mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-06-05 14:54:54 +00:00
Merge 5f7e7ed289
into ec902046f6
This commit is contained in:
commit
51879d731c
@ -79,53 +79,101 @@ def flash_attention(
|
||||
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
|
||||
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
|
||||
|
||||
q = q.to(v.dtype)
|
||||
k = k.to(v.dtype)
|
||||
try:
|
||||
q = q.to(v.dtype)
|
||||
k = k.to(v.dtype)
|
||||
|
||||
if q_scale is not None:
|
||||
q = q * q_scale
|
||||
|
||||
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
|
||||
warnings.warn(
|
||||
'Flash attention 3 is not available, use flash attention 2 instead.'
|
||||
)
|
||||
|
||||
# apply attention
|
||||
if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
|
||||
# Note: dropout_p, window_size are not supported in FA3 now.
|
||||
x = flash_attn_interface.flash_attn_varlen_func(
|
||||
q=q,
|
||||
k=k,
|
||||
v=v,
|
||||
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
||||
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
||||
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
||||
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
||||
seqused_q=None,
|
||||
seqused_k=None,
|
||||
max_seqlen_q=lq,
|
||||
max_seqlen_k=lk,
|
||||
softmax_scale=softmax_scale,
|
||||
causal=causal,
|
||||
deterministic=deterministic)[0].unflatten(0, (b, lq))
|
||||
else:
|
||||
assert FLASH_ATTN_2_AVAILABLE
|
||||
x = flash_attn.flash_attn_varlen_func(
|
||||
q=q,
|
||||
k=k,
|
||||
v=v,
|
||||
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
||||
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
||||
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
||||
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
||||
max_seqlen_q=lq,
|
||||
max_seqlen_k=lk,
|
||||
dropout_p=dropout_p,
|
||||
softmax_scale=softmax_scale,
|
||||
causal=causal,
|
||||
window_size=window_size,
|
||||
deterministic=deterministic).unflatten(0, (b, lq))
|
||||
|
||||
except RuntimeError as e:
|
||||
if "FlashAttention only supports Ampere GPUs or newer" in str(e):
|
||||
#for cards like 2080ti that aren't Ampere structure
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
q = q.to(half(k).dtype)
|
||||
|
||||
if q_scale is not None:
|
||||
q = q * q_scale
|
||||
# 转置维度,保证形状为 [B, N, L, C]
|
||||
q = q.view(b, lq, q.size(1), q.size(2)).transpose(1, 2)
|
||||
k = k.view(b, lk, k.size(1), k.size(2)).transpose(1, 2)
|
||||
v = v.view(b, lk, v.size(1), v.size(2)).transpose(1, 2)
|
||||
|
||||
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
|
||||
warnings.warn(
|
||||
'Flash attention 3 is not available, use flash attention 2 instead.'
|
||||
)
|
||||
# 计算注意力
|
||||
# 注意:确保 Q、K、V 的形状为 [B, N, L, C]
|
||||
# 设置默认缩放因子
|
||||
if softmax_scale is None:
|
||||
softmax_scale = 1.0 / q.size(-1) ** 0.5
|
||||
|
||||
# apply attention
|
||||
if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
|
||||
# Note: dropout_p, window_size are not supported in FA3 now.
|
||||
x = flash_attn_interface.flash_attn_varlen_func(
|
||||
q=q,
|
||||
k=k,
|
||||
v=v,
|
||||
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
||||
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
||||
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
||||
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
||||
seqused_q=None,
|
||||
seqused_k=None,
|
||||
max_seqlen_q=lq,
|
||||
max_seqlen_k=lk,
|
||||
softmax_scale=softmax_scale,
|
||||
causal=causal,
|
||||
deterministic=deterministic)[0].unflatten(0, (b, lq))
|
||||
else:
|
||||
assert FLASH_ATTN_2_AVAILABLE
|
||||
x = flash_attn.flash_attn_varlen_func(
|
||||
q=q,
|
||||
k=k,
|
||||
v=v,
|
||||
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
||||
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
||||
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
||||
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
||||
max_seqlen_q=lq,
|
||||
max_seqlen_k=lk,
|
||||
dropout_p=dropout_p,
|
||||
softmax_scale=softmax_scale,
|
||||
causal=causal,
|
||||
window_size=window_size,
|
||||
deterministic=deterministic).unflatten(0, (b, lq))
|
||||
# 如果 q_scale 存在,则应用缩放
|
||||
if q_scale is not None:
|
||||
q = q * q_scale
|
||||
|
||||
# 创建掩码
|
||||
if causal:
|
||||
attn_mask = torch.triu(torch.full((q.size(2), k.size(2)), -torch.inf), diagonal=1).to(q.device)
|
||||
else:
|
||||
attn_mask = None
|
||||
|
||||
# 计算注意力
|
||||
# 使用 scaled_dot_product_attention
|
||||
x = F.scaled_dot_product_attention(
|
||||
q, k, v,
|
||||
attn_mask=attn_mask,
|
||||
dropout_p=dropout_p,
|
||||
is_causal=causal,
|
||||
)
|
||||
|
||||
# 转换回原形状 [B, L, N, C]
|
||||
x = x.transpose(1, 2).contiguous()
|
||||
|
||||
# 对输出应用 Dropout
|
||||
dropout = nn.Dropout(dropout_p)
|
||||
x = dropout(x)
|
||||
else:
|
||||
raise
|
||||
|
||||
# output
|
||||
return x.type(out_dtype)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user