This commit is contained in:
Houchen Li 2025-07-28 19:15:11 +08:00 committed by GitHub
commit 43ac073411
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 411 additions and 57 deletions

View File

@ -12,12 +12,20 @@ import random
import torch import torch
import torch.distributed as dist import torch.distributed as dist
from torch.cuda import set_device
from PIL import Image from PIL import Image
try:
import torch_musa
from torch_musa.core.device import set_device
except ModuleNotFoundError:
torch_musa = None
import wan import wan
from wan.configs import MAX_AREA_CONFIGS, SIZE_CONFIGS, SUPPORTED_SIZES, WAN_CONFIGS from wan.configs import MAX_AREA_CONFIGS, SIZE_CONFIGS, SUPPORTED_SIZES, WAN_CONFIGS
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
from wan.utils.utils import cache_image, cache_video, str2bool from wan.utils.utils import cache_image, cache_video, str2bool
from wan.utils.platform import get_torch_distributed_backend
EXAMPLE_PROMPT = { EXAMPLE_PROMPT = {
@ -275,9 +283,9 @@ def generate(args):
logging.info( logging.info(
f"offload_model is not specified, set to {args.offload_model}.") f"offload_model is not specified, set to {args.offload_model}.")
if world_size > 1: if world_size > 1:
torch.cuda.set_device(local_rank) set_device(local_rank)
dist.init_process_group( dist.init_process_group(
backend="nccl", backend=get_torch_distributed_backend(),
init_method="env://", init_method="env://",
rank=rank, rank=rank,
world_size=world_size) world_size=world_size)

View File

@ -3,11 +3,17 @@ import gc
from functools import partial from functools import partial
import torch import torch
from torch.cuda import empty_cache
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import MixedPrecision, ShardingStrategy from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
from torch.distributed.fsdp.wrap import lambda_auto_wrap_policy from torch.distributed.fsdp.wrap import lambda_auto_wrap_policy
from torch.distributed.utils import _free_storage from torch.distributed.utils import _free_storage
try:
import torch_musa
from torch_musa.core.memory import empty_cache
except ModuleNotFoundError:
torch_musa = None
def shard_model( def shard_model(
model, model,
@ -40,4 +46,4 @@ def free_model(model):
_free_storage(m._handle.flat_param.data) _free_storage(m._handle.flat_param.data)
del model del model
gc.collect() gc.collect()
torch.cuda.empty_cache() empty_cache()

View File

@ -6,7 +6,15 @@ from xfuser.core.distributed import (
get_sequence_parallel_world_size, get_sequence_parallel_world_size,
get_sp_group, get_sp_group,
) )
from xfuser.core.long_ctx_attention import xFuserLongContextAttention from xfuser.core.long_ctx_attention import xFuserLongContextAttention, AttnType
attn_type:AttnType = AttnType.FA
try:
import torch_musa
import torch_musa.core.amp as amp
attn_type = AttnType.TORCH
except ImportError:
torch_musa = None
from ..modules.model import sinusoidal_embedding_1d from ..modules.model import sinusoidal_embedding_1d
@ -24,6 +32,19 @@ def pad_freqs(original_tensor, target_len):
return padded_tensor return padded_tensor
def pad_tensor(original_tensor, target_len, pad_value=0.0):
seq_len, s1, s2 = original_tensor.shape
pad_size = target_len - seq_len
padding_tensor = torch.full(
(pad_size, s1, s2),
pad_value,
dtype=original_tensor.dtype,
device=original_tensor.device,
)
padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
return padded_tensor
@amp.autocast(enabled=False) @amp.autocast(enabled=False)
def rope_apply(x, grid_sizes, freqs): def rope_apply(x, grid_sizes, freqs):
""" """
@ -65,6 +86,69 @@ def rope_apply(x, grid_sizes, freqs):
return torch.stack(output).float() return torch.stack(output).float()
@amp.autocast(enabled=False)
def rope_apply_musa(x, grid_sizes, freqs):
"""
x: [B, L, N, C].
grid_sizes: [B, 3].
freqs: [M, C // 2].
"""
s, n, c = x.size(1), x.size(2), x.size(3) // 2
c0 = c - 2 * (c // 3)
c1 = c // 3
c2 = c // 3
# split freqs
freqs_real = freqs[0].split([c0, c1, c2], dim=1)
freqs_imag = freqs[-1].split([c0, c1, c2], dim=1)
# loop over samples
output = []
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
seq_len = f * h * w
# precompute multipliers
x_i = x[i, :seq_len].reshape(s, n, -1, 2)
x_real = x_i[..., 0]
x_imag = x_i[..., 1]
freqs_real = torch.cat(
[
freqs_real[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
freqs_real[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
freqs_real[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
],
dim=-1,
).reshape(seq_len, 1, -1)
freqs_imag = torch.cat(
[
freqs_imag[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
freqs_imag[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
freqs_imag[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
],
dim=-1,
).reshape(seq_len, 1, -1)
# apply rotary embedding
sp_size = get_sequence_parallel_world_size()
sp_rank = get_sequence_parallel_rank()
freqs_real = pad_tensor(freqs_real, s * sp_size, 1.0)
freqs_imag = pad_tensor(freqs_imag, s * sp_size, 0.0)
freqs_real_rank = freqs_real[(sp_rank * s) : ((sp_rank + 1) * s), :, :]
freqs_imag_rank = freqs_imag[(sp_rank * s) : ((sp_rank + 1) * s), :, :]
out_real = x_real * freqs_real_rank - x_imag * freqs_imag_rank
out_imag = x_real * freqs_imag_rank + x_imag * freqs_real_rank
x_out = torch.stack([out_real, out_imag], dim=-1).flatten(2)
x_out = torch.cat([x_out, x[i, seq_len:]], dim=0)
# append to collection
output.append(x_out)
return torch.stack(output)
def usp_dit_forward_vace(self, x, vace_context, seq_len, kwargs): def usp_dit_forward_vace(self, x, vace_context, seq_len, kwargs):
# embeddings # embeddings
c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context] c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
@ -109,9 +193,17 @@ def usp_dit_forward(
if self.model_type == 'i2v': if self.model_type == 'i2v':
assert clip_fea is not None and y is not None assert clip_fea is not None and y is not None
# params # params
dtype = self.patch_embedding.weight.dtype
device = self.patch_embedding.weight.device device = self.patch_embedding.weight.device
if self.freqs.device != device: if torch_musa is not None:
self.freqs = self.freqs.to(device) if self.freqs[0].dtype != dtype or self.freqs[0].device != device:
self.freqs = (
self.freqs[0].to(dtype=dtype, device=device),
self.freqs[-1].to(dtype=dtype, device=device)
)
else:
if self.freqs.dtype != dtype or self.freqs.device != device:
self.freqs = self.freqs.to(dtype=dtype, device=device)
if self.model_type != 'vace' and y is not None: if self.model_type != 'vace' and y is not None:
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
@ -200,8 +292,13 @@ def usp_attn_forward(self,
return q, k, v return q, k, v
q, k, v = qkv_fn(x) q, k, v = qkv_fn(x)
q = rope_apply(q, grid_sizes, freqs)
k = rope_apply(k, grid_sizes, freqs) if torch_musa is not None:
q = rope_apply_musa(q, grid_sizes, freqs)
k = rope_apply_musa(k, grid_sizes, freqs)
else:
q = rope_apply(q, grid_sizes, freqs)
k = rope_apply(k, grid_sizes, freqs)
# TODO: We should use unpaded q,k,v for attention. # TODO: We should use unpaded q,k,v for attention.
# k_lens = seq_lens // get_sequence_parallel_world_size() # k_lens = seq_lens // get_sequence_parallel_world_size()
@ -210,7 +307,7 @@ def usp_attn_forward(self,
# k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0) # k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0)
# v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0) # v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0)
x = xFuserLongContextAttention()( x = xFuserLongContextAttention(attn_type=attn_type)(
None, None,
query=half(q), query=half(q),
key=half(k), key=half(k),

View File

@ -12,10 +12,19 @@ from functools import partial
import numpy as np import numpy as np
import torch import torch
import torch.cuda.amp as amp import torch.cuda.amp as amp
from torch.cuda import empty_cache, synchronize
import torch.distributed as dist import torch.distributed as dist
import torchvision.transforms.functional as TF import torchvision.transforms.functional as TF
from tqdm import tqdm from tqdm import tqdm
try:
import torch_musa
import torch_musa.core.amp as amp
from torch_musa.core.memory import empty_cache
from torch_musa.core.device import synchronize
except ModuleNotFoundError:
torch_musa = None
from .distributed.fsdp import shard_model from .distributed.fsdp import shard_model
from .modules.clip import CLIPModel from .modules.clip import CLIPModel
from .modules.model import WanModel from .modules.model import WanModel
@ -27,6 +36,7 @@ from .utils.fm_solvers import (
retrieve_timesteps, retrieve_timesteps,
) )
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
from .utils.platform import get_device
class WanFLF2V: class WanFLF2V:
@ -66,7 +76,7 @@ class WanFLF2V:
init_on_cpu (`bool`, *optional*, defaults to True): init_on_cpu (`bool`, *optional*, defaults to True):
Enable initializing Transformer Model on CPU. Only works without FSDP or USP. Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
""" """
self.device = torch.device(f"cuda:{device_id}") self.device = get_device(device_id)
self.config = config self.config = config
self.rank = rank self.rank = rank
self.use_usp = use_usp self.use_usp = use_usp
@ -323,7 +333,7 @@ class WanFLF2V:
} }
if offload_model: if offload_model:
torch.cuda.empty_cache() empty_cache()
self.model.to(self.device) self.model.to(self.device)
for _, t in enumerate(tqdm(timesteps)): for _, t in enumerate(tqdm(timesteps)):
@ -336,12 +346,12 @@ class WanFLF2V:
latent_model_input, t=timestep, **arg_c)[0].to( latent_model_input, t=timestep, **arg_c)[0].to(
torch.device('cpu') if offload_model else self.device) torch.device('cpu') if offload_model else self.device)
if offload_model: if offload_model:
torch.cuda.empty_cache() empty_cache()
noise_pred_uncond = self.model( noise_pred_uncond = self.model(
latent_model_input, t=timestep, **arg_null)[0].to( latent_model_input, t=timestep, **arg_null)[0].to(
torch.device('cpu') if offload_model else self.device) torch.device('cpu') if offload_model else self.device)
if offload_model: if offload_model:
torch.cuda.empty_cache() empty_cache()
noise_pred = noise_pred_uncond + guide_scale * ( noise_pred = noise_pred_uncond + guide_scale * (
noise_pred_cond - noise_pred_uncond) noise_pred_cond - noise_pred_uncond)
@ -361,7 +371,7 @@ class WanFLF2V:
if offload_model: if offload_model:
self.model.cpu() self.model.cpu()
torch.cuda.empty_cache() empty_cache()
if self.rank == 0: if self.rank == 0:
videos = self.vae.decode(x0) videos = self.vae.decode(x0)
@ -370,7 +380,7 @@ class WanFLF2V:
del sample_scheduler del sample_scheduler
if offload_model: if offload_model:
gc.collect() gc.collect()
torch.cuda.synchronize() synchronize()
if dist.is_initialized(): if dist.is_initialized():
dist.barrier() dist.barrier()

View File

@ -12,10 +12,19 @@ from functools import partial
import numpy as np import numpy as np
import torch import torch
import torch.cuda.amp as amp import torch.cuda.amp as amp
from torch.cuda import empty_cache, synchronize
import torch.distributed as dist import torch.distributed as dist
import torchvision.transforms.functional as TF import torchvision.transforms.functional as TF
from tqdm import tqdm from tqdm import tqdm
try:
import torch_musa
import torch_musa.core.amp as amp
from torch_musa.core.memory import empty_cache
from torch_musa.core.device import synchronize
except ModuleNotFoundError:
torch_musa = None
from .distributed.fsdp import shard_model from .distributed.fsdp import shard_model
from .modules.clip import CLIPModel from .modules.clip import CLIPModel
from .modules.model import WanModel from .modules.model import WanModel
@ -27,6 +36,7 @@ from .utils.fm_solvers import (
retrieve_timesteps, retrieve_timesteps,
) )
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
from .utils.platform import get_device
class WanI2V: class WanI2V:
@ -66,7 +76,7 @@ class WanI2V:
init_on_cpu (`bool`, *optional*, defaults to True): init_on_cpu (`bool`, *optional*, defaults to True):
Enable initializing Transformer Model on CPU. Only works without FSDP or USP. Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
""" """
self.device = torch.device(f"cuda:{device_id}") self.device = get_device(device_id)
self.config = config self.config = config
self.rank = rank self.rank = rank
self.use_usp = use_usp self.use_usp = use_usp
@ -296,7 +306,7 @@ class WanI2V:
} }
if offload_model: if offload_model:
torch.cuda.empty_cache() empty_cache()
self.model.to(self.device) self.model.to(self.device)
for _, t in enumerate(tqdm(timesteps)): for _, t in enumerate(tqdm(timesteps)):
@ -309,12 +319,12 @@ class WanI2V:
latent_model_input, t=timestep, **arg_c)[0].to( latent_model_input, t=timestep, **arg_c)[0].to(
torch.device('cpu') if offload_model else self.device) torch.device('cpu') if offload_model else self.device)
if offload_model: if offload_model:
torch.cuda.empty_cache() empty_cache()
noise_pred_uncond = self.model( noise_pred_uncond = self.model(
latent_model_input, t=timestep, **arg_null)[0].to( latent_model_input, t=timestep, **arg_null)[0].to(
torch.device('cpu') if offload_model else self.device) torch.device('cpu') if offload_model else self.device)
if offload_model: if offload_model:
torch.cuda.empty_cache() empty_cache()
noise_pred = noise_pred_uncond + guide_scale * ( noise_pred = noise_pred_uncond + guide_scale * (
noise_pred_cond - noise_pred_uncond) noise_pred_cond - noise_pred_uncond)
@ -334,7 +344,7 @@ class WanI2V:
if offload_model: if offload_model:
self.model.cpu() self.model.cpu()
torch.cuda.empty_cache() empty_cache()
if self.rank == 0: if self.rank == 0:
videos = self.vae.decode(x0) videos = self.vae.decode(x0)
@ -343,7 +353,7 @@ class WanI2V:
del sample_scheduler del sample_scheduler
if offload_model: if offload_model:
gc.collect() gc.collect()
torch.cuda.synchronize() synchronize()
if dist.is_initialized(): if dist.is_initialized():
dist.barrier() dist.barrier()

View File

@ -1,4 +1,6 @@
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import warnings
import torch import torch
try: try:
@ -13,7 +15,13 @@ try:
except ModuleNotFoundError: except ModuleNotFoundError:
FLASH_ATTN_2_AVAILABLE = False FLASH_ATTN_2_AVAILABLE = False
import warnings try:
import torch_musa
FLASH_ATTN_3_AVAILABLE = False
FLASH_ATTN_2_AVAILABLE = False
except ModuleNotFoundError:
torch_musa = None
__all__ = [ __all__ = [
'flash_attention', 'flash_attention',
@ -51,7 +59,7 @@ def flash_attention(
""" """
half_dtypes = (torch.float16, torch.bfloat16) half_dtypes = (torch.float16, torch.bfloat16)
assert dtype in half_dtypes assert dtype in half_dtypes
assert q.device.type == 'cuda' and q.size(-1) <= 256 assert (q.device.type == "cuda" or q.device.type == "musa") and q.size(-1) <= 256
# params # params
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
@ -173,7 +181,7 @@ def attention(
v = v.transpose(1, 2).to(dtype) v = v.transpose(1, 2).to(dtype)
out = torch.nn.functional.scaled_dot_product_attention( out = torch.nn.functional.scaled_dot_product_attention(
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p) q, k, v, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=causal, scale=softmax_scale)
out = out.transpose(1, 2).contiguous() out = out.transpose(1, 2).contiguous()
return out return out

View File

@ -6,12 +6,20 @@ import math
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import torch.cuda.amp as amp
import torchvision.transforms as T import torchvision.transforms as T
from .attention import flash_attention from .attention import flash_attention
from .tokenizers import HuggingfaceTokenizer from .tokenizers import HuggingfaceTokenizer
from .xlm_roberta import XLMRoberta from .xlm_roberta import XLMRoberta
try:
import torch_musa
import torch_musa.core.amp as amp
from .attention import attention as flash_attention
except ModuleNotFoundError:
torch_musa = None
__all__ = [ __all__ = [
'XLMRobertaCLIP', 'XLMRobertaCLIP',
'clip_xlm_roberta_vit_h_14', 'clip_xlm_roberta_vit_h_14',
@ -82,7 +90,10 @@ class SelfAttention(nn.Module):
# compute attention # compute attention
p = self.attn_dropout if self.training else 0.0 p = self.attn_dropout if self.training else 0.0
x = flash_attention(q, k, v, dropout_p=p, causal=self.causal, version=2) if torch_musa is not None:
x = flash_attention(q, k, v, dropout_p=p, causal=self.causal)
else:
x = flash_attention(q, k, v, dropout_p=p, causal=self.causal, version=2)
x = x.reshape(b, s, c) x = x.reshape(b, s, c)
# output # output
@ -194,7 +205,10 @@ class AttentionPool(nn.Module):
k, v = self.to_kv(x).view(b, s, 2, n, d).unbind(2) k, v = self.to_kv(x).view(b, s, 2, n, d).unbind(2)
# compute attention # compute attention
x = flash_attention(q, k, v, version=2) if torch_musa is not None:
x = flash_attention(q, k, v)
else:
x = flash_attention(q, k, v, version=2)
x = x.reshape(b, 1, c) x = x.reshape(b, 1, c)
# output # output
@ -537,6 +551,6 @@ class CLIPModel:
videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5)) videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5))
# forward # forward
with torch.cuda.amp.autocast(dtype=self.dtype): with amp.autocast(dtype=self.dtype):
out = self.model.visual(videos, use_31_block=True) out = self.model.visual(videos, use_31_block=True)
return out return out

View File

@ -7,7 +7,14 @@ import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin from diffusers.models.modeling_utils import ModelMixin
from .attention import flash_attention from wan.modules.attention import flash_attention
try:
import torch_musa
import torch_musa.core.amp as amp
from wan.modules.attention import attention as flash_attention
except ModuleNotFoundError:
torch_musa = None
__all__ = ['WanModel'] __all__ = ['WanModel']
@ -19,7 +26,7 @@ def sinusoidal_embedding_1d(dim, position):
# preprocess # preprocess
assert dim % 2 == 0 assert dim % 2 == 0
half = dim // 2 half = dim // 2
position = position.type(torch.float64) position = position.type(torch.float32)
# calculation # calculation
sinusoid = torch.outer( sinusoid = torch.outer(
@ -39,6 +46,36 @@ def rope_params(max_seq_len, dim, theta=10000):
return freqs return freqs
@amp.autocast(enabled=False)
def rope_params_real(
max_seq_len, dim, theta=10000, dtype=torch.float32, device=torch.device("cpu")
):
assert dim % 2 == 0
freqs_real = torch.outer(
torch.arange(max_seq_len, dtype=dtype, device=device),
1.0
/ torch.pow(
theta, torch.arange(0, dim, 2, dtype=dtype, device=device).div(dim)
),
)
return torch.cos(freqs_real)
@amp.autocast(enabled=False)
def rope_params_imag(
max_seq_len, dim, theta=10000, dtype=torch.float32, device=torch.device("cpu")
):
assert dim % 2 == 0
freqs_imag = torch.outer(
torch.arange(max_seq_len, dtype=dtype, device=device),
1.0
/ torch.pow(
theta, torch.arange(0, dim, 2, dtype=dtype, device=device).div(dim)
),
)
return torch.sin(freqs_imag)
@amp.autocast(enabled=False) @amp.autocast(enabled=False)
def rope_apply(x, grid_sizes, freqs): def rope_apply(x, grid_sizes, freqs):
n, c = x.size(2), x.size(3) // 2 n, c = x.size(2), x.size(3) // 2
@ -70,6 +107,55 @@ def rope_apply(x, grid_sizes, freqs):
return torch.stack(output).float() return torch.stack(output).float()
@amp.autocast(enabled=False)
def rope_apply_musa(x, grid_sizes, freqs):
n, c = x.size(2), x.size(3) // 2
c0 = c - 2 * (c // 3)
c1 = c // 3
c2 = c // 3
# split freqs
freqs_real = freqs[0].split([c0, c1, c2], dim=1)
freqs_imag = freqs[-1].split([c0, c1, c2], dim=1)
# loop over samples
output = []
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
seq_len = f * h * w
# precompute multipliers
x_i = x[i, :seq_len].reshape(seq_len, n, c, 2)
x_real = x_i[..., 0]
x_imag = x_i[..., 1]
freqs_real = torch.cat(
[
freqs_real[0][:f].view(f, 1, 1, c0).expand(f, h, w, c0),
freqs_real[1][:h].view(1, h, 1, c1).expand(f, h, w, c1),
freqs_real[2][:w].view(1, 1, w, c2).expand(f, h, w, c2),
],
dim=-1,
).reshape(seq_len, 1, c)
freqs_imag = torch.cat(
[
freqs_imag[0][:f].view(f, 1, 1, c0).expand(f, h, w, c0),
freqs_imag[1][:h].view(1, h, 1, c1).expand(f, h, w, c1),
freqs_imag[2][:w].view(1, 1, w, c2).expand(f, h, w, c2),
],
dim=-1,
).reshape(seq_len, 1, c)
out_real = x_real * freqs_real - x_imag * freqs_imag
out_imag = x_real * freqs_imag + x_imag * freqs_real
# apply rotary embedding
x_out = torch.stack([out_real, out_imag], dim=-1).flatten(2)
x_out = torch.cat([x_out, x[i, seq_len:]], dim=0)
# append to collection
output.append(x_out)
return torch.stack(output)
class WanRMSNorm(nn.Module): class WanRMSNorm(nn.Module):
def __init__(self, dim, eps=1e-5): def __init__(self, dim, eps=1e-5):
@ -146,12 +232,22 @@ class WanSelfAttention(nn.Module):
q, k, v = qkv_fn(x) q, k, v = qkv_fn(x)
x = flash_attention( if torch_musa is not None:
q=rope_apply(q, grid_sizes, freqs), x = flash_attention(
k=rope_apply(k, grid_sizes, freqs), q=rope_apply_musa(q, grid_sizes, freqs),
v=v, k=rope_apply_musa(k, grid_sizes, freqs),
k_lens=seq_lens, v=v,
window_size=self.window_size) k_lens=seq_lens,
window_size=self.window_size,
)
else:
x = flash_attention(
q=rope_apply(q, grid_sizes, freqs),
k=rope_apply(k, grid_sizes, freqs),
v=v,
k_lens=seq_lens,
window_size=self.window_size,
)
# output # output
x = x.flatten(2) x = x.flatten(2)
@ -477,12 +573,33 @@ class WanModel(ModelMixin, ConfigMixin):
# buffers (don't use register_buffer otherwise dtype will be changed in to()) # buffers (don't use register_buffer otherwise dtype will be changed in to())
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0 assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
d = dim // num_heads d = dim // num_heads
self.freqs = torch.cat([ if torch_musa is not None:
rope_params(1024, d - 4 * (d // 6)), freqs_real = torch.cat(
rope_params(1024, 2 * (d // 6)), [
rope_params(1024, 2 * (d // 6)) rope_params_real(1024, d - 4 * (d // 6)),
], rope_params_real(1024, 2 * (d // 6)),
dim=1) rope_params_real(1024, 2 * (d // 6)),
],
dim=1,
)
freqs_imag = torch.cat(
[
rope_params_imag(1024, d - 4 * (d // 6)),
rope_params_imag(1024, 2 * (d // 6)),
rope_params_imag(1024, 2 * (d // 6)),
],
dim=1,
)
self.freqs = (freqs_real, freqs_imag)
else:
self.freqs = torch.cat(
[
rope_params(1024, d - 4 * (d // 6)),
rope_params(1024, 2 * (d // 6)),
rope_params(1024, 2 * (d // 6)),
],
dim=1,
)
if model_type == 'i2v' or model_type == 'flf2v': if model_type == 'i2v' or model_type == 'flf2v':
self.img_emb = MLPProj(1280, dim, flf_pos_emb=model_type == 'flf2v') self.img_emb = MLPProj(1280, dim, flf_pos_emb=model_type == 'flf2v')
@ -523,9 +640,17 @@ class WanModel(ModelMixin, ConfigMixin):
if self.model_type == 'i2v' or self.model_type == 'flf2v': if self.model_type == 'i2v' or self.model_type == 'flf2v':
assert clip_fea is not None and y is not None assert clip_fea is not None and y is not None
# params # params
dtype = self.patch_embedding.weight.dtype
device = self.patch_embedding.weight.device device = self.patch_embedding.weight.device
if self.freqs.device != device: if torch_musa is not None:
self.freqs = self.freqs.to(device) if self.freqs[0].dtype != dtype or self.freqs[0].device != device:
self.freqs = (
self.freqs[0].to(dtype=dtype, device=device),
self.freqs[-1].to(dtype=dtype, device=device)
)
else:
if self.freqs.dtype != dtype or self.freqs.device != device:
self.freqs = self.freqs.to(dtype=dtype, device=device)
if y is not None: if y is not None:
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]

View File

@ -6,6 +6,13 @@ import math
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from torch.cuda import current_device
try:
import torch_musa
from torch_musa.core.device import current_device
except ModuleNotFoundError:
torch_musa = None
from .tokenizers import HuggingfaceTokenizer from .tokenizers import HuggingfaceTokenizer
@ -475,7 +482,7 @@ class T5EncoderModel:
self, self,
text_len, text_len,
dtype=torch.bfloat16, dtype=torch.bfloat16,
device=torch.cuda.current_device(), device=current_device(),
checkpoint_path=None, checkpoint_path=None,
tokenizer_path=None, tokenizer_path=None,
shard_fn=None, shard_fn=None,

View File

@ -4,6 +4,12 @@ import torch.cuda.amp as amp
import torch.nn as nn import torch.nn as nn
from diffusers.configuration_utils import register_to_config from diffusers.configuration_utils import register_to_config
try:
import torch_musa
import torch_musa.core.amp as amp
except ModuleNotFoundError:
torch_musa = None
from .model import WanAttentionBlock, WanModel, sinusoidal_embedding_1d from .model import WanAttentionBlock, WanModel, sinusoidal_embedding_1d

View File

@ -5,8 +5,17 @@ import torch
import torch.cuda.amp as amp import torch.cuda.amp as amp
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
from torch.nn import Upsample
from einops import rearrange from einops import rearrange
try:
import torch_musa
import torch_musa.core.amp as amp
except ModuleNotFoundError:
torch_musa = None
from wan.utils.platform import get_device
__all__ = [ __all__ = [
'WanVAE', 'WanVAE',
] ]
@ -622,7 +631,7 @@ class WanVAE:
z_dim=16, z_dim=16,
vae_pth='cache/vae_step_411000.pth', vae_pth='cache/vae_step_411000.pth',
dtype=torch.float, dtype=torch.float,
device="cuda"): device=get_device()):
self.dtype = dtype self.dtype = dtype
self.device = device self.device = device

View File

@ -11,9 +11,18 @@ from functools import partial
import torch import torch
import torch.cuda.amp as amp import torch.cuda.amp as amp
from torch.cuda import empty_cache, synchronize
import torch.distributed as dist import torch.distributed as dist
from tqdm import tqdm from tqdm import tqdm
try:
import torch_musa
import torch_musa.core.amp as amp
from torch_musa.core.memory import empty_cache
from torch_musa.core.device import synchronize
except ModuleNotFoundError:
torch_musa = None
from .distributed.fsdp import shard_model from .distributed.fsdp import shard_model
from .modules.model import WanModel from .modules.model import WanModel
from .modules.t5 import T5EncoderModel from .modules.t5 import T5EncoderModel
@ -24,7 +33,7 @@ from .utils.fm_solvers import (
retrieve_timesteps, retrieve_timesteps,
) )
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
from .utils.platform import get_device
class WanT2V: class WanT2V:
@ -60,7 +69,7 @@ class WanT2V:
t5_cpu (`bool`, *optional*, defaults to False): t5_cpu (`bool`, *optional*, defaults to False):
Whether to place T5 model on CPU. Only works without t5_fsdp. Whether to place T5 model on CPU. Only works without t5_fsdp.
""" """
self.device = torch.device(f"cuda:{device_id}") self.device = get_device(device_id)
self.config = config self.config = config
self.rank = rank self.rank = rank
self.t5_cpu = t5_cpu self.t5_cpu = t5_cpu
@ -256,7 +265,7 @@ class WanT2V:
x0 = latents x0 = latents
if offload_model: if offload_model:
self.model.cpu() self.model.cpu()
torch.cuda.empty_cache() empty_cache()
if self.rank == 0: if self.rank == 0:
videos = self.vae.decode(x0) videos = self.vae.decode(x0)
@ -264,7 +273,7 @@ class WanT2V:
del sample_scheduler del sample_scheduler
if offload_model: if offload_model:
gc.collect() gc.collect()
torch.cuda.synchronize() synchronize()
if dist.is_initialized(): if dist.is_initialized():
dist.barrier() dist.barrier()

View File

@ -5,9 +5,10 @@ from .fm_solvers import (
) )
from .fm_solvers_unipc import FlowUniPCMultistepScheduler from .fm_solvers_unipc import FlowUniPCMultistepScheduler
from .vace_processor import VaceVideoProcessor from .vace_processor import VaceVideoProcessor
from .platform import get_device, get_torch_distributed_backend
__all__ = [ __all__ = [
'HuggingfaceTokenizer', 'get_sampling_sigmas', 'retrieve_timesteps', 'HuggingfaceTokenizer', 'get_sampling_sigmas', 'retrieve_timesteps',
'FlowDPMSolverMultistepScheduler', 'FlowUniPCMultistepScheduler', 'FlowDPMSolverMultistepScheduler', 'FlowUniPCMultistepScheduler',
'VaceVideoProcessor' 'VaceVideoProcessor', 'get_device', 'get_torch_distributed_backend'
] ]

34
wan/utils/platform.py Normal file
View File

@ -0,0 +1,34 @@
from typing import Optional
import torch
try:
import torch_musa
except ModuleNotFoundError:
torch_musa = None
def _is_musa():
try:
if torch.musa.is_available():
return True
except ModuleNotFoundError:
return False
def get_device(local_rank:Optional[int]=None) -> torch.device:
if torch.cuda.is_available():
return torch.cuda.current_device() if local_rank is None else torch.device("cuda", local_rank)
elif _is_musa():
return torch.musa.current_device() if local_rank is None else torch.device("musa", local_rank)
else:
return torch.device("cpu")
def get_torch_distributed_backend() -> str:
if torch.cuda.is_available():
return "nccl"
elif _is_musa():
return "mccl"
else:
raise NotImplementedError("No Accelerators(NV/MTT GPU) available")

View File

@ -13,6 +13,7 @@ from functools import partial
import torch import torch
import torch.cuda.amp as amp import torch.cuda.amp as amp
from torch.cuda import empty_cache, synchronize
import torch.distributed as dist import torch.distributed as dist
import torch.multiprocessing as mp import torch.multiprocessing as mp
import torch.nn.functional as F import torch.nn.functional as F
@ -20,6 +21,14 @@ import torchvision.transforms.functional as TF
from PIL import Image from PIL import Image
from tqdm import tqdm from tqdm import tqdm
try:
import torch_musa
import torch_musa.core.amp as amp
from torch_musa.core.memory import empty_cache
from torch_musa.core.device import synchronize
except ModuleNotFoundError:
torch_musa = None
from .modules.vace_model import VaceWanModel from .modules.vace_model import VaceWanModel
from .text2video import ( from .text2video import (
FlowDPMSolverMultistepScheduler, FlowDPMSolverMultistepScheduler,
@ -32,6 +41,7 @@ from .text2video import (
shard_model, shard_model,
) )
from .utils.vace_processor import VaceVideoProcessor from .utils.vace_processor import VaceVideoProcessor
from .utils.platform import get_device, get_torch_distributed_backend
class WanVace(WanT2V): class WanVace(WanT2V):
@ -68,7 +78,7 @@ class WanVace(WanT2V):
t5_cpu (`bool`, *optional*, defaults to False): t5_cpu (`bool`, *optional*, defaults to False):
Whether to place T5 model on CPU. Only works without t5_fsdp. Whether to place T5 model on CPU. Only works without t5_fsdp.
""" """
self.device = torch.device(f"cuda:{device_id}") self.device = get_device(device_id)
self.config = config self.config = config
self.rank = rank self.rank = rank
self.t5_cpu = t5_cpu self.t5_cpu = t5_cpu
@ -460,7 +470,7 @@ class WanVace(WanT2V):
x0 = latents x0 = latents
if offload_model: if offload_model:
self.model.cpu() self.model.cpu()
torch.cuda.empty_cache() empty_cache()
if self.rank == 0: if self.rank == 0:
videos = self.decode_latent(x0, input_ref_images) videos = self.decode_latent(x0, input_ref_images)
@ -468,7 +478,7 @@ class WanVace(WanT2V):
del sample_scheduler del sample_scheduler
if offload_model: if offload_model:
gc.collect() gc.collect()
torch.cuda.synchronize() synchronize()
if dist.is_initialized(): if dist.is_initialized():
dist.barrier() dist.barrier()
@ -568,7 +578,7 @@ class WanVaceMP(WanVace):
torch.cuda.set_device(gpu) torch.cuda.set_device(gpu)
dist.init_process_group( dist.init_process_group(
backend='nccl', backend=get_torch_distributed_backend(),
init_method='env://', init_method='env://',
rank=rank, rank=rank,
world_size=world_size) world_size=world_size)
@ -633,7 +643,7 @@ class WanVaceMP(WanVace):
model = shard_fn(model) model = shard_fn(model)
sample_neg_prompt = self.config.sample_neg_prompt sample_neg_prompt = self.config.sample_neg_prompt
torch.cuda.empty_cache() empty_cache()
event = initialized_events[gpu] event = initialized_events[gpu]
in_q = in_q_list[gpu] in_q = in_q_list[gpu]
event.set() event.set()
@ -748,7 +758,7 @@ class WanVaceMP(WanVace):
generator=seed_g)[0] generator=seed_g)[0]
latents = [temp_x0.squeeze(0)] latents = [temp_x0.squeeze(0)]
torch.cuda.empty_cache() empty_cache()
x0 = latents x0 = latents
if rank == 0: if rank == 0:
videos = self.decode_latent( videos = self.decode_latent(
@ -758,7 +768,7 @@ class WanVaceMP(WanVace):
del sample_scheduler del sample_scheduler
if offload_model: if offload_model:
gc.collect() gc.collect()
torch.cuda.synchronize() synchronize()
if dist.is_initialized(): if dist.is_initialized():
dist.barrier() dist.barrier()