mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	Merge 5dea9c4e40 into 7c81b2f27d
				
					
				
			This commit is contained in:
		
						commit
						177145963b
					
				@ -1,14 +1,17 @@
 | 
			
		||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
			
		||||
import torch
 | 
			
		||||
import math
 | 
			
		||||
 | 
			
		||||
try:
 | 
			
		||||
    import flash_attn_interface
 | 
			
		||||
 | 
			
		||||
    FLASH_ATTN_3_AVAILABLE = True
 | 
			
		||||
except ModuleNotFoundError:
 | 
			
		||||
    FLASH_ATTN_3_AVAILABLE = False
 | 
			
		||||
 | 
			
		||||
try:
 | 
			
		||||
    import flash_attn
 | 
			
		||||
 | 
			
		||||
    FLASH_ATTN_2_AVAILABLE = True
 | 
			
		||||
except ModuleNotFoundError:
 | 
			
		||||
    FLASH_ATTN_2_AVAILABLE = False
 | 
			
		||||
@ -20,160 +23,214 @@ __all__ = [
 | 
			
		||||
    'attention',
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
DEBUG_ATTENTION = True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def log_debug(message):
 | 
			
		||||
    if DEBUG_ATTENTION:
 | 
			
		||||
        print(f"[DEBUG] {message}")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def manual_attention(
 | 
			
		||||
        q,
 | 
			
		||||
        k,
 | 
			
		||||
        v,
 | 
			
		||||
        q_lens=None,
 | 
			
		||||
        k_lens=None,
 | 
			
		||||
        dropout_p=0.,
 | 
			
		||||
        softmax_scale=None,
 | 
			
		||||
        q_scale=None,
 | 
			
		||||
        causal=False,
 | 
			
		||||
        window_size=(-1, -1),
 | 
			
		||||
        deterministic=False,
 | 
			
		||||
        dtype=torch.bfloat16,
 | 
			
		||||
):
 | 
			
		||||
    """Attention manuelle optimisée pour tous les devices"""
 | 
			
		||||
    # Déplacement immédiat sur le bon device
 | 
			
		||||
    device = q.device
 | 
			
		||||
    k = k.to(device)
 | 
			
		||||
    v = v.to(device)
 | 
			
		||||
    if q_lens is not None: q_lens = q_lens.to(device)
 | 
			
		||||
    if k_lens is not None: k_lens = k_lens.to(device)
 | 
			
		||||
 | 
			
		||||
    B, Lq, N, C = q.shape
 | 
			
		||||
    _, Lk, _, _ = k.shape
 | 
			
		||||
    original_dtype = q.dtype
 | 
			
		||||
 | 
			
		||||
    # Conversion au dtype de calcul
 | 
			
		||||
    q = q.to(dtype).transpose(1, 2)
 | 
			
		||||
    k = k.to(dtype).transpose(1, 2)
 | 
			
		||||
    v = v.to(dtype).transpose(1, 2)
 | 
			
		||||
 | 
			
		||||
    # Scaling
 | 
			
		||||
    scale_factor = softmax_scale or (1.0 / math.sqrt(C))
 | 
			
		||||
    if q_scale is not None:
 | 
			
		||||
        q = q * q_scale.view(1, -1, 1, 1)
 | 
			
		||||
 | 
			
		||||
    # Calcul des scores d'attention
 | 
			
		||||
    attn_scores = torch.matmul(q, k.transpose(-2, -1)) * scale_factor
 | 
			
		||||
 | 
			
		||||
    # Création des masques
 | 
			
		||||
    attn_mask = torch.zeros(B, 1, Lq, Lk, device=device, dtype=torch.float32)
 | 
			
		||||
 | 
			
		||||
    # Masque de padding des clés
 | 
			
		||||
    if k_lens is not None:
 | 
			
		||||
        key_mask = torch.arange(Lk, device=device)[None, :] < k_lens[:, None]
 | 
			
		||||
        attn_mask = attn_mask.masked_fill(~key_mask.view(B, 1, 1, Lk), float('-inf'))
 | 
			
		||||
 | 
			
		||||
    # Masque causal
 | 
			
		||||
    if causal:
 | 
			
		||||
        causal_mask = torch.ones(Lq, Lk, device=device, dtype=torch.bool).tril()
 | 
			
		||||
        attn_mask = attn_mask.masked_fill(~causal_mask, float('-inf'))
 | 
			
		||||
 | 
			
		||||
    # Masque de fenêtre
 | 
			
		||||
    if window_size != (-1, -1):
 | 
			
		||||
        left, right = window_size
 | 
			
		||||
        row = torch.arange(Lq, device=device)[:, None]
 | 
			
		||||
        col = torch.arange(Lk, device=device)[None, :]
 | 
			
		||||
        window_mask = (row - col >= -left) & (row - col <= right)
 | 
			
		||||
        attn_mask = attn_mask.masked_fill(~window_mask, float('-inf'))
 | 
			
		||||
 | 
			
		||||
    # Application du masque
 | 
			
		||||
    attn_scores += attn_mask
 | 
			
		||||
 | 
			
		||||
    # Softmax et dropout
 | 
			
		||||
    attn_weights = torch.softmax(attn_scores, dim=-1)
 | 
			
		||||
    if not deterministic and dropout_p > 0:
 | 
			
		||||
        attn_weights = torch.dropout(attn_weights, dropout_p, True)
 | 
			
		||||
 | 
			
		||||
    # Calcul de la sortie
 | 
			
		||||
    out = torch.matmul(attn_weights, v)
 | 
			
		||||
 | 
			
		||||
    # Masque de padding des requêtes
 | 
			
		||||
    if q_lens is not None:
 | 
			
		||||
        query_mask = torch.arange(Lq, device=device)[None, :] < q_lens[:, None]
 | 
			
		||||
        out = out * query_mask.view(B, 1, Lq, 1).to(out.dtype)
 | 
			
		||||
 | 
			
		||||
    # Retour au format original
 | 
			
		||||
    return out.transpose(1, 2).contiguous().to(original_dtype)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def flash_attention(
 | 
			
		||||
    q,
 | 
			
		||||
    k,
 | 
			
		||||
    v,
 | 
			
		||||
    q_lens=None,
 | 
			
		||||
    k_lens=None,
 | 
			
		||||
    dropout_p=0.,
 | 
			
		||||
    softmax_scale=None,
 | 
			
		||||
    q_scale=None,
 | 
			
		||||
    causal=False,
 | 
			
		||||
    window_size=(-1, -1),
 | 
			
		||||
    deterministic=False,
 | 
			
		||||
    dtype=torch.bfloat16,
 | 
			
		||||
    version=None,
 | 
			
		||||
        q,
 | 
			
		||||
        k,
 | 
			
		||||
        v,
 | 
			
		||||
        q_lens=None,
 | 
			
		||||
        k_lens=None,
 | 
			
		||||
        dropout_p=0.,
 | 
			
		||||
        softmax_scale=None,
 | 
			
		||||
        q_scale=None,
 | 
			
		||||
        causal=False,
 | 
			
		||||
        window_size=(-1, -1),
 | 
			
		||||
        deterministic=False,
 | 
			
		||||
        dtype=torch.bfloat16,
 | 
			
		||||
        version=None,
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
    q:              [B, Lq, Nq, C1].
 | 
			
		||||
    k:              [B, Lk, Nk, C1].
 | 
			
		||||
    v:              [B, Lk, Nk, C2]. Nq must be divisible by Nk.
 | 
			
		||||
    q_lens:         [B].
 | 
			
		||||
    k_lens:         [B].
 | 
			
		||||
    dropout_p:      float. Dropout probability.
 | 
			
		||||
    softmax_scale:  float. The scaling of QK^T before applying softmax.
 | 
			
		||||
    causal:         bool. Whether to apply causal attention mask.
 | 
			
		||||
    window_size:    (left right). If not (-1, -1), apply sliding window local attention.
 | 
			
		||||
    deterministic:  bool. If True, slightly slower and uses more memory.
 | 
			
		||||
    dtype:          torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
 | 
			
		||||
    """
 | 
			
		||||
    half_dtypes = (torch.float16, torch.bfloat16)
 | 
			
		||||
    assert dtype in half_dtypes
 | 
			
		||||
    assert q.device.type == 'cuda' and q.size(-1) <= 256
 | 
			
		||||
 | 
			
		||||
    # params
 | 
			
		||||
    b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
 | 
			
		||||
 | 
			
		||||
    def half(x):
 | 
			
		||||
        return x if x.dtype in half_dtypes else x.to(dtype)
 | 
			
		||||
 | 
			
		||||
    # preprocess query
 | 
			
		||||
    if q_lens is None:
 | 
			
		||||
        q = half(q.flatten(0, 1))
 | 
			
		||||
        q_lens = torch.tensor(
 | 
			
		||||
            [lq] * b, dtype=torch.int32).to(
 | 
			
		||||
                device=q.device, non_blocking=True)
 | 
			
		||||
    else:
 | 
			
		||||
        q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
 | 
			
		||||
 | 
			
		||||
    # preprocess key, value
 | 
			
		||||
    if k_lens is None:
 | 
			
		||||
        k = half(k.flatten(0, 1))
 | 
			
		||||
        v = half(v.flatten(0, 1))
 | 
			
		||||
        k_lens = torch.tensor(
 | 
			
		||||
            [lk] * b, dtype=torch.int32).to(
 | 
			
		||||
                device=k.device, non_blocking=True)
 | 
			
		||||
    else:
 | 
			
		||||
        k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
 | 
			
		||||
        v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
 | 
			
		||||
 | 
			
		||||
    q = q.to(v.dtype)
 | 
			
		||||
    k = k.to(v.dtype)
 | 
			
		||||
 | 
			
		||||
    if q_scale is not None:
 | 
			
		||||
        q = q * q_scale
 | 
			
		||||
 | 
			
		||||
    if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
 | 
			
		||||
        warnings.warn(
 | 
			
		||||
            'Flash attention 3 is not available, use flash attention 2 instead.'
 | 
			
		||||
    """Wrapper pour FlashAttention avec fallback manuel"""
 | 
			
		||||
    # Fallback si FlashAttention non disponible
 | 
			
		||||
    if not (FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE):
 | 
			
		||||
        return manual_attention(
 | 
			
		||||
            q, k, v, q_lens, k_lens, dropout_p, softmax_scale,
 | 
			
		||||
            q_scale, causal, window_size, deterministic, dtype
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    # apply attention
 | 
			
		||||
    if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
 | 
			
		||||
        # Note: dropout_p, window_size are not supported in FA3 now.
 | 
			
		||||
        x = flash_attn_interface.flash_attn_varlen_func(
 | 
			
		||||
            q=q,
 | 
			
		||||
            k=k,
 | 
			
		||||
            v=v,
 | 
			
		||||
            cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
 | 
			
		||||
                0, dtype=torch.int32).to(q.device, non_blocking=True),
 | 
			
		||||
            cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
 | 
			
		||||
                0, dtype=torch.int32).to(q.device, non_blocking=True),
 | 
			
		||||
            seqused_q=None,
 | 
			
		||||
            seqused_k=None,
 | 
			
		||||
            max_seqlen_q=lq,
 | 
			
		||||
            max_seqlen_k=lk,
 | 
			
		||||
            softmax_scale=softmax_scale,
 | 
			
		||||
            causal=causal,
 | 
			
		||||
            deterministic=deterministic)[0].unflatten(0, (b, lq))
 | 
			
		||||
    else:
 | 
			
		||||
        assert FLASH_ATTN_2_AVAILABLE
 | 
			
		||||
        x = flash_attn.flash_attn_varlen_func(
 | 
			
		||||
            q=q,
 | 
			
		||||
            k=k,
 | 
			
		||||
            v=v,
 | 
			
		||||
            cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
 | 
			
		||||
                0, dtype=torch.int32).to(q.device, non_blocking=True),
 | 
			
		||||
            cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
 | 
			
		||||
                0, dtype=torch.int32).to(q.device, non_blocking=True),
 | 
			
		||||
            max_seqlen_q=lq,
 | 
			
		||||
            max_seqlen_k=lk,
 | 
			
		||||
            dropout_p=dropout_p,
 | 
			
		||||
            softmax_scale=softmax_scale,
 | 
			
		||||
            causal=causal,
 | 
			
		||||
            window_size=window_size,
 | 
			
		||||
            deterministic=deterministic).unflatten(0, (b, lq))
 | 
			
		||||
    # Paramètres GPU
 | 
			
		||||
    device = q.device
 | 
			
		||||
    b, lq, lk = q.size(0), q.size(1), k.size(1)
 | 
			
		||||
    out_dtype = q.dtype
 | 
			
		||||
 | 
			
		||||
    # output
 | 
			
		||||
    return x.type(out_dtype)
 | 
			
		||||
    # Préparation des séquences
 | 
			
		||||
    if q_lens is None:
 | 
			
		||||
        q_lens = torch.full((b,), lq, dtype=torch.int32, device=device)
 | 
			
		||||
        q_flat = q.flatten(0, 1)
 | 
			
		||||
    else:
 | 
			
		||||
        q_lens = q_lens.to(device)
 | 
			
		||||
        q_flat = torch.cat([u[:l] for u, l in zip(q, q_lens)])
 | 
			
		||||
 | 
			
		||||
    if k_lens is None:
 | 
			
		||||
        k_lens = torch.full((b,), lk, dtype=torch.int32, device=device)
 | 
			
		||||
        k_flat = k.flatten(0, 1)
 | 
			
		||||
        v_flat = v.flatten(0, 1)
 | 
			
		||||
    else:
 | 
			
		||||
        k_lens = k_lens.to(device)
 | 
			
		||||
        k_flat = torch.cat([u[:l] for u, l in zip(k, k_lens)])
 | 
			
		||||
        v_flat = torch.cat([u[:l] for u, l in zip(v, k_lens)])
 | 
			
		||||
 | 
			
		||||
    # Conversion de type
 | 
			
		||||
    q_flat = q_flat.to(dtype)
 | 
			
		||||
    k_flat = k_flat.to(dtype)
 | 
			
		||||
    v_flat = v_flat.to(dtype)
 | 
			
		||||
 | 
			
		||||
    # Application de q_scale
 | 
			
		||||
    if q_scale is not None:
 | 
			
		||||
        q_flat = q_flat * q_scale
 | 
			
		||||
 | 
			
		||||
    # Préparation des séquences cumulatives
 | 
			
		||||
    cu_seqlens_q = torch.cat([torch.tensor([0], device=device), q_lens.cumsum(0)])
 | 
			
		||||
    cu_seqlens_k = torch.cat([torch.tensor([0], device=device), k_lens.cumsum(0)])
 | 
			
		||||
 | 
			
		||||
    # Appel à FlashAttention
 | 
			
		||||
    try:
 | 
			
		||||
        if FLASH_ATTN_3_AVAILABLE and (version is None or version == 3):
 | 
			
		||||
            x = flash_attn_interface.flash_attn_varlen_func(
 | 
			
		||||
                q_flat, k_flat, v_flat,
 | 
			
		||||
                cu_seqlens_q, cu_seqlens_k,
 | 
			
		||||
                max_seqlen_q=lq, max_seqlen_k=lk,
 | 
			
		||||
                softmax_scale=softmax_scale,
 | 
			
		||||
                causal=causal,
 | 
			
		||||
                deterministic=deterministic
 | 
			
		||||
            )[0]
 | 
			
		||||
        else:
 | 
			
		||||
            x = flash_attn.flash_attn_varlen_func(
 | 
			
		||||
                q_flat, k_flat, v_flat,
 | 
			
		||||
                cu_seqlens_q, cu_seqlens_k,
 | 
			
		||||
                max_seqlen_q=lq, max_seqlen_k=lk,
 | 
			
		||||
                dropout_p=dropout_p,
 | 
			
		||||
                softmax_scale=softmax_scale,
 | 
			
		||||
                causal=causal,
 | 
			
		||||
                window_size=window_size,
 | 
			
		||||
                deterministic=deterministic
 | 
			
		||||
            )
 | 
			
		||||
        return x.unflatten(0, (b, lq)).to(out_dtype)
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        warnings.warn(f"FlashAttention failed: {e}, using manual attention")
 | 
			
		||||
        return manual_attention(
 | 
			
		||||
            q, k, v, q_lens, k_lens, dropout_p, softmax_scale,
 | 
			
		||||
            q_scale, causal, window_size, deterministic, dtype
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def attention(
 | 
			
		||||
    q,
 | 
			
		||||
    k,
 | 
			
		||||
    v,
 | 
			
		||||
    q_lens=None,
 | 
			
		||||
    k_lens=None,
 | 
			
		||||
    dropout_p=0.,
 | 
			
		||||
    softmax_scale=None,
 | 
			
		||||
    q_scale=None,
 | 
			
		||||
    causal=False,
 | 
			
		||||
    window_size=(-1, -1),
 | 
			
		||||
    deterministic=False,
 | 
			
		||||
    dtype=torch.bfloat16,
 | 
			
		||||
    fa_version=None,
 | 
			
		||||
        q,
 | 
			
		||||
        k,
 | 
			
		||||
        v,
 | 
			
		||||
        q_lens=None,
 | 
			
		||||
        k_lens=None,
 | 
			
		||||
        dropout_p=0.,
 | 
			
		||||
        softmax_scale=None,
 | 
			
		||||
        q_scale=None,
 | 
			
		||||
        causal=False,
 | 
			
		||||
        window_size=(-1, -1),
 | 
			
		||||
        deterministic=False,
 | 
			
		||||
        dtype=torch.bfloat16,
 | 
			
		||||
        fa_version=None,
 | 
			
		||||
):
 | 
			
		||||
    """Fonction d'attention unifiée"""
 | 
			
		||||
    # Synchronisation des devices
 | 
			
		||||
    device = q.device
 | 
			
		||||
    k = k.to(device)
 | 
			
		||||
    v = v.to(device)
 | 
			
		||||
    if q_lens is not None: q_lens = q_lens.to(device)
 | 
			
		||||
    if k_lens is not None: k_lens = k_lens.to(device)
 | 
			
		||||
 | 
			
		||||
    # Sélection de l'implémentation
 | 
			
		||||
    if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
 | 
			
		||||
        return flash_attention(
 | 
			
		||||
            q=q,
 | 
			
		||||
            k=k,
 | 
			
		||||
            v=v,
 | 
			
		||||
            q_lens=q_lens,
 | 
			
		||||
            k_lens=k_lens,
 | 
			
		||||
            dropout_p=dropout_p,
 | 
			
		||||
            softmax_scale=softmax_scale,
 | 
			
		||||
            q_scale=q_scale,
 | 
			
		||||
            causal=causal,
 | 
			
		||||
            window_size=window_size,
 | 
			
		||||
            deterministic=deterministic,
 | 
			
		||||
            dtype=dtype,
 | 
			
		||||
            version=fa_version,
 | 
			
		||||
            q, k, v, q_lens, k_lens, dropout_p, softmax_scale,
 | 
			
		||||
            q_scale, causal, window_size, deterministic, dtype, fa_version
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        if q_lens is not None or k_lens is not None:
 | 
			
		||||
            warnings.warn(
 | 
			
		||||
                'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.'
 | 
			
		||||
            )
 | 
			
		||||
        attn_mask = None
 | 
			
		||||
 | 
			
		||||
        q = q.transpose(1, 2).to(dtype)
 | 
			
		||||
        k = k.transpose(1, 2).to(dtype)
 | 
			
		||||
        v = v.transpose(1, 2).to(dtype)
 | 
			
		||||
 | 
			
		||||
        out = torch.nn.functional.scaled_dot_product_attention(
 | 
			
		||||
            q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
 | 
			
		||||
 | 
			
		||||
        out = out.transpose(1, 2).contiguous()
 | 
			
		||||
        return out
 | 
			
		||||
        return manual_attention(
 | 
			
		||||
            q, k, v, q_lens, k_lens, dropout_p, softmax_scale,
 | 
			
		||||
            q_scale, causal, window_size, deterministic, dtype
 | 
			
		||||
        )
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user