This commit is contained in:
shirubei 2025-05-28 11:40:52 +10:00 committed by GitHub
commit 51879d731c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -79,53 +79,101 @@ def flash_attention(
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
q = q.to(v.dtype)
k = k.to(v.dtype)
try:
q = q.to(v.dtype)
k = k.to(v.dtype)
if q_scale is not None:
q = q * q_scale
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
warnings.warn(
'Flash attention 3 is not available, use flash attention 2 instead.'
)
# apply attention
if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
# Note: dropout_p, window_size are not supported in FA3 now.
x = flash_attn_interface.flash_attn_varlen_func(
q=q,
k=k,
v=v,
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
seqused_q=None,
seqused_k=None,
max_seqlen_q=lq,
max_seqlen_k=lk,
softmax_scale=softmax_scale,
causal=causal,
deterministic=deterministic)[0].unflatten(0, (b, lq))
else:
assert FLASH_ATTN_2_AVAILABLE
x = flash_attn.flash_attn_varlen_func(
q=q,
k=k,
v=v,
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
max_seqlen_q=lq,
max_seqlen_k=lk,
dropout_p=dropout_p,
softmax_scale=softmax_scale,
causal=causal,
window_size=window_size,
deterministic=deterministic).unflatten(0, (b, lq))
except RuntimeError as e:
if "FlashAttention only supports Ampere GPUs or newer" in str(e):
#for cards like 2080ti that aren't Ampere structure
from torch import nn
import torch.nn.functional as F
q = q.to(half(k).dtype)
if q_scale is not None:
q = q * q_scale
# 转置维度,保证形状为 [B, N, L, C]
q = q.view(b, lq, q.size(1), q.size(2)).transpose(1, 2)
k = k.view(b, lk, k.size(1), k.size(2)).transpose(1, 2)
v = v.view(b, lk, v.size(1), v.size(2)).transpose(1, 2)
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
warnings.warn(
'Flash attention 3 is not available, use flash attention 2 instead.'
)
# 计算注意力
# 注意:确保 Q、K、V 的形状为 [B, N, L, C]
# 设置默认缩放因子
if softmax_scale is None:
softmax_scale = 1.0 / q.size(-1) ** 0.5
# apply attention
if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
# Note: dropout_p, window_size are not supported in FA3 now.
x = flash_attn_interface.flash_attn_varlen_func(
q=q,
k=k,
v=v,
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
seqused_q=None,
seqused_k=None,
max_seqlen_q=lq,
max_seqlen_k=lk,
softmax_scale=softmax_scale,
causal=causal,
deterministic=deterministic)[0].unflatten(0, (b, lq))
else:
assert FLASH_ATTN_2_AVAILABLE
x = flash_attn.flash_attn_varlen_func(
q=q,
k=k,
v=v,
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
0, dtype=torch.int32).to(q.device, non_blocking=True),
max_seqlen_q=lq,
max_seqlen_k=lk,
dropout_p=dropout_p,
softmax_scale=softmax_scale,
causal=causal,
window_size=window_size,
deterministic=deterministic).unflatten(0, (b, lq))
# 如果 q_scale 存在,则应用缩放
if q_scale is not None:
q = q * q_scale
# 创建掩码
if causal:
attn_mask = torch.triu(torch.full((q.size(2), k.size(2)), -torch.inf), diagonal=1).to(q.device)
else:
attn_mask = None
# 计算注意力
# 使用 scaled_dot_product_attention
x = F.scaled_dot_product_attention(
q, k, v,
attn_mask=attn_mask,
dropout_p=dropout_p,
is_causal=causal,
)
# 转换回原形状 [B, L, N, C]
x = x.transpose(1, 2).contiguous()
# 对输出应用 Dropout
dropout = nn.Dropout(dropout_p)
x = dropout(x)
else:
raise
# output
return x.type(out_dtype)