mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-05 14:33:15 +00:00
fix broken queue states, avoid unnecessary reloading
This commit is contained in:
parent
b5eca59a71
commit
3cd0dbf4dd
@ -37,6 +37,7 @@ task_id = 0
|
||||
progress_tracker = {}
|
||||
tracker_lock = threading.Lock()
|
||||
file_list = []
|
||||
last_model_type = None
|
||||
|
||||
def runner():
|
||||
global current_task_id
|
||||
@ -47,22 +48,23 @@ def runner():
|
||||
with tracker_lock:
|
||||
progress = progress_tracker.get(task_id, {})
|
||||
|
||||
if item['state'] != "Queued" and item['state'] != "Finished":
|
||||
if item['state'] == "Processing":
|
||||
current_step = progress.get('current_step', 0)
|
||||
total_steps = progress.get('total_steps', 0)
|
||||
elapsed = time.time() - progress.get('start_time', time.time())
|
||||
status = progress.get('status', "")
|
||||
state = progress.get("state")
|
||||
repeats = progress.get("repeats")
|
||||
item.update({
|
||||
'progress': f"{((current_step/total_steps)*100 if total_steps > 0 else 0):.1f}%",
|
||||
'steps': f"{current_step}/{total_steps}",
|
||||
'time': f"{elapsed:.1f}s",
|
||||
'state': f"{state}",
|
||||
'repeats': f"{repeats}",
|
||||
'status': f"{status}"
|
||||
})
|
||||
if not any(item['state'] == "Processing" for item in queue):
|
||||
for item in queue:
|
||||
if item['state'] == "Queued":
|
||||
item['status'] = "Processing"
|
||||
item['state'] = "Processing"
|
||||
current_task_id = item['id']
|
||||
threading.Thread(target=process_task, args=(item,)).start()
|
||||
@ -160,7 +162,8 @@ def add_video_task(*params):
|
||||
"id": current_task_id,
|
||||
"params": (current_task_id,) + params,
|
||||
"state": "Queued",
|
||||
"status": "0/0",
|
||||
"status": "Queued",
|
||||
"repeats": "0/0",
|
||||
"progress": "0.0%",
|
||||
"steps": f"0/{params[5]}",
|
||||
"time": "--",
|
||||
@ -212,8 +215,8 @@ def update_queue_data():
|
||||
for item in queue:
|
||||
data.append([
|
||||
str(item['id']),
|
||||
item['state'],
|
||||
item['status'],
|
||||
item['repeats'],
|
||||
item.get('progress', "0.0%"),
|
||||
item.get('steps', ''),
|
||||
item.get('time', '--'),
|
||||
@ -1013,8 +1016,8 @@ def build_callback(state, pipe, num_inference_steps, status):
|
||||
'total_steps': num_inference_steps,
|
||||
'start_time': start_time,
|
||||
'last_update': time.time(),
|
||||
'status': status,
|
||||
'state': phase
|
||||
'repeats': status,
|
||||
'status': phase
|
||||
}
|
||||
return update_progress
|
||||
|
||||
@ -1078,20 +1081,21 @@ def generate_video(
|
||||
progress=gr.Progress() #track_tqdm= True
|
||||
|
||||
):
|
||||
global wan_model, offloadobj
|
||||
global wan_model, offloadobj, last_model_type
|
||||
reload_needed = state.get("_reload_needed", False)
|
||||
file_model_needed = model_needed(image2video)
|
||||
if(server_config.get("reload_model",1) == 2):
|
||||
if file_model_needed != model_filename or reload_needed:
|
||||
del wan_model
|
||||
if offloadobj is not None:
|
||||
offloadobj.release()
|
||||
del offloadobj
|
||||
gc.collect()
|
||||
print(f"Loading model {get_model_name(file_model_needed)}...")
|
||||
wan_model, offloadobj, trans = load_models(image2video)
|
||||
print(f"Model loaded")
|
||||
state["_reload_needed"] = False
|
||||
with lock:
|
||||
queue_not_empty = len(queue) > 0
|
||||
if(last_model_type != image2video and (queue_not_empty or server_config.get("reload_model",1) == 2) and (file_model_needed != model_filename or reload_needed)):
|
||||
del wan_model
|
||||
if offloadobj is not None:
|
||||
offloadobj.release()
|
||||
del offloadobj
|
||||
gc.collect()
|
||||
print(f"Loading model {get_model_name(file_model_needed)}...")
|
||||
wan_model, offloadobj, trans = load_models(image2video)
|
||||
print(f"Model loaded")
|
||||
state["_reload_needed"] = False
|
||||
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
@ -1251,13 +1255,6 @@ def generate_video(
|
||||
global save_path
|
||||
os.makedirs(save_path, exist_ok=True)
|
||||
abort = False
|
||||
with tracker_lock:
|
||||
progress_tracker[task_id] = {
|
||||
'current_step': 0,
|
||||
'total_steps': num_inference_steps,
|
||||
'start_time': time.time(),
|
||||
'last_update': time.time()
|
||||
}
|
||||
if trans.enable_teacache:
|
||||
trans.teacache_counter = 0
|
||||
trans.num_steps = num_inference_steps
|
||||
@ -1268,8 +1265,12 @@ def generate_video(
|
||||
status = f"{video_no}/{repeat_generation}"
|
||||
with tracker_lock:
|
||||
if task_id in progress_tracker:
|
||||
progress_tracker[task_id]['state'] = "Encoding Prompt"
|
||||
progress_tracker[task_id]['status'] = status
|
||||
progress_tracker[task_id]['status'] = "Encoding Prompt"
|
||||
progress_tracker[task_id]['repeats'] = status
|
||||
progress_tracker[task_id]['current_step'] = 0
|
||||
progress_tracker[task_id]['total_steps'] = num_inference_steps
|
||||
progress_tracker[task_id]['start_time'] = time.time()
|
||||
progress_tracker[task_id]['last_update'] = time.time()
|
||||
callback = build_callback(state, trans, num_inference_steps, status)
|
||||
offload.shared_state["callback"] = callback
|
||||
gc.collect()
|
||||
@ -1279,7 +1280,7 @@ def generate_video(
|
||||
try:
|
||||
with tracker_lock:
|
||||
if task_id in progress_tracker:
|
||||
progress_tracker[task_id]['status'] = video_no
|
||||
progress_tracker[task_id]['repeats'] = video_no
|
||||
video_no += 1
|
||||
if image2video:
|
||||
samples = wan_model.generate(
|
||||
@ -1326,8 +1327,8 @@ def generate_video(
|
||||
gen_in_progress = False
|
||||
if temp_filename!= None and os.path.isfile(temp_filename):
|
||||
os.remove(temp_filename)
|
||||
offload.last_offload_obj.unload_all()
|
||||
offload.unload_loras_from_model(trans)
|
||||
if(offload.last_offload_obj): offload.last_offload_obj.unload_all()
|
||||
if(trans): offload.unload_loras_from_model(trans)
|
||||
# if compile:
|
||||
# cache_size = torch._dynamo.config.cache_size_limit
|
||||
# torch.compiler.reset()
|
||||
@ -1411,6 +1412,7 @@ def generate_video(
|
||||
print(f"New video saved to Path: "+video_path)
|
||||
file_list.append(video_path)
|
||||
seed += 1
|
||||
last_model_type = image2video
|
||||
|
||||
if temp_filename!= None and os.path.isfile(temp_filename):
|
||||
os.remove(temp_filename)
|
||||
@ -2291,15 +2293,19 @@ def on_tab_select(t2v_state, i2v_state, evt: gr.SelectData):
|
||||
use_image2video = new_i2v
|
||||
|
||||
if(server_config.get("reload_model",2) == 1):
|
||||
global wan_model, offloadobj
|
||||
if wan_model is not None:
|
||||
if offloadobj is not None:
|
||||
offloadobj.release()
|
||||
offloadobj = None
|
||||
wan_model = None
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
wan_model, offloadobj, trans = load_models(use_image2video)
|
||||
with lock:
|
||||
queue_empty = len(queue) == 0
|
||||
if queue_empty:
|
||||
global wan_model, offloadobj
|
||||
if wan_model is not None:
|
||||
if offloadobj is not None:
|
||||
offloadobj.release()
|
||||
offloadobj = None
|
||||
wan_model = None
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
wan_model, offloadobj, trans = load_models(use_image2video)
|
||||
del trans
|
||||
|
||||
t2v_header = generate_header(transformer_filename_t2v, compile, attention_mode)
|
||||
i2v_header = generate_header(transformer_filename_i2v, compile, attention_mode)
|
||||
|
||||
Loading…
Reference in New Issue
Block a user