mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-07-13 11:10:11 +00:00
Merge pull request #2 from bytedance-iaas/mul_device_teacache
[FEAT] support Mul device teacache
This commit is contained in:
commit
3c7c6f8b29
@ -2,6 +2,8 @@
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
|
||||
import numpy as np
|
||||
import logging
|
||||
import yunchang
|
||||
from yunchang.kernels import AttnType
|
||||
|
||||
@ -176,14 +178,81 @@ def usp_dit_forward(
|
||||
kwargs['hints'] = hints
|
||||
kwargs['context_scale'] = vace_context_scale
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x, **kwargs)
|
||||
teacache_switch = True
|
||||
if not hasattr(self, "enable_teacache"):
|
||||
teacache_switch = False
|
||||
|
||||
if teacache_switch and self.enable_teacache:
|
||||
# print("enable teacache")
|
||||
modulated_inp = e0 if self.use_ref_steps else e
|
||||
device_id = torch.cuda.current_device()
|
||||
# print("check args, {} {} {} {} {}".format(self.cnt, self.ret_steps, self.cutoff_steps, self.coefficients,
|
||||
# device_id))
|
||||
# teacache
|
||||
if self.cnt%2==0: # even -> conditon
|
||||
self.is_even = True
|
||||
if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps:
|
||||
should_calc_even = True
|
||||
self.accumulated_rel_l1_distance_even = 0
|
||||
else:
|
||||
rescale_func = np.poly1d(self.coefficients)
|
||||
self.accumulated_rel_l1_distance_even += rescale_func(((modulated_inp-self.previous_e0_even).abs().mean() / self.previous_e0_even.abs().mean()).cpu().item())
|
||||
if self.accumulated_rel_l1_distance_even < self.teacache_thresh:
|
||||
should_calc_even = False
|
||||
else:
|
||||
should_calc_even = True
|
||||
self.accumulated_rel_l1_distance_even = 0
|
||||
self.previous_e0_even = modulated_inp.clone()
|
||||
|
||||
else: # odd -> unconditon
|
||||
self.is_even = False
|
||||
if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps:
|
||||
should_calc_odd = True
|
||||
self.accumulated_rel_l1_distance_odd = 0
|
||||
else:
|
||||
rescale_func = np.poly1d(self.coefficients)
|
||||
self.accumulated_rel_l1_distance_odd += rescale_func(((modulated_inp-self.previous_e0_odd).abs().mean() / self.previous_e0_odd.abs().mean()).cpu().item())
|
||||
if self.accumulated_rel_l1_distance_odd < self.teacache_thresh:
|
||||
should_calc_odd = False
|
||||
else:
|
||||
should_calc_odd = True
|
||||
self.accumulated_rel_l1_distance_odd = 0
|
||||
self.previous_e0_odd = modulated_inp.clone()
|
||||
|
||||
if teacache_switch and self.enable_teacache:
|
||||
if self.is_even:
|
||||
if not should_calc_even:
|
||||
logging.info("use residual estimation for this difusion step")
|
||||
x += self.previous_residual_even
|
||||
else:
|
||||
ori_x = x.clone()
|
||||
for block in self.blocks:
|
||||
x = block(x, **kwargs)
|
||||
self.previous_residual_even = x - ori_x
|
||||
else:
|
||||
if not should_calc_odd:
|
||||
logging.info("use residual estimation for thi8s difusion step")
|
||||
x += self.previous_residual_odd
|
||||
else:
|
||||
ori_x = x.clone()
|
||||
for block in self.blocks:
|
||||
x = block(x, **kwargs)
|
||||
self.previous_residual_odd = x - ori_x
|
||||
|
||||
else:
|
||||
for block in self.blocks:
|
||||
x = block(x, **kwargs)
|
||||
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
# Context Parallel
|
||||
x = get_sp_group().all_gather(x, dim=1)
|
||||
|
||||
if teacache_switch:
|
||||
self.cnt += 1
|
||||
if self.cnt >= self.num_steps:
|
||||
self.cnt = 0
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
|
Loading…
Reference in New Issue
Block a user