mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-12-20 14:12:04 +00:00
Merge 447aa08620 into 7c81b2f27d
This commit is contained in:
commit
43ac073411
12
generate.py
12
generate.py
@ -12,12 +12,20 @@ import random
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.cuda import set_device
|
||||
from PIL import Image
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
from torch_musa.core.device import set_device
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
import wan
|
||||
from wan.configs import MAX_AREA_CONFIGS, SIZE_CONFIGS, SUPPORTED_SIZES, WAN_CONFIGS
|
||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
||||
from wan.utils.utils import cache_image, cache_video, str2bool
|
||||
from wan.utils.platform import get_torch_distributed_backend
|
||||
|
||||
|
||||
EXAMPLE_PROMPT = {
|
||||
@ -275,9 +283,9 @@ def generate(args):
|
||||
logging.info(
|
||||
f"offload_model is not specified, set to {args.offload_model}.")
|
||||
if world_size > 1:
|
||||
torch.cuda.set_device(local_rank)
|
||||
set_device(local_rank)
|
||||
dist.init_process_group(
|
||||
backend="nccl",
|
||||
backend=get_torch_distributed_backend(),
|
||||
init_method="env://",
|
||||
rank=rank,
|
||||
world_size=world_size)
|
||||
|
||||
@ -3,11 +3,17 @@ import gc
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
from torch.cuda import empty_cache
|
||||
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
||||
from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
|
||||
from torch.distributed.fsdp.wrap import lambda_auto_wrap_policy
|
||||
from torch.distributed.utils import _free_storage
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
from torch_musa.core.memory import empty_cache
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
def shard_model(
|
||||
model,
|
||||
@ -40,4 +46,4 @@ def free_model(model):
|
||||
_free_storage(m._handle.flat_param.data)
|
||||
del model
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
|
||||
@ -6,7 +6,15 @@ from xfuser.core.distributed import (
|
||||
get_sequence_parallel_world_size,
|
||||
get_sp_group,
|
||||
)
|
||||
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
|
||||
from xfuser.core.long_ctx_attention import xFuserLongContextAttention, AttnType
|
||||
attn_type:AttnType = AttnType.FA
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
attn_type = AttnType.TORCH
|
||||
except ImportError:
|
||||
torch_musa = None
|
||||
|
||||
from ..modules.model import sinusoidal_embedding_1d
|
||||
|
||||
@ -24,6 +32,19 @@ def pad_freqs(original_tensor, target_len):
|
||||
return padded_tensor
|
||||
|
||||
|
||||
def pad_tensor(original_tensor, target_len, pad_value=0.0):
|
||||
seq_len, s1, s2 = original_tensor.shape
|
||||
pad_size = target_len - seq_len
|
||||
padding_tensor = torch.full(
|
||||
(pad_size, s1, s2),
|
||||
pad_value,
|
||||
dtype=original_tensor.dtype,
|
||||
device=original_tensor.device,
|
||||
)
|
||||
padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
|
||||
return padded_tensor
|
||||
|
||||
|
||||
@amp.autocast(enabled=False)
|
||||
def rope_apply(x, grid_sizes, freqs):
|
||||
"""
|
||||
@ -65,6 +86,69 @@ def rope_apply(x, grid_sizes, freqs):
|
||||
return torch.stack(output).float()
|
||||
|
||||
|
||||
@amp.autocast(enabled=False)
|
||||
def rope_apply_musa(x, grid_sizes, freqs):
|
||||
"""
|
||||
x: [B, L, N, C].
|
||||
grid_sizes: [B, 3].
|
||||
freqs: [M, C // 2].
|
||||
"""
|
||||
s, n, c = x.size(1), x.size(2), x.size(3) // 2
|
||||
c0 = c - 2 * (c // 3)
|
||||
c1 = c // 3
|
||||
c2 = c // 3
|
||||
|
||||
# split freqs
|
||||
freqs_real = freqs[0].split([c0, c1, c2], dim=1)
|
||||
freqs_imag = freqs[-1].split([c0, c1, c2], dim=1)
|
||||
|
||||
# loop over samples
|
||||
output = []
|
||||
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
||||
seq_len = f * h * w
|
||||
|
||||
# precompute multipliers
|
||||
x_i = x[i, :seq_len].reshape(s, n, -1, 2)
|
||||
x_real = x_i[..., 0]
|
||||
x_imag = x_i[..., 1]
|
||||
freqs_real = torch.cat(
|
||||
[
|
||||
freqs_real[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
||||
freqs_real[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
||||
freqs_real[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
|
||||
],
|
||||
dim=-1,
|
||||
).reshape(seq_len, 1, -1)
|
||||
freqs_imag = torch.cat(
|
||||
[
|
||||
freqs_imag[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
||||
freqs_imag[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
||||
freqs_imag[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
|
||||
],
|
||||
dim=-1,
|
||||
).reshape(seq_len, 1, -1)
|
||||
|
||||
# apply rotary embedding
|
||||
sp_size = get_sequence_parallel_world_size()
|
||||
sp_rank = get_sequence_parallel_rank()
|
||||
|
||||
freqs_real = pad_tensor(freqs_real, s * sp_size, 1.0)
|
||||
freqs_imag = pad_tensor(freqs_imag, s * sp_size, 0.0)
|
||||
|
||||
freqs_real_rank = freqs_real[(sp_rank * s) : ((sp_rank + 1) * s), :, :]
|
||||
freqs_imag_rank = freqs_imag[(sp_rank * s) : ((sp_rank + 1) * s), :, :]
|
||||
|
||||
out_real = x_real * freqs_real_rank - x_imag * freqs_imag_rank
|
||||
out_imag = x_real * freqs_imag_rank + x_imag * freqs_real_rank
|
||||
|
||||
x_out = torch.stack([out_real, out_imag], dim=-1).flatten(2)
|
||||
x_out = torch.cat([x_out, x[i, seq_len:]], dim=0)
|
||||
|
||||
# append to collection
|
||||
output.append(x_out)
|
||||
return torch.stack(output)
|
||||
|
||||
|
||||
def usp_dit_forward_vace(self, x, vace_context, seq_len, kwargs):
|
||||
# embeddings
|
||||
c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
|
||||
@ -109,9 +193,17 @@ def usp_dit_forward(
|
||||
if self.model_type == 'i2v':
|
||||
assert clip_fea is not None and y is not None
|
||||
# params
|
||||
dtype = self.patch_embedding.weight.dtype
|
||||
device = self.patch_embedding.weight.device
|
||||
if self.freqs.device != device:
|
||||
self.freqs = self.freqs.to(device)
|
||||
if torch_musa is not None:
|
||||
if self.freqs[0].dtype != dtype or self.freqs[0].device != device:
|
||||
self.freqs = (
|
||||
self.freqs[0].to(dtype=dtype, device=device),
|
||||
self.freqs[-1].to(dtype=dtype, device=device)
|
||||
)
|
||||
else:
|
||||
if self.freqs.dtype != dtype or self.freqs.device != device:
|
||||
self.freqs = self.freqs.to(dtype=dtype, device=device)
|
||||
|
||||
if self.model_type != 'vace' and y is not None:
|
||||
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
||||
@ -200,8 +292,13 @@ def usp_attn_forward(self,
|
||||
return q, k, v
|
||||
|
||||
q, k, v = qkv_fn(x)
|
||||
q = rope_apply(q, grid_sizes, freqs)
|
||||
k = rope_apply(k, grid_sizes, freqs)
|
||||
|
||||
if torch_musa is not None:
|
||||
q = rope_apply_musa(q, grid_sizes, freqs)
|
||||
k = rope_apply_musa(k, grid_sizes, freqs)
|
||||
else:
|
||||
q = rope_apply(q, grid_sizes, freqs)
|
||||
k = rope_apply(k, grid_sizes, freqs)
|
||||
|
||||
# TODO: We should use unpaded q,k,v for attention.
|
||||
# k_lens = seq_lens // get_sequence_parallel_world_size()
|
||||
@ -210,7 +307,7 @@ def usp_attn_forward(self,
|
||||
# k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0)
|
||||
# v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0)
|
||||
|
||||
x = xFuserLongContextAttention()(
|
||||
x = xFuserLongContextAttention(attn_type=attn_type)(
|
||||
None,
|
||||
query=half(q),
|
||||
key=half(k),
|
||||
|
||||
@ -12,10 +12,19 @@ from functools import partial
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
from torch.cuda import empty_cache, synchronize
|
||||
import torch.distributed as dist
|
||||
import torchvision.transforms.functional as TF
|
||||
from tqdm import tqdm
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
from torch_musa.core.memory import empty_cache
|
||||
from torch_musa.core.device import synchronize
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
from .distributed.fsdp import shard_model
|
||||
from .modules.clip import CLIPModel
|
||||
from .modules.model import WanModel
|
||||
@ -27,6 +36,7 @@ from .utils.fm_solvers import (
|
||||
retrieve_timesteps,
|
||||
)
|
||||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
from .utils.platform import get_device
|
||||
|
||||
|
||||
class WanFLF2V:
|
||||
@ -66,7 +76,7 @@ class WanFLF2V:
|
||||
init_on_cpu (`bool`, *optional*, defaults to True):
|
||||
Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
|
||||
"""
|
||||
self.device = torch.device(f"cuda:{device_id}")
|
||||
self.device = get_device(device_id)
|
||||
self.config = config
|
||||
self.rank = rank
|
||||
self.use_usp = use_usp
|
||||
@ -323,7 +333,7 @@ class WanFLF2V:
|
||||
}
|
||||
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
|
||||
self.model.to(self.device)
|
||||
for _, t in enumerate(tqdm(timesteps)):
|
||||
@ -336,12 +346,12 @@ class WanFLF2V:
|
||||
latent_model_input, t=timestep, **arg_c)[0].to(
|
||||
torch.device('cpu') if offload_model else self.device)
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
noise_pred_uncond = self.model(
|
||||
latent_model_input, t=timestep, **arg_null)[0].to(
|
||||
torch.device('cpu') if offload_model else self.device)
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
noise_pred = noise_pred_uncond + guide_scale * (
|
||||
noise_pred_cond - noise_pred_uncond)
|
||||
|
||||
@ -361,7 +371,7 @@ class WanFLF2V:
|
||||
|
||||
if offload_model:
|
||||
self.model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
|
||||
if self.rank == 0:
|
||||
videos = self.vae.decode(x0)
|
||||
@ -370,7 +380,7 @@ class WanFLF2V:
|
||||
del sample_scheduler
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
synchronize()
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
|
||||
|
||||
@ -12,10 +12,19 @@ from functools import partial
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
from torch.cuda import empty_cache, synchronize
|
||||
import torch.distributed as dist
|
||||
import torchvision.transforms.functional as TF
|
||||
from tqdm import tqdm
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
from torch_musa.core.memory import empty_cache
|
||||
from torch_musa.core.device import synchronize
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
from .distributed.fsdp import shard_model
|
||||
from .modules.clip import CLIPModel
|
||||
from .modules.model import WanModel
|
||||
@ -27,6 +36,7 @@ from .utils.fm_solvers import (
|
||||
retrieve_timesteps,
|
||||
)
|
||||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
from .utils.platform import get_device
|
||||
|
||||
|
||||
class WanI2V:
|
||||
@ -66,7 +76,7 @@ class WanI2V:
|
||||
init_on_cpu (`bool`, *optional*, defaults to True):
|
||||
Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
|
||||
"""
|
||||
self.device = torch.device(f"cuda:{device_id}")
|
||||
self.device = get_device(device_id)
|
||||
self.config = config
|
||||
self.rank = rank
|
||||
self.use_usp = use_usp
|
||||
@ -296,7 +306,7 @@ class WanI2V:
|
||||
}
|
||||
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
|
||||
self.model.to(self.device)
|
||||
for _, t in enumerate(tqdm(timesteps)):
|
||||
@ -309,12 +319,12 @@ class WanI2V:
|
||||
latent_model_input, t=timestep, **arg_c)[0].to(
|
||||
torch.device('cpu') if offload_model else self.device)
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
noise_pred_uncond = self.model(
|
||||
latent_model_input, t=timestep, **arg_null)[0].to(
|
||||
torch.device('cpu') if offload_model else self.device)
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
noise_pred = noise_pred_uncond + guide_scale * (
|
||||
noise_pred_cond - noise_pred_uncond)
|
||||
|
||||
@ -334,7 +344,7 @@ class WanI2V:
|
||||
|
||||
if offload_model:
|
||||
self.model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
|
||||
if self.rank == 0:
|
||||
videos = self.vae.decode(x0)
|
||||
@ -343,7 +353,7 @@ class WanI2V:
|
||||
del sample_scheduler
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
synchronize()
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
|
||||
|
||||
@ -1,4 +1,6 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
|
||||
try:
|
||||
@ -13,7 +15,13 @@ try:
|
||||
except ModuleNotFoundError:
|
||||
FLASH_ATTN_2_AVAILABLE = False
|
||||
|
||||
import warnings
|
||||
try:
|
||||
import torch_musa
|
||||
FLASH_ATTN_3_AVAILABLE = False
|
||||
FLASH_ATTN_2_AVAILABLE = False
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
|
||||
__all__ = [
|
||||
'flash_attention',
|
||||
@ -51,7 +59,7 @@ def flash_attention(
|
||||
"""
|
||||
half_dtypes = (torch.float16, torch.bfloat16)
|
||||
assert dtype in half_dtypes
|
||||
assert q.device.type == 'cuda' and q.size(-1) <= 256
|
||||
assert (q.device.type == "cuda" or q.device.type == "musa") and q.size(-1) <= 256
|
||||
|
||||
# params
|
||||
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
|
||||
@ -173,7 +181,7 @@ def attention(
|
||||
v = v.transpose(1, 2).to(dtype)
|
||||
|
||||
out = torch.nn.functional.scaled_dot_product_attention(
|
||||
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
|
||||
q, k, v, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=causal, scale=softmax_scale)
|
||||
|
||||
out = out.transpose(1, 2).contiguous()
|
||||
return out
|
||||
|
||||
@ -6,12 +6,20 @@ import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.cuda.amp as amp
|
||||
import torchvision.transforms as T
|
||||
|
||||
from .attention import flash_attention
|
||||
from .tokenizers import HuggingfaceTokenizer
|
||||
from .xlm_roberta import XLMRoberta
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
from .attention import attention as flash_attention
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
__all__ = [
|
||||
'XLMRobertaCLIP',
|
||||
'clip_xlm_roberta_vit_h_14',
|
||||
@ -82,7 +90,10 @@ class SelfAttention(nn.Module):
|
||||
|
||||
# compute attention
|
||||
p = self.attn_dropout if self.training else 0.0
|
||||
x = flash_attention(q, k, v, dropout_p=p, causal=self.causal, version=2)
|
||||
if torch_musa is not None:
|
||||
x = flash_attention(q, k, v, dropout_p=p, causal=self.causal)
|
||||
else:
|
||||
x = flash_attention(q, k, v, dropout_p=p, causal=self.causal, version=2)
|
||||
x = x.reshape(b, s, c)
|
||||
|
||||
# output
|
||||
@ -194,7 +205,10 @@ class AttentionPool(nn.Module):
|
||||
k, v = self.to_kv(x).view(b, s, 2, n, d).unbind(2)
|
||||
|
||||
# compute attention
|
||||
x = flash_attention(q, k, v, version=2)
|
||||
if torch_musa is not None:
|
||||
x = flash_attention(q, k, v)
|
||||
else:
|
||||
x = flash_attention(q, k, v, version=2)
|
||||
x = x.reshape(b, 1, c)
|
||||
|
||||
# output
|
||||
@ -537,6 +551,6 @@ class CLIPModel:
|
||||
videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5))
|
||||
|
||||
# forward
|
||||
with torch.cuda.amp.autocast(dtype=self.dtype):
|
||||
with amp.autocast(dtype=self.dtype):
|
||||
out = self.model.visual(videos, use_31_block=True)
|
||||
return out
|
||||
|
||||
@ -7,7 +7,14 @@ import torch.nn as nn
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.models.modeling_utils import ModelMixin
|
||||
|
||||
from .attention import flash_attention
|
||||
from wan.modules.attention import flash_attention
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
from wan.modules.attention import attention as flash_attention
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
__all__ = ['WanModel']
|
||||
|
||||
@ -19,7 +26,7 @@ def sinusoidal_embedding_1d(dim, position):
|
||||
# preprocess
|
||||
assert dim % 2 == 0
|
||||
half = dim // 2
|
||||
position = position.type(torch.float64)
|
||||
position = position.type(torch.float32)
|
||||
|
||||
# calculation
|
||||
sinusoid = torch.outer(
|
||||
@ -39,6 +46,36 @@ def rope_params(max_seq_len, dim, theta=10000):
|
||||
return freqs
|
||||
|
||||
|
||||
@amp.autocast(enabled=False)
|
||||
def rope_params_real(
|
||||
max_seq_len, dim, theta=10000, dtype=torch.float32, device=torch.device("cpu")
|
||||
):
|
||||
assert dim % 2 == 0
|
||||
freqs_real = torch.outer(
|
||||
torch.arange(max_seq_len, dtype=dtype, device=device),
|
||||
1.0
|
||||
/ torch.pow(
|
||||
theta, torch.arange(0, dim, 2, dtype=dtype, device=device).div(dim)
|
||||
),
|
||||
)
|
||||
return torch.cos(freqs_real)
|
||||
|
||||
|
||||
@amp.autocast(enabled=False)
|
||||
def rope_params_imag(
|
||||
max_seq_len, dim, theta=10000, dtype=torch.float32, device=torch.device("cpu")
|
||||
):
|
||||
assert dim % 2 == 0
|
||||
freqs_imag = torch.outer(
|
||||
torch.arange(max_seq_len, dtype=dtype, device=device),
|
||||
1.0
|
||||
/ torch.pow(
|
||||
theta, torch.arange(0, dim, 2, dtype=dtype, device=device).div(dim)
|
||||
),
|
||||
)
|
||||
return torch.sin(freqs_imag)
|
||||
|
||||
|
||||
@amp.autocast(enabled=False)
|
||||
def rope_apply(x, grid_sizes, freqs):
|
||||
n, c = x.size(2), x.size(3) // 2
|
||||
@ -70,6 +107,55 @@ def rope_apply(x, grid_sizes, freqs):
|
||||
return torch.stack(output).float()
|
||||
|
||||
|
||||
@amp.autocast(enabled=False)
|
||||
def rope_apply_musa(x, grid_sizes, freqs):
|
||||
n, c = x.size(2), x.size(3) // 2
|
||||
c0 = c - 2 * (c // 3)
|
||||
c1 = c // 3
|
||||
c2 = c // 3
|
||||
|
||||
# split freqs
|
||||
freqs_real = freqs[0].split([c0, c1, c2], dim=1)
|
||||
freqs_imag = freqs[-1].split([c0, c1, c2], dim=1)
|
||||
|
||||
# loop over samples
|
||||
output = []
|
||||
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
||||
seq_len = f * h * w
|
||||
|
||||
# precompute multipliers
|
||||
x_i = x[i, :seq_len].reshape(seq_len, n, c, 2)
|
||||
x_real = x_i[..., 0]
|
||||
x_imag = x_i[..., 1]
|
||||
freqs_real = torch.cat(
|
||||
[
|
||||
freqs_real[0][:f].view(f, 1, 1, c0).expand(f, h, w, c0),
|
||||
freqs_real[1][:h].view(1, h, 1, c1).expand(f, h, w, c1),
|
||||
freqs_real[2][:w].view(1, 1, w, c2).expand(f, h, w, c2),
|
||||
],
|
||||
dim=-1,
|
||||
).reshape(seq_len, 1, c)
|
||||
freqs_imag = torch.cat(
|
||||
[
|
||||
freqs_imag[0][:f].view(f, 1, 1, c0).expand(f, h, w, c0),
|
||||
freqs_imag[1][:h].view(1, h, 1, c1).expand(f, h, w, c1),
|
||||
freqs_imag[2][:w].view(1, 1, w, c2).expand(f, h, w, c2),
|
||||
],
|
||||
dim=-1,
|
||||
).reshape(seq_len, 1, c)
|
||||
|
||||
out_real = x_real * freqs_real - x_imag * freqs_imag
|
||||
out_imag = x_real * freqs_imag + x_imag * freqs_real
|
||||
|
||||
# apply rotary embedding
|
||||
x_out = torch.stack([out_real, out_imag], dim=-1).flatten(2)
|
||||
x_out = torch.cat([x_out, x[i, seq_len:]], dim=0)
|
||||
|
||||
# append to collection
|
||||
output.append(x_out)
|
||||
return torch.stack(output)
|
||||
|
||||
|
||||
class WanRMSNorm(nn.Module):
|
||||
|
||||
def __init__(self, dim, eps=1e-5):
|
||||
@ -146,12 +232,22 @@ class WanSelfAttention(nn.Module):
|
||||
|
||||
q, k, v = qkv_fn(x)
|
||||
|
||||
x = flash_attention(
|
||||
q=rope_apply(q, grid_sizes, freqs),
|
||||
k=rope_apply(k, grid_sizes, freqs),
|
||||
v=v,
|
||||
k_lens=seq_lens,
|
||||
window_size=self.window_size)
|
||||
if torch_musa is not None:
|
||||
x = flash_attention(
|
||||
q=rope_apply_musa(q, grid_sizes, freqs),
|
||||
k=rope_apply_musa(k, grid_sizes, freqs),
|
||||
v=v,
|
||||
k_lens=seq_lens,
|
||||
window_size=self.window_size,
|
||||
)
|
||||
else:
|
||||
x = flash_attention(
|
||||
q=rope_apply(q, grid_sizes, freqs),
|
||||
k=rope_apply(k, grid_sizes, freqs),
|
||||
v=v,
|
||||
k_lens=seq_lens,
|
||||
window_size=self.window_size,
|
||||
)
|
||||
|
||||
# output
|
||||
x = x.flatten(2)
|
||||
@ -477,12 +573,33 @@ class WanModel(ModelMixin, ConfigMixin):
|
||||
# buffers (don't use register_buffer otherwise dtype will be changed in to())
|
||||
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
|
||||
d = dim // num_heads
|
||||
self.freqs = torch.cat([
|
||||
rope_params(1024, d - 4 * (d // 6)),
|
||||
rope_params(1024, 2 * (d // 6)),
|
||||
rope_params(1024, 2 * (d // 6))
|
||||
],
|
||||
dim=1)
|
||||
if torch_musa is not None:
|
||||
freqs_real = torch.cat(
|
||||
[
|
||||
rope_params_real(1024, d - 4 * (d // 6)),
|
||||
rope_params_real(1024, 2 * (d // 6)),
|
||||
rope_params_real(1024, 2 * (d // 6)),
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
freqs_imag = torch.cat(
|
||||
[
|
||||
rope_params_imag(1024, d - 4 * (d // 6)),
|
||||
rope_params_imag(1024, 2 * (d // 6)),
|
||||
rope_params_imag(1024, 2 * (d // 6)),
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
self.freqs = (freqs_real, freqs_imag)
|
||||
else:
|
||||
self.freqs = torch.cat(
|
||||
[
|
||||
rope_params(1024, d - 4 * (d // 6)),
|
||||
rope_params(1024, 2 * (d // 6)),
|
||||
rope_params(1024, 2 * (d // 6)),
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
if model_type == 'i2v' or model_type == 'flf2v':
|
||||
self.img_emb = MLPProj(1280, dim, flf_pos_emb=model_type == 'flf2v')
|
||||
@ -523,9 +640,17 @@ class WanModel(ModelMixin, ConfigMixin):
|
||||
if self.model_type == 'i2v' or self.model_type == 'flf2v':
|
||||
assert clip_fea is not None and y is not None
|
||||
# params
|
||||
dtype = self.patch_embedding.weight.dtype
|
||||
device = self.patch_embedding.weight.device
|
||||
if self.freqs.device != device:
|
||||
self.freqs = self.freqs.to(device)
|
||||
if torch_musa is not None:
|
||||
if self.freqs[0].dtype != dtype or self.freqs[0].device != device:
|
||||
self.freqs = (
|
||||
self.freqs[0].to(dtype=dtype, device=device),
|
||||
self.freqs[-1].to(dtype=dtype, device=device)
|
||||
)
|
||||
else:
|
||||
if self.freqs.dtype != dtype or self.freqs.device != device:
|
||||
self.freqs = self.freqs.to(dtype=dtype, device=device)
|
||||
|
||||
if y is not None:
|
||||
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
||||
|
||||
@ -6,6 +6,13 @@ import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.cuda import current_device
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
from torch_musa.core.device import current_device
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
from .tokenizers import HuggingfaceTokenizer
|
||||
|
||||
@ -475,7 +482,7 @@ class T5EncoderModel:
|
||||
self,
|
||||
text_len,
|
||||
dtype=torch.bfloat16,
|
||||
device=torch.cuda.current_device(),
|
||||
device=current_device(),
|
||||
checkpoint_path=None,
|
||||
tokenizer_path=None,
|
||||
shard_fn=None,
|
||||
|
||||
@ -4,6 +4,12 @@ import torch.cuda.amp as amp
|
||||
import torch.nn as nn
|
||||
from diffusers.configuration_utils import register_to_config
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
from .model import WanAttentionBlock, WanModel, sinusoidal_embedding_1d
|
||||
|
||||
|
||||
|
||||
@ -5,8 +5,17 @@ import torch
|
||||
import torch.cuda.amp as amp
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn import Upsample
|
||||
from einops import rearrange
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
from wan.utils.platform import get_device
|
||||
|
||||
__all__ = [
|
||||
'WanVAE',
|
||||
]
|
||||
@ -622,7 +631,7 @@ class WanVAE:
|
||||
z_dim=16,
|
||||
vae_pth='cache/vae_step_411000.pth',
|
||||
dtype=torch.float,
|
||||
device="cuda"):
|
||||
device=get_device()):
|
||||
self.dtype = dtype
|
||||
self.device = device
|
||||
|
||||
|
||||
@ -11,9 +11,18 @@ from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
from torch.cuda import empty_cache, synchronize
|
||||
import torch.distributed as dist
|
||||
from tqdm import tqdm
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
from torch_musa.core.memory import empty_cache
|
||||
from torch_musa.core.device import synchronize
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
from .distributed.fsdp import shard_model
|
||||
from .modules.model import WanModel
|
||||
from .modules.t5 import T5EncoderModel
|
||||
@ -24,7 +33,7 @@ from .utils.fm_solvers import (
|
||||
retrieve_timesteps,
|
||||
)
|
||||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
|
||||
from .utils.platform import get_device
|
||||
|
||||
class WanT2V:
|
||||
|
||||
@ -60,7 +69,7 @@ class WanT2V:
|
||||
t5_cpu (`bool`, *optional*, defaults to False):
|
||||
Whether to place T5 model on CPU. Only works without t5_fsdp.
|
||||
"""
|
||||
self.device = torch.device(f"cuda:{device_id}")
|
||||
self.device = get_device(device_id)
|
||||
self.config = config
|
||||
self.rank = rank
|
||||
self.t5_cpu = t5_cpu
|
||||
@ -256,7 +265,7 @@ class WanT2V:
|
||||
x0 = latents
|
||||
if offload_model:
|
||||
self.model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
if self.rank == 0:
|
||||
videos = self.vae.decode(x0)
|
||||
|
||||
@ -264,7 +273,7 @@ class WanT2V:
|
||||
del sample_scheduler
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
synchronize()
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
|
||||
|
||||
@ -5,9 +5,10 @@ from .fm_solvers import (
|
||||
)
|
||||
from .fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
from .vace_processor import VaceVideoProcessor
|
||||
from .platform import get_device, get_torch_distributed_backend
|
||||
|
||||
__all__ = [
|
||||
'HuggingfaceTokenizer', 'get_sampling_sigmas', 'retrieve_timesteps',
|
||||
'FlowDPMSolverMultistepScheduler', 'FlowUniPCMultistepScheduler',
|
||||
'VaceVideoProcessor'
|
||||
'VaceVideoProcessor', 'get_device', 'get_torch_distributed_backend'
|
||||
]
|
||||
|
||||
34
wan/utils/platform.py
Normal file
34
wan/utils/platform.py
Normal file
@ -0,0 +1,34 @@
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
|
||||
def _is_musa():
|
||||
try:
|
||||
if torch.musa.is_available():
|
||||
return True
|
||||
except ModuleNotFoundError:
|
||||
return False
|
||||
|
||||
|
||||
def get_device(local_rank:Optional[int]=None) -> torch.device:
|
||||
if torch.cuda.is_available():
|
||||
return torch.cuda.current_device() if local_rank is None else torch.device("cuda", local_rank)
|
||||
elif _is_musa():
|
||||
return torch.musa.current_device() if local_rank is None else torch.device("musa", local_rank)
|
||||
else:
|
||||
return torch.device("cpu")
|
||||
|
||||
|
||||
def get_torch_distributed_backend() -> str:
|
||||
if torch.cuda.is_available():
|
||||
return "nccl"
|
||||
elif _is_musa():
|
||||
return "mccl"
|
||||
else:
|
||||
raise NotImplementedError("No Accelerators(NV/MTT GPU) available")
|
||||
24
wan/vace.py
24
wan/vace.py
@ -13,6 +13,7 @@ from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
from torch.cuda import empty_cache, synchronize
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn.functional as F
|
||||
@ -20,6 +21,14 @@ import torchvision.transforms.functional as TF
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
from torch_musa.core.memory import empty_cache
|
||||
from torch_musa.core.device import synchronize
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
from .modules.vace_model import VaceWanModel
|
||||
from .text2video import (
|
||||
FlowDPMSolverMultistepScheduler,
|
||||
@ -32,6 +41,7 @@ from .text2video import (
|
||||
shard_model,
|
||||
)
|
||||
from .utils.vace_processor import VaceVideoProcessor
|
||||
from .utils.platform import get_device, get_torch_distributed_backend
|
||||
|
||||
|
||||
class WanVace(WanT2V):
|
||||
@ -68,7 +78,7 @@ class WanVace(WanT2V):
|
||||
t5_cpu (`bool`, *optional*, defaults to False):
|
||||
Whether to place T5 model on CPU. Only works without t5_fsdp.
|
||||
"""
|
||||
self.device = torch.device(f"cuda:{device_id}")
|
||||
self.device = get_device(device_id)
|
||||
self.config = config
|
||||
self.rank = rank
|
||||
self.t5_cpu = t5_cpu
|
||||
@ -460,7 +470,7 @@ class WanVace(WanT2V):
|
||||
x0 = latents
|
||||
if offload_model:
|
||||
self.model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
if self.rank == 0:
|
||||
videos = self.decode_latent(x0, input_ref_images)
|
||||
|
||||
@ -468,7 +478,7 @@ class WanVace(WanT2V):
|
||||
del sample_scheduler
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
synchronize()
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
|
||||
@ -568,7 +578,7 @@ class WanVaceMP(WanVace):
|
||||
|
||||
torch.cuda.set_device(gpu)
|
||||
dist.init_process_group(
|
||||
backend='nccl',
|
||||
backend=get_torch_distributed_backend(),
|
||||
init_method='env://',
|
||||
rank=rank,
|
||||
world_size=world_size)
|
||||
@ -633,7 +643,7 @@ class WanVaceMP(WanVace):
|
||||
model = shard_fn(model)
|
||||
sample_neg_prompt = self.config.sample_neg_prompt
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
event = initialized_events[gpu]
|
||||
in_q = in_q_list[gpu]
|
||||
event.set()
|
||||
@ -748,7 +758,7 @@ class WanVaceMP(WanVace):
|
||||
generator=seed_g)[0]
|
||||
latents = [temp_x0.squeeze(0)]
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
x0 = latents
|
||||
if rank == 0:
|
||||
videos = self.decode_latent(
|
||||
@ -758,7 +768,7 @@ class WanVaceMP(WanVace):
|
||||
del sample_scheduler
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
synchronize()
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user