item() - terminal_flag = last_update_idx + 1 - # for i in range(0, len(update_mask)): - for curr_mask in update_mask: - if terminal_flag < num_frames_block and curr_mask[terminal_flag]: - terminal_flag += 1 - valid_interval.append((max(terminal_flag - base_num_frames_block, 0), terminal_flag)) - - step_update_mask = torch.stack(update_mask, dim=0) - step_index = torch.stack(step_index, dim=0) - step_matrix = torch.stack(step_matrix, dim=0) - - if casual_block_size > 1: - step_update_mask = step_update_mask.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous() - step_index = step_index.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous() - step_matrix = step_matrix.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous() - valid_interval = [(s * casual_block_size, e * casual_block_size) for s, e in valid_interval] - - return step_matrix, step_index, step_update_mask, valid_interval - - @torch.no_grad() - def generate( - self, - prompt: Union[str, List[str]], - negative_prompt: Union[str, List[str]] = "", - image: PipelineImageInput = None, - height: int = 480, - width: int = 832, - num_frames: int = 97, - num_inference_steps: int = 50, - shift: float = 1.0, - guidance_scale: float = 5.0, - seed: float = 0.0, - overlap_history: int = 17, - addnoise_condition: int = 0, - base_num_frames: int = 97, - ar_step: int = 5, - causal_block_size: int = 1, - causal_attention: bool = False, - fps: int = 24, - VAE_tile_size = 0, - joint_pass = False, - callback = None, - ): - generator = torch.Generator(device=self.device) - generator.manual_seed(seed) - # if base_num_frames > base_num_frames: - # causal_block_size = 0 - self._guidance_scale = guidance_scale - - i2v_extra_kwrags = {} - prefix_video = None - predix_video_latent_length = 0 - if image: - frame_width, frame_height = image.size - scale = min(height / frame_height, width / frame_width) - height = (int(frame_height * scale) // 16) * 16 - width = (int(frame_width * scale) // 16) * 16 - - prefix_video, predix_video_latent_length = self.encode_image(image, height, width, num_frames, tile_size=VAE_tile_size, causal_block_size=causal_block_size) - - latent_length = (num_frames - 1) // 4 + 1 - latent_height = height // 8 - latent_width = width // 8 - - prompt_embeds = self.text_encoder([prompt], self.device) - prompt_embeds = [u.to(self.dtype).to(self.device) for u in prompt_embeds] - if self.do_classifier_free_guidance: - negative_prompt_embeds = self.text_encoder([negative_prompt], self.device) - negative_prompt_embeds = [u.to(self.dtype).to(self.device) for u in negative_prompt_embeds] - - - - self.scheduler.set_timesteps(num_inference_steps, device=self.device, shift=shift) - init_timesteps = self.scheduler.timesteps - fps_embeds = [fps] * prompt_embeds[0].shape[0] - fps_embeds = [0 if i == 16 else 1 for i in fps_embeds] - transformer_dtype = self.dtype - # with torch.cuda.amp.autocast(dtype=self.dtype), torch.no_grad(): - if overlap_history is None or base_num_frames is None or num_frames <= base_num_frames: - # short video generation - latent_shape = [16, latent_length, latent_height, latent_width] - latents = self.prepare_latents( - latent_shape, dtype=torch.float32, device=self.device, generator=generator - ) - latents = [latents] - if prefix_video is not None: - latents[0][:, :predix_video_latent_length] = prefix_video[0].to(torch.float32) - base_num_frames = (base_num_frames - 1) // 4 + 1 if base_num_frames is not None else latent_length - step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix( - latent_length, init_timesteps, base_num_frames, ar_step, predix_video_latent_length, causal_block_size - ) - sample_schedulers = [] - for _ in range(latent_length): - sample_scheduler = FlowUniPCMultistepScheduler( - num_train_timesteps=1000, shift=1, use_dynamic_shifting=False - ) - sample_scheduler.set_timesteps(num_inference_steps, device=self.device, shift=shift) - sample_schedulers.append(sample_scheduler) - sample_schedulers_counter = [0] * latent_length - - if callback != None: - callback(-1, None, True) - - freqs = get_rotary_pos_embed(latents[0].shape[1:], enable_RIFLEx= False) - for i, timestep_i in enumerate(tqdm(step_matrix)): - update_mask_i = step_update_mask[i] - valid_interval_i = valid_interval[i] - valid_interval_start, valid_interval_end = valid_interval_i - timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone() - latent_model_input = [latents[0][:, valid_interval_start:valid_interval_end, :, :].clone()] - if addnoise_condition > 0 and valid_interval_start < predix_video_latent_length: - noise_factor = 0.001 * addnoise_condition - timestep_for_noised_condition = addnoise_condition - latent_model_input[0][:, valid_interval_start:predix_video_latent_length] = ( - latent_model_input[0][:, valid_interval_start:predix_video_latent_length] * (1.0 - noise_factor) - + torch.randn_like(latent_model_input[0][:, valid_interval_start:predix_video_latent_length]) - * noise_factor - ) - timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition - kwrags = { - "x" : torch.stack([latent_model_input[0]]), - "t" : timestep, - "freqs" :freqs, - "fps" : fps_embeds, - # "causal_block_size" : causal_block_size, - "callback" : callback, - "pipeline" : self - } - kwrags.update(i2v_extra_kwrags) - - - if not self.do_classifier_free_guidance: - noise_pred = self.model( - context=prompt_embeds, - **kwrags, - )[0] - if self._interrupt: - return None - noise_pred= noise_pred.to(torch.float32) - else: - if joint_pass: - noise_pred_cond, noise_pred_uncond = self.model( - context=prompt_embeds, - context2=negative_prompt_embeds, - **kwrags, - ) - if self._interrupt: - return None - else: - noise_pred_cond = self.model( - context=prompt_embeds, - **kwrags, - )[0] - if self._interrupt: - return None - noise_pred_uncond = self.model( - context=negative_prompt_embeds, - **kwrags, - )[0] - if self._interrupt: - return None - noise_pred_cond= noise_pred_cond.to(torch.float32) - noise_pred_uncond= noise_pred_uncond.to(torch.float32) - noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) - del noise_pred_cond, noise_pred_uncond - for idx in range(valid_interval_start, valid_interval_end): - if update_mask_i[idx].item(): - latents[0][:, idx] = sample_schedulers[idx].step( - noise_pred[:, idx - valid_interval_start], - timestep_i[idx], - latents[0][:, idx], - return_dict=False, - generator=generator, - )[0] - sample_schedulers_counter[idx] += 1 - if callback is not None: - callback(i, latents[0], False) - - x0 = latents[0].unsqueeze(0) - videos = self.vae.decode(x0, tile_size= VAE_tile_size) - videos = (videos / 2 + 0.5).clamp(0, 1) - videos = [video for video in videos] - videos = [video.permute(1, 2, 3, 0) * 255 for video in videos] - videos = [video.cpu().numpy().astype(np.uint8) for video in videos] - return videos - else: - # long video generation - base_num_frames = (base_num_frames - 1) // 4 + 1 if base_num_frames is not None else latent_length - overlap_history_frames = (overlap_history - 1) // 4 + 1 - n_iter = 1 + (latent_length - base_num_frames - 1) // (base_num_frames - overlap_history_frames) + 1 - print(f"n_iter:{n_iter}") - output_video = None - for i in range(n_iter): - if output_video is not None: # i !=0 - prefix_video = output_video[:, -overlap_history:].to(self.device) - prefix_video = [self.vae.encode(prefix_video.unsqueeze(0))[0]] # [(c, f, h, w)] - if prefix_video[0].shape[1] % causal_block_size != 0: - truncate_len = prefix_video[0].shape[1] % causal_block_size - print("the length of prefix video is truncated for the casual block size alignment.") - prefix_video[0] = prefix_video[0][:, : prefix_video[0].shape[1] - truncate_len] - predix_video_latent_length = prefix_video[0].shape[1] - finished_frame_num = i * (base_num_frames - overlap_history_frames) + overlap_history_frames - left_frame_num = latent_length - finished_frame_num - base_num_frames_iter = min(left_frame_num + overlap_history_frames, base_num_frames) - else: # i == 0 - base_num_frames_iter = base_num_frames - latent_shape = [16, base_num_frames_iter, latent_height, latent_width] - latents = self.prepare_latents( - latent_shape, dtype=torch.float32, device=self.device, generator=generator - ) - latents = [latents] - if prefix_video is not None: - latents[0][:, :predix_video_latent_length] = prefix_video[0].to(torch.float32) - step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix( - base_num_frames_iter, - init_timesteps, - base_num_frames_iter, - ar_step, - predix_video_latent_length, - causal_block_size, - ) - sample_schedulers = [] - for _ in range(base_num_frames_iter): - sample_scheduler = FlowUniPCMultistepScheduler( - num_train_timesteps=1000, shift=1, use_dynamic_shifting=False - ) - sample_scheduler.set_timesteps(num_inference_steps, device=self.device, shift=shift) - sample_schedulers.append(sample_scheduler) - sample_schedulers_counter = [0] * base_num_frames_iter - if callback != None: - callback(-1, None, True) - - freqs = get_rotary_pos_embed(latents[0].shape[1:], enable_RIFLEx= False) - for i, timestep_i in enumerate(tqdm(step_matrix)): - update_mask_i = step_update_mask[i] - valid_interval_i = valid_interval[i] - valid_interval_start, valid_interval_end = valid_interval_i - timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone() - latent_model_input = [latents[0][:, valid_interval_start:valid_interval_end, :, :].clone()] - if addnoise_condition > 0 and valid_interval_start < predix_video_latent_length: - noise_factor = 0.001 * addnoise_condition - timestep_for_noised_condition = addnoise_condition - latent_model_input[0][:, valid_interval_start:predix_video_latent_length] = ( - latent_model_input[0][:, valid_interval_start:predix_video_latent_length] - * (1.0 - noise_factor) - + torch.randn_like( - latent_model_input[0][:, valid_interval_start:predix_video_latent_length] - ) - * noise_factor - ) - timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition - kwrags = { - "x" : torch.stack([latent_model_input[0]]), - "t" : timestep, - "freqs" :freqs, - "fps" : fps_embeds, - "causal_block_size" : causal_block_size, - "causal_attention" : causal_attention, - "callback" : callback, - "pipeline" : self - } - kwrags.update(i2v_extra_kwrags) - - if not self.do_classifier_free_guidance: - noise_pred = self.model( - context=prompt_embeds, - **kwrags, - )[0] - if self._interrupt: - return None - noise_pred= noise_pred.to(torch.float32) - else: - if joint_pass: - noise_pred_cond, noise_pred_uncond = self.model( - context=prompt_embeds, - context2=negative_prompt_embeds, - **kwrags, - ) - if self._interrupt: - return None - else: - noise_pred_cond = self.model( - context=prompt_embeds, - **kwrags, - )[0] - if self._interrupt: - return None - noise_pred_uncond = self.model( - context=negative_prompt_embeds, - )[0] - if self._interrupt: - return None - noise_pred_cond= noise_pred_cond.to(torch.float32) - noise_pred_uncond= noise_pred_uncond.to(torch.float32) - noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) - del noise_pred_cond, noise_pred_uncond - for idx in range(valid_interval_start, valid_interval_end): - if update_mask_i[idx].item(): - latents[0][:, idx] = sample_schedulers[idx].step( - noise_pred[:, idx - valid_interval_start], - timestep_i[idx], - latents[0][:, idx], - return_dict=False, - generator=generator, - )[0] - sample_schedulers_counter[idx] += 1 - if callback is not None: - callback(i, latents[0].squeeze(0), False) - - x0 = latents[0].unsqueeze(0) - videos = [self.vae.decode(x0, tile_size= VAE_tile_size)[0]] - if output_video is None: - output_video = videos[0].clamp(-1, 1).cpu() # c, f, h, w - else: - output_video = torch.cat( - [output_video, videos[0][:, overlap_history:].clamp(-1, 1).cpu()], 1 - ) # c, f, h, w - return output_video diff --git a/models/wan/text2video fuse attempt.py b/models/wan/text2video fuse attempt.py deleted file mode 100644 index 8af9458..0000000 --- a/models/wan/text2video fuse attempt.py +++ /dev/null @@ -1,698 +0,0 @@ -# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. -import gc -import logging -import math -import os -import random -import sys -import types -from contextlib import contextmanager -from functools import partial -from mmgp import offload -import torch -import torch.nn as nn -import torch.cuda.amp as amp -import torch.distributed as dist -from tqdm import tqdm -from PIL import Image -import torchvision.transforms.functional as TF -import torch.nn.functional as F -from .distributed.fsdp import shard_model -from .modules.model import WanModel -from .modules.t5 import T5EncoderModel -from .modules.vae import WanVAE -from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler, - get_sampling_sigmas, retrieve_timesteps) -from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler -from wan.modules.posemb_layers import get_rotary_pos_embed -from .utils.vace_preprocessor import VaceVideoProcessor - - -def optimized_scale(positive_flat, negative_flat): - - # Calculate dot production - dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True) - - # Squared norm of uncondition - squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8 - - # st_star = v_cond^T * v_uncond / ||v_uncond||^2 - st_star = dot_product / squared_norm - - return st_star - - -class WanT2V: - - def __init__( - self, - config, - checkpoint_dir, - rank=0, - model_filename = None, - text_encoder_filename = None, - quantizeTransformer = False, - dtype = torch.bfloat16 - ): - self.device = torch.device(f"cuda") - self.config = config - self.rank = rank - self.dtype = dtype - self.num_train_timesteps = config.num_train_timesteps - self.param_dtype = config.param_dtype - - self.text_encoder = T5EncoderModel( - text_len=config.text_len, - dtype=config.t5_dtype, - device=torch.device('cpu'), - checkpoint_path=text_encoder_filename, - tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), - shard_fn= None) - - self.vae_stride = config.vae_stride - self.patch_size = config.patch_size - - - self.vae = WanVAE( - vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), - device=self.device) - - logging.info(f"Creating WanModel from {model_filename}") - from mmgp import offload - - self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False) - # offload.load_model_data(self.model, "recam.ckpt") - # self.model.cpu() - # offload.save_model(self.model, "recam.safetensors") - if self.dtype == torch.float16 and not "fp16" in model_filename: - self.model.to(self.dtype) - # offload.save_model(self.model, "t2v_fp16.safetensors",do_quantize=True) - if self.dtype == torch.float16: - self.vae.model.to(self.dtype) - self.model.eval().requires_grad_(False) - - - self.sample_neg_prompt = config.sample_neg_prompt - - if "Vace" in model_filename: - self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]), - min_area=480*832, - max_area=480*832, - min_fps=config.sample_fps, - max_fps=config.sample_fps, - zero_start=True, - seq_len=32760, - keep_last=True) - - self.adapt_vace_model() - - self.scheduler = FlowUniPCMultistepScheduler() - - def vace_encode_frames(self, frames, ref_images, masks=None, tile_size = 0): - if ref_images is None: - ref_images = [None] * len(frames) - else: - assert len(frames) == len(ref_images) - - if masks is None: - latents = self.vae.encode(frames, tile_size = tile_size) - else: - inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)] - reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)] - inactive = self.vae.encode(inactive, tile_size = tile_size) - reactive = self.vae.encode(reactive, tile_size = tile_size) - latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)] - - cat_latents = [] - for latent, refs in zip(latents, ref_images): - if refs is not None: - if masks is None: - ref_latent = self.vae.encode(refs, tile_size = tile_size) - else: - ref_latent = self.vae.encode(refs, tile_size = tile_size) - ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent] - assert all([x.shape[1] == 1 for x in ref_latent]) - latent = torch.cat([*ref_latent, latent], dim=1) - cat_latents.append(latent) - return cat_latents - - def vace_encode_masks(self, masks, ref_images=None): - if ref_images is None: - ref_images = [None] * len(masks) - else: - assert len(masks) == len(ref_images) - - result_masks = [] - for mask, refs in zip(masks, ref_images): - c, depth, height, width = mask.shape - new_depth = int((depth + 3) // self.vae_stride[0]) - height = 2 * (int(height) // (self.vae_stride[1] * 2)) - width = 2 * (int(width) // (self.vae_stride[2] * 2)) - - # reshape - mask = mask[0, :, :, :] - mask = mask.view( - depth, height, self.vae_stride[1], width, self.vae_stride[1] - ) # depth, height, 8, width, 8 - mask = mask.permute(2, 4, 0, 1, 3) # 8, 8, depth, height, width - mask = mask.reshape( - self.vae_stride[1] * self.vae_stride[2], depth, height, width - ) # 8*8, depth, height, width - - # interpolation - mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0) - - if refs is not None: - length = len(refs) - mask_pad = torch.zeros_like(mask[:, :length, :, :]) - mask = torch.cat((mask_pad, mask), dim=1) - result_masks.append(mask) - return result_masks - - def vace_latent(self, z, m): - return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)] - - def prepare_source(self, src_video, src_mask, src_ref_images, total_frames, image_size, device, original_video = False, keep_frames= [], start_frame = 0, pre_src_video = None): - image_sizes = [] - trim_video = len(keep_frames) - - for i, (sub_src_video, sub_src_mask, sub_pre_src_video) in enumerate(zip(src_video, src_mask,pre_src_video)): - prepend_count = 0 if sub_pre_src_video == None else sub_pre_src_video.shape[1] - num_frames = total_frames - prepend_count - if sub_src_mask is not None and sub_src_video is not None: - src_video[i], src_mask[i], _, _, _ = self.vid_proc.load_video_pair(sub_src_video, sub_src_mask, max_frames= num_frames, trim_video = trim_video - prepend_count, start_frame = start_frame) - # src_video is [-1, 1], 0 = inpainting area (in fact 127 in [0, 255]) - # src_mask is [-1, 1], 0 = preserve original video (in fact 127 in [0, 255]) and 1 = Inpainting (in fact 255 in [0, 255]) - src_video[i] = src_video[i].to(device) - src_mask[i] = src_mask[i].to(device) - if prepend_count > 0: - src_video[i] = torch.cat( [sub_pre_src_video, src_video[i]], dim=1) - src_mask[i] = torch.cat( [torch.zeros_like(sub_pre_src_video), src_mask[i]] ,1) - src_video_shape = src_video[i].shape - if src_video_shape[1] != total_frames: - src_video[i] = torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1) - src_mask[i] = torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1) - src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1) - image_sizes.append(src_video[i].shape[2:]) - elif sub_src_video is None: - if prepend_count > 0: - src_video[i] = torch.cat( [sub_pre_src_video, torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)], dim=1) - src_mask[i] = torch.cat( [torch.zeros_like(sub_pre_src_video), torch.ones((3, num_frames, image_size[0], image_size[1]), device=device)] ,1) - else: - src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device) - src_mask[i] = torch.ones_like(src_video[i], device=device) - image_sizes.append(image_size) - else: - src_video[i], _, _, _ = self.vid_proc.load_video(sub_src_video, max_frames= num_frames, trim_video = trim_video - prepend_count, start_frame = start_frame) - src_video[i] = src_video[i].to(device) - src_mask[i] = torch.zeros_like(src_video[i], device=device) if original_video else torch.ones_like(src_video[i], device=device) - if prepend_count > 0: - src_video[i] = torch.cat( [sub_pre_src_video, src_video[i]], dim=1) - src_mask[i] = torch.cat( [torch.zeros_like(sub_pre_src_video), src_mask[i]] ,1) - src_video_shape = src_video[i].shape - if src_video_shape[1] != total_frames: - src_video[i] = torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1) - src_mask[i] = torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], total_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1) - image_sizes.append(src_video[i].shape[2:]) - for k, keep in enumerate(keep_frames): - if not keep: - src_video[i][:, k:k+1] = 0 - src_mask[i][:, k:k+1] = 1 - - for i, ref_images in enumerate(src_ref_images): - if ref_images is not None: - image_size = image_sizes[i] - for j, ref_img in enumerate(ref_images): - if ref_img is not None: - ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1) - if ref_img.shape[-2:] != image_size: - canvas_height, canvas_width = image_size - ref_height, ref_width = ref_img.shape[-2:] - white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1] - scale = min(canvas_height / ref_height, canvas_width / ref_width) - new_height = int(ref_height * scale) - new_width = int(ref_width * scale) - resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1) - top = (canvas_height - new_height) // 2 - left = (canvas_width - new_width) // 2 - white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image - ref_img = white_canvas - src_ref_images[i][j] = ref_img.to(device) - return src_video, src_mask, src_ref_images - - def decode_latent(self, zs, ref_images=None, tile_size= 0 ): - if ref_images is None: - ref_images = [None] * len(zs) - else: - assert len(zs) == len(ref_images) - - trimed_zs = [] - for z, refs in zip(zs, ref_images): - if refs is not None: - z = z[:, len(refs):, :, :] - trimed_zs.append(z) - - return self.vae.decode(trimed_zs, tile_size= tile_size) - - def generate_timestep_matrix( - self, - num_frames, - step_template, - base_num_frames, - ar_step=5, - num_pre_ready=0, - casual_block_size=1, - shrink_interval_with_mask=False, - ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, list[tuple]]: - step_matrix, step_index = [], [] - update_mask, valid_interval = [], [] - num_iterations = len(step_template) + 1 - num_frames_block = num_frames // casual_block_size - base_num_frames_block = base_num_frames // casual_block_size - if base_num_frames_block < num_frames_block: - infer_step_num = len(step_template) - gen_block = base_num_frames_block - min_ar_step = infer_step_num / gen_block - assert ar_step >= min_ar_step, f"ar_step should be at least {math.ceil(min_ar_step)} in your setting" - # print(num_frames, step_template, base_num_frames, ar_step, num_pre_ready, casual_block_size, num_frames_block, base_num_frames_block) - step_template = torch.cat( - [ - torch.tensor([999], dtype=torch.int64, device=step_template.device), - step_template.long(), - torch.tensor([0], dtype=torch.int64, device=step_template.device), - ] - ) # to handle the counter in row works starting from 1 - pre_row = torch.zeros(num_frames_block, dtype=torch.long) - if num_pre_ready > 0: - pre_row[: num_pre_ready // casual_block_size] = num_iterations - - while torch.all(pre_row >= (num_iterations - 1)) == False: - new_row = torch.zeros(num_frames_block, dtype=torch.long) - for i in range(num_frames_block): - if i == 0 or pre_row[i - 1] >= ( - num_iterations - 1 - ): # the first frame or the last frame is completely denoised - new_row[i] = pre_row[i] + 1 - else: - new_row[i] = new_row[i - 1] - ar_step - new_row = new_row.clamp(0, num_iterations) - - update_mask.append( - (new_row != pre_row) & (new_row != num_iterations) - ) # False: no need to update, True: need to update - step_index.append(new_row) - step_matrix.append(step_template[new_row]) - pre_row = new_row - - # for long video we split into several sequences, base_num_frames is set to the model max length (for training) - terminal_flag = base_num_frames_block - if shrink_interval_with_mask: - idx_sequence = torch.arange(num_frames_block, dtype=torch.int64) - update_mask = update_mask[0] - update_mask_idx = idx_sequence[update_mask] - last_update_idx = update_mask_idx[-1].item() - terminal_flag = last_update_idx + 1 - # for i in range(0, len(update_mask)): - for curr_mask in update_mask: - if terminal_flag < num_frames_block and curr_mask[terminal_flag]: - terminal_flag += 1 - valid_interval.append((max(terminal_flag - base_num_frames_block, 0), terminal_flag)) - - step_update_mask = torch.stack(update_mask, dim=0) - step_index = torch.stack(step_index, dim=0) - step_matrix = torch.stack(step_matrix, dim=0) - - if casual_block_size > 1: - step_update_mask = step_update_mask.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous() - step_index = step_index.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous() - step_matrix = step_matrix.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous() - valid_interval = [(s * casual_block_size, e * casual_block_size) for s, e in valid_interval] - - return step_matrix, step_index, step_update_mask, valid_interval - - def generate(self, - input_prompt, - input_frames= None, - input_masks = None, - input_ref_images = None, - source_video=None, - target_camera=None, - context_scale=1.0, - size=(1280, 720), - frame_num=81, - shift=5.0, - sample_solver='unipc', - sampling_steps=50, - guide_scale=5.0, - n_prompt="", - seed=-1, - offload_model=True, - callback = None, - enable_RIFLEx = None, - VAE_tile_size = 0, - joint_pass = False, - slg_layers = None, - slg_start = 0.0, - slg_end = 1.0, - cfg_star_switch = True, - cfg_zero_step = 5, - ): - r""" - Generates video frames from text prompt using diffusion process. - - Args: - input_prompt (`str`): - Text prompt for content generation - size (tupele[`int`], *optional*, defaults to (1280,720)): - Controls video resolution, (width,height). - frame_num (`int`, *optional*, defaults to 81): - How many frames to sample from a video. The number should be 4n+1 - shift (`float`, *optional*, defaults to 5.0): - Noise schedule shift parameter. Affects temporal dynamics - sample_solver (`str`, *optional*, defaults to 'unipc'): - Solver used to sample the video. - sampling_steps (`int`, *optional*, defaults to 40): - Number of diffusion sampling steps. Higher values improve quality but slow generation - guide_scale (`float`, *optional*, defaults 5.0): - Classifier-free guidance scale. Controls prompt adherence vs. creativity - n_prompt (`str`, *optional*, defaults to ""): - Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt` - seed (`int`, *optional*, defaults to -1): - Random seed for noise generation. If -1, use random seed. - offload_model (`bool`, *optional*, defaults to True): - If True, offloads models to CPU during generation to save VRAM - - Returns: - torch.Tensor: - Generated video frames tensor. Dimensions: (C, N H, W) where: - - C: Color channels (3 for RGB) - - N: Number of frames (81) - - H: Frame height (from size) - - W: Frame width from size) - """ - # preprocess - - if n_prompt == "": - n_prompt = self.sample_neg_prompt - seed = seed if seed >= 0 else random.randint(0, sys.maxsize) - seed_g = torch.Generator(device=self.device) - seed_g.manual_seed(seed) - - frame_num = max(17, frame_num) # must match causal_block_size for value of 5 - frame_num = int( round( (frame_num - 17) / 20)* 20 + 17 ) - num_frames = frame_num - addnoise_condition = 20 - causal_attention = True - fps = 16 - ar_step = 5 - - - - context = self.text_encoder([input_prompt], self.device) - context_null = self.text_encoder([n_prompt], self.device) - if target_camera != None: - size = (source_video.shape[2], source_video.shape[1]) - source_video = source_video.to(dtype=self.dtype , device=self.device) - source_video = source_video.permute(3, 0, 1, 2).div_(127.5).sub_(1.) - source_latents = self.vae.encode([source_video]) #.to(dtype=self.dtype, device=self.device) - del source_video - # Process target camera (recammaster) - from wan.utils.cammmaster_tools import get_camera_embedding - cam_emb = get_camera_embedding(target_camera) - cam_emb = cam_emb.to(dtype=self.dtype, device=self.device) - - if input_frames != None: - # vace context encode - input_frames = [u.to(self.device) for u in input_frames] - input_ref_images = [ None if u == None else [v.to(self.device) for v in u] for u in input_ref_images] - input_masks = [u.to(self.device) for u in input_masks] - - z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, tile_size = VAE_tile_size) - m0 = self.vace_encode_masks(input_masks, input_ref_images) - z = self.vace_latent(z0, m0) - - target_shape = list(z0[0].shape) - target_shape[0] = int(target_shape[0] / 2) - else: - F = frame_num - target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1, - size[1] // self.vae_stride[1], - size[0] // self.vae_stride[2]) - - seq_len = math.ceil((target_shape[2] * target_shape[3]) / - (self.patch_size[1] * self.patch_size[2]) * - target_shape[1]) - - context = [u.to(self.dtype) for u in context] - context_null = [u.to(self.dtype) for u in context_null] - - noise = [ torch.randn( *target_shape, dtype=torch.float32, device=self.device, generator=seed_g) ] - - # evaluation mode - - # if sample_solver == 'unipc': - # sample_scheduler = FlowUniPCMultistepScheduler( - # num_train_timesteps=self.num_train_timesteps, - # shift=1, - # use_dynamic_shifting=False) - # sample_scheduler.set_timesteps( - # sampling_steps, device=self.device, shift=shift) - # timesteps = sample_scheduler.timesteps - # elif sample_solver == 'dpm++': - # sample_scheduler = FlowDPMSolverMultistepScheduler( - # num_train_timesteps=self.num_train_timesteps, - # shift=1, - # use_dynamic_shifting=False) - # sampling_sigmas = get_sampling_sigmas(sampling_steps, shift) - # timesteps, _ = retrieve_timesteps( - # sample_scheduler, - # device=self.device, - # sigmas=sampling_sigmas) - # else: - # raise NotImplementedError("Unsupported solver.") - - # sample videos - latents = noise - del noise - batch_size =len(latents) - if target_camera != None: - shape = list(latents[0].shape[1:]) - shape[0] *= 2 - freqs = get_rotary_pos_embed(shape, enable_RIFLEx= False) - else: - freqs = get_rotary_pos_embed(latents[0].shape[1:], enable_RIFLEx= enable_RIFLEx) - # arg_c = {'context': context, 'freqs': freqs, 'pipeline': self, 'callback': callback} - # arg_null = {'context': context_null, 'freqs': freqs, 'pipeline': self, 'callback': callback} - # arg_both = {'context': context, 'context2': context_null, 'freqs': freqs, 'pipeline': self, 'callback': callback} - - i2v_extra_kwrags = {} - - if target_camera != None: - recam_dict = {'cam_emb': cam_emb} - i2v_extra_kwrags.update(recam_dict) - - if input_frames != None: - vace_dict = {'vace_context' : z, 'vace_context_scale' : context_scale} - i2v_extra_kwrags.update(vace_dict) - - - latent_length = (num_frames - 1) // 4 + 1 - latent_height = height // 8 - latent_width = width // 8 - if ar_step == 0: - causal_block_size = 1 - fps_embeds = [fps] #* prompt_embeds[0].shape[0] - fps_embeds = [0 if i == 16 else 1 for i in fps_embeds] - - self.scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift) - init_timesteps = self.scheduler.timesteps - base_num_frames_iter = latent_length - latent_shape = [16, base_num_frames_iter, latent_height, latent_width] - - prefix_video = None - predix_video_latent_length = 0 - - if prefix_video is not None: - latents[0][:, :predix_video_latent_length] = prefix_video[0].to(torch.float32) - step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix( - base_num_frames_iter, - init_timesteps, - base_num_frames_iter, - ar_step, - predix_video_latent_length, - causal_block_size, - ) - sample_schedulers = [] - for _ in range(base_num_frames_iter): - sample_scheduler = FlowUniPCMultistepScheduler( - num_train_timesteps=1000, shift=1, use_dynamic_shifting=False - ) - sample_scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift) - sample_schedulers.append(sample_scheduler) - sample_schedulers_counter = [0] * base_num_frames_iter - - updated_num_steps= len(step_matrix) - - if callback != None: - callback(-1, None, True, override_num_inference_steps = updated_num_steps) - if self.model.enable_teacache: - self.model.compute_teacache_threshold(self.model.teacache_start_step, timesteps, self.model.teacache_multiplier) - # if callback != None: - # callback(-1, None, True) - - for i, timestep_i in enumerate(tqdm(step_matrix)): - update_mask_i = step_update_mask[i] - valid_interval_i = valid_interval[i] - valid_interval_start, valid_interval_end = valid_interval_i - timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone() - latent_model_input = [latents[0][:, valid_interval_start:valid_interval_end, :, :].clone()] - if addnoise_condition > 0 and valid_interval_start < predix_video_latent_length: - noise_factor = 0.001 * addnoise_condition - timestep_for_noised_condition = addnoise_condition - latent_model_input[0][:, valid_interval_start:predix_video_latent_length] = ( - latent_model_input[0][:, valid_interval_start:predix_video_latent_length] - * (1.0 - noise_factor) - + torch.randn_like( - latent_model_input[0][:, valid_interval_start:predix_video_latent_length] - ) - * noise_factor - ) - timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition - kwrags = { - "x" : torch.stack([latent_model_input[0]]), - "t" : timestep, - "freqs" :freqs, - "fps" : fps_embeds, - "causal_block_size" : causal_block_size, - "causal_attention" : causal_attention, - "callback" : callback, - "pipeline" : self, - "current_step" : i, - } - kwrags.update(i2v_extra_kwrags) - - if not self.do_classifier_free_guidance: - noise_pred = self.model( - context=context, - **kwrags, - )[0] - if self._interrupt: - return None - noise_pred= noise_pred.to(torch.float32) - else: - if joint_pass: - noise_pred_cond, noise_pred_uncond = self.model( - context=context, - context2=context_null, - **kwrags, - ) - if self._interrupt: - return None - else: - noise_pred_cond = self.model( - context=context, - **kwrags, - )[0] - if self._interrupt: - return None - noise_pred_uncond = self.model( - context=context_null, - )[0] - if self._interrupt: - return None - noise_pred_cond= noise_pred_cond.to(torch.float32) - noise_pred_uncond= noise_pred_uncond.to(torch.float32) - noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_uncond) - del noise_pred_cond, noise_pred_uncond - for idx in range(valid_interval_start, valid_interval_end): - if update_mask_i[idx].item(): - latents[0][:, idx] = sample_schedulers[idx].step( - noise_pred[:, idx - valid_interval_start], - timestep_i[idx], - latents[0][:, idx], - return_dict=False, - generator=seed_g, - )[0] - sample_schedulers_counter[idx] += 1 - if callback is not None: - callback(i, latents[0].squeeze(0), False) - - # for i, t in enumerate(tqdm(timesteps)): - # if target_camera != None: - # latent_model_input = [torch.cat([u,v], dim=1) for u,v in zip(latents,source_latents )] - # else: - # latent_model_input = latents - # slg_layers_local = None - # if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps): - # slg_layers_local = slg_layers - # timestep = [t] - # offload.set_step_no_for_lora(self.model, i) - # timestep = torch.stack(timestep) - - # if joint_pass: - # noise_pred_cond, noise_pred_uncond = self.model( - # latent_model_input, t=timestep, current_step=i, slg_layers=slg_layers_local, **arg_both) - # if self._interrupt: - # return None - # else: - # noise_pred_cond = self.model( - # latent_model_input, t=timestep,current_step=i, is_uncond = False, **arg_c)[0] - # if self._interrupt: - # return None - # noise_pred_uncond = self.model( - # latent_model_input, t=timestep,current_step=i, is_uncond = True, slg_layers=slg_layers_local, **arg_null)[0] - # if self._interrupt: - # return None - - # # del latent_model_input - - # # CFG Zero *. Thanks to https://github.com/WeichenFan/CFG-Zero-star/ - # noise_pred_text = noise_pred_cond - # if cfg_star_switch: - # positive_flat = noise_pred_text.view(batch_size, -1) - # negative_flat = noise_pred_uncond.view(batch_size, -1) - - # alpha = optimized_scale(positive_flat,negative_flat) - # alpha = alpha.view(batch_size, 1, 1, 1) - - # if (i <= cfg_zero_step): - # noise_pred = noise_pred_text*0. # it would be faster not to compute noise_pred... - # else: - # noise_pred_uncond *= alpha - # noise_pred = noise_pred_uncond + guide_scale * (noise_pred_text - noise_pred_uncond) - # del noise_pred_uncond - - # temp_x0 = sample_scheduler.step( - # noise_pred[:, :target_shape[1]].unsqueeze(0), - # t, - # latents[0].unsqueeze(0), - # return_dict=False, - # generator=seed_g)[0] - # latents = [temp_x0.squeeze(0)] - # del temp_x0 - - # if callback is not None: - # callback(i, latents[0], False) - - x0 = latents - - if input_frames == None: - videos = self.vae.decode(x0, VAE_tile_size) - else: - videos = self.decode_latent(x0, input_ref_images, VAE_tile_size) - - del latents - del sample_scheduler - - return videos[0] if self.rank == 0 else None - - def adapt_vace_model(self): - model = self.model - modules_dict= { k: m for k, m in model.named_modules()} - for model_layer, vace_layer in model.vace_layers_mapping.items(): - module = modules_dict[f"vace_blocks.{vace_layer}"] - target = modules_dict[f"blocks.{model_layer}"] - setattr(target, "vace", module ) - delattr(model, "vace_blocks") - - \ No newline at end of file diff --git a/wgp.py b/wgp.py index 5267ca3..d1eae3b 100644 --- a/wgp.py +++ b/wgp.py @@ -5075,7 +5075,7 @@ def generate_video( any_guide_padding = model_def.get("pad_guide_video", False) from shared.utils.utils import prepare_video_guide_and_mask src_videos, src_masks = prepare_video_guide_and_mask( [video_guide_processed] + ([] if video_guide_processed2 is None else [video_guide_processed2]), - [video_mask_processed] + ([] if video_mask_processed2 is None else [video_mask_processed2]), + [video_mask_processed] + ([] if video_guide_processed2 is None else [video_mask_processed2]), None if extract_guide_from_window_start or model_def.get("dont_cat_preguide", False) or sparse_video_image is not None else pre_video_guide, image_size, current_video_length, latent_size, any_mask, any_guide_padding, guide_inpaint_color, @@ -5097,9 +5097,12 @@ def generate_video( src_faces = src_faces[:, :src_video.shape[1]] if video_guide is not None or len(frames_to_inject_parsed) > 0: if args.save_masks: - if src_video is not None: save_video( src_video, "masked_frames.mp4", fps) - if src_video2 is not None: save_video( src_video2, "masked_frames2.mp4", fps) - if any_mask: save_video( src_mask, "masks.mp4", fps, value_range=(0, 1)) + if src_video is not None: + save_video( src_video, "masked_frames.mp4", fps) + if any_mask: save_video( src_mask, "masks.mp4", fps, value_range=(0, 1)) + if src_video2 is not None: + save_video( src_video2, "masked_frames2.mp4", fps) + if any_mask: save_video( src_mask2, "masks2.mp4", fps, value_range=(0, 1)) if video_guide is not None: preview_frame_no = 0 if extract_guide_from_window_start or model_def.get("dont_cat_preguide", False) or sparse_video_image is not None else (guide_start_frame - window_start_frame) refresh_preview["video_guide"] = convert_tensor_to_image(src_video, preview_frame_no)