Add the support for fp8 t5

This commit is contained in:
Yexiong Lin 2025-02-28 21:21:09 +11:00
parent db54b7c613
commit 1c7b73d13e
7 changed files with 63 additions and 17 deletions

View File

@ -137,6 +137,12 @@ python generate.py --task t2v-1.3B --size 832*480 --ckpt_dir ./Wan2.1-T2V-1.3B
You can also use the `--fp8` option to enable FP8 precision for reduced memory usage. Make sure to download the [FP8 model weight](https://huggingface.co/Kijai/WanVideo_comfy/resolve/main/Wan2_1-T2V-1_3B_fp8_e4m3fn.safetensors) and place it in the `Wan2.1-T2V-1.3B` folder.
Additionally, an [FP8 version of the T5 model](https://huggingface.co/Kijai/WanVideo_comfy/resolve/main/umt5-xxl-enc-fp8_e4m3fn.safetensors) is available. To use the FP8 T5 model, update the configuration file:
```
t2v_1_3B.t5_checkpoint = 'umt5-xxl-enc-fp8_e4m3fn.safetensors'
```
> 💡Note: If you are using the `T2V-1.3B` model, we recommend setting the parameter `--sample_guide_scale 6`. The `--sample_shift parameter` can be adjusted within the range of 8 to 12 based on the performance.

View File

@ -10,6 +10,7 @@ i2v_14B = EasyDict(__name__='Config: Wan I2V 14B')
i2v_14B.update(wan_shared_cfg)
i2v_14B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
# i2v_14B.t5_checkpoint = 'umt5-xxl-enc-fp8_e4m3fn.safetensors' # fp8 model
i2v_14B.t5_tokenizer = 'google/umt5-xxl'
# clip

View File

@ -10,6 +10,7 @@ t2v_14B.update(wan_shared_cfg)
# t5
t2v_14B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
# t2v_14B.t5_checkpoint = 'umt5-xxl-enc-fp8_e4m3fn.safetensors' # fp8 model
t2v_14B.t5_tokenizer = 'google/umt5-xxl'
# vae

View File

@ -10,6 +10,7 @@ t2v_1_3B.update(wan_shared_cfg)
# t5
t2v_1_3B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
# t2v_1_3B.t5_checkpoint = 'umt5-xxl-enc-fp8_e4m3fn.safetensors' # fp8 model
t2v_1_3B.t5_tokenizer = 'google/umt5-xxl'
# vae

View File

@ -80,6 +80,10 @@ class WanI2V:
self.param_dtype = config.param_dtype
shard_fn = partial(shard_model, device_id=device_id)
if config.t5_checkpoint == 'umt5-xxl-enc-fp8_e4m3fn.safetensors':
quantization = "fp8_e4m3fn"
else:
quantization = "disabled"
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
@ -87,6 +91,7 @@ class WanI2V:
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
shard_fn=shard_fn if t5_fsdp else None,
quantization=quantization,
)
self.vae_stride = config.vae_stride
@ -266,13 +271,15 @@ class WanI2V:
# preprocess
if not self.t5_cpu:
self.text_encoder.model.to(self.device)
context = self.text_encoder([input_prompt], self.device)
context_null = self.text_encoder([n_prompt], self.device)
with torch.autocast(device_type="cuda", dtype=torch.bfloat16, enabled=True):
context = self.text_encoder([input_prompt], self.device)
context_null = self.text_encoder([n_prompt], self.device)
if offload_model:
self.text_encoder.model.cpu()
else:
context = self.text_encoder([input_prompt], torch.device('cpu'))
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
with torch.autocast(device_type="cpu", dtype=torch.bfloat16, enabled=True):
context = self.text_encoder([input_prompt], torch.device('cpu'))
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
context = [t.to(self.device) for t in context]
context_null = [t.to(self.device) for t in context_null]

View File

@ -9,6 +9,10 @@ import torch.nn.functional as F
from .tokenizers import HuggingfaceTokenizer
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from safetensors.torch import load_file
__all__ = [
'T5Model',
'T5Encoder',
@ -442,7 +446,7 @@ def _t5(name,
model = model_cls(**kwargs)
# set device
model = model.to(dtype=dtype, device=device)
# model = model.to(dtype=dtype, device=device)
# init tokenizer
if return_tokenizer:
@ -479,6 +483,7 @@ class T5EncoderModel:
checkpoint_path=None,
tokenizer_path=None,
shard_fn=None,
quantization="disabled",
):
self.text_len = text_len
self.dtype = dtype
@ -486,14 +491,31 @@ class T5EncoderModel:
self.checkpoint_path = checkpoint_path
self.tokenizer_path = tokenizer_path
# init model
model = umt5_xxl(
encoder_only=True,
return_tokenizer=False,
dtype=dtype,
device=device).eval().requires_grad_(False)
logging.info(f'loading {checkpoint_path}')
model.load_state_dict(torch.load(checkpoint_path, map_location='cpu'))
if quantization == "disabled":
# init model
model = umt5_xxl(
encoder_only=True,
return_tokenizer=False,
dtype=dtype,
device=device).eval().requires_grad_(False)
model.load_state_dict(torch.load(checkpoint_path, map_location='cpu'))
elif quantization == "fp8_e4m3fn":
with init_empty_weights():
model = umt5_xxl(
encoder_only=True,
return_tokenizer=False,
dtype=dtype,
device=device).eval().requires_grad_(False)
cast_dtype = torch.float8_e4m3fn
state_dict = load_file(checkpoint_path, device="cpu")
params_to_keep = {'norm', 'pos_embedding', 'token_embedding'}
for name, param in model.named_parameters():
dtype_to_use = dtype if any(keyword in name for keyword in params_to_keep) else cast_dtype
set_module_tensor_to_device(model, name, device=device, dtype=dtype_to_use, value=state_dict[name])
del state_dict
self.model = model
if shard_fn is not None:
self.model = shard_fn(self.model, sync_module_states=False)

View File

@ -74,13 +74,19 @@ class WanT2V:
self.param_dtype = config.param_dtype
shard_fn = partial(shard_model, device_id=device_id)
if config.t5_checkpoint == 'umt5-xxl-enc-fp8_e4m3fn.safetensors':
quantization = "fp8_e4m3fn"
else:
quantization = "disabled"
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
shard_fn=shard_fn if t5_fsdp else None)
shard_fn=shard_fn if t5_fsdp else None,
quantization=quantization)
self.vae_stride = config.vae_stride
self.patch_size = config.patch_size
@ -221,13 +227,15 @@ class WanT2V:
if not self.t5_cpu:
self.text_encoder.model.to(self.device)
context = self.text_encoder([input_prompt], self.device)
context_null = self.text_encoder([n_prompt], self.device)
with torch.autocast(device_type="cuda", dtype=torch.bfloat16, enabled=True):
context = self.text_encoder([input_prompt], self.device)
context_null = self.text_encoder([n_prompt], self.device)
if offload_model:
self.text_encoder.model.cpu()
else:
context = self.text_encoder([input_prompt], torch.device('cpu'))
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
with torch.autocast(device_type="cpu", dtype=torch.bfloat16, enabled=True):
context = self.text_encoder([input_prompt], torch.device('cpu'))
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
context = [t.to(self.device) for t in context]
context_null = [t.to(self.device) for t in context_null]