Various Memory Optimisations

This commit is contained in:
DeepBeepMeep 2025-05-07 00:17:53 +02:00
parent 94d9b4aa4d
commit 52d7ba9260
5 changed files with 46 additions and 36 deletions

View File

@ -4,24 +4,33 @@ from transformers import Wav2Vec2Model, Wav2Vec2Processor
from .model import FantasyTalkingAudioConditionModel
from .utils import get_audio_features
import gc, torch
def parse_audio(audio_path, num_frames, fps = 23, device = "cuda"):
fantasytalking = FantasyTalkingAudioConditionModel(None, 768, 2048).to(device)
from mmgp import offload
from accelerate import init_empty_weights
from fantasytalking.model import AudioProjModel
torch.set_grad_enabled(False)
with init_empty_weights():
proj_model = AudioProjModel( 768, 2048)
offload.load_model_data(proj_model, "ckpts/fantasy_proj_model.safetensors")
proj_model.to(device).eval().requires_grad_(False)
proj_model.to("cpu").eval().requires_grad_(False)
wav2vec_model_dir = "ckpts/wav2vec"
wav2vec_processor = Wav2Vec2Processor.from_pretrained(wav2vec_model_dir)
wav2vec = Wav2Vec2Model.from_pretrained(wav2vec_model_dir).to(device).eval().requires_grad_(False)
wav2vec = Wav2Vec2Model.from_pretrained(wav2vec_model_dir, device_map="cpu").eval().requires_grad_(False)
wav2vec.to(device)
proj_model.to(device)
audio_wav2vec_fea = get_audio_features( wav2vec, wav2vec_processor, audio_path, fps, num_frames )
audio_proj_fea = proj_model(audio_wav2vec_fea)
pos_idx_ranges = fantasytalking.split_audio_sequence( audio_proj_fea.size(1), num_frames=num_frames )
audio_proj_split, audio_context_lens = fantasytalking.split_tensor_with_padding( audio_proj_fea, pos_idx_ranges, expand_length=4 ) # [b,21,9+8,768]
audio_proj_split, audio_context_lens = fantasytalking.split_tensor_with_padding( audio_proj_fea, pos_idx_ranges, expand_length=4 ) # [b,21,9+8,768]
wav2vec, proj_model= None, None
gc.collect()
torch.cuda.empty_cache()
return audio_proj_split, audio_context_lens

View File

@ -16,7 +16,7 @@ gradio==5.23.0
numpy>=1.23.5,<2
einops
moviepy==1.0.3
mmgp==3.4.2
mmgp==3.4.3
peft==0.14.0
mutagen
pydantic==2.10.6

View File

@ -103,7 +103,7 @@ class WanI2V:
# dtype = torch.float16
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False) #, forcedConfigPath= "c:/temp/i2v720p/config.json")
self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype)
# offload.change_dtype(self.model, dtype, True)
offload.change_dtype(self.model, dtype, True)
# offload.save_model(self.model, "wan2.1_image2video_720p_14B_mbf16.safetensors", config_file_path="c:/temp/i2v720p/config.json")
# offload.save_model(self.model, "wan2.1_image2video_720p_14B_quanto_mbf16_int8.safetensors",do_quantize=True, config_file_path="c:/temp/i2v720p/config.json")
# offload.save_model(self.model, "wan2.1_image2video_720p_14B_quanto_mfp16_int8.safetensors",do_quantize=True, config_file_path="c:/temp/i2v720p/config.json")
@ -403,9 +403,7 @@ class WanI2V:
if callback is not None:
callback(i, latent, False)
x0 = [latent]
# x0 = [lat_y]
x0 = [latent]
video = self.vae.decode(x0, VAE_tile_size, any_end_frame= any_end_frame and add_frames_for_end_image)[0]
if any_end_frame and add_frames_for_end_image:

View File

@ -312,8 +312,6 @@ class WanI2VCrossAttention(WanSelfAttention):
del x
self.norm_q(q)
q= q.view(b, -1, n, d)
if audio_scale != None:
audio_x = self.processor(q, audio_proj, grid_sizes[0], audio_context_lens)
k = self.k(context)
self.norm_k(k)
k = k.view(b, -1, n, d)
@ -323,6 +321,8 @@ class WanI2VCrossAttention(WanSelfAttention):
del k,v
x = pay_attention(qkv_list)
if audio_scale != None:
audio_x = self.processor(q, audio_proj, grid_sizes[0], audio_context_lens)
k_img = self.k_img(context_img)
self.norm_k_img(k_img)
k_img = k_img.view(b, -1, n, d)

53
wgp.py
View File

@ -40,7 +40,7 @@ global_queue_ref = []
AUTOSAVE_FILENAME = "queue.zip"
PROMPT_VARS_MAX = 10
target_mmgp_version = "3.4.2"
target_mmgp_version = "3.4.3"
from importlib.metadata import version
mmgp_version = version("mmgp")
if mmgp_version != target_mmgp_version:
@ -50,6 +50,7 @@ lock = threading.Lock()
current_task_id = None
task_id = 0
def download_ffmpeg():
if os.name != 'nt': return
exes = ['ffmpeg.exe', 'ffprobe.exe', 'ffplay.exe']
@ -1421,6 +1422,7 @@ for path in ["wan2.1_Vace_1.3B_preview_bf16.safetensors", "sky_reels2_diffusion
"wan2.1_image2video_720p_14B_quanto_int8.safetensors", "wan2.1_image2video_720p_14B_quanto_fp16_int8.safetensors", "wan2.1_image2video_720p_14B_bf16.safetensors"
]:
if Path(os.path.join("ckpts" , path)).is_file():
print(f"Removing old version of model '{path}'. A new version of this model will be downloaded next time you use it.")
os.remove( os.path.join("ckpts" , path))
@ -1511,14 +1513,21 @@ def get_model_filename(model_type, quantization):
quantization = "bf16"
if len(choices) <= 1:
return choices[0]
sub_choices = [ name for name in choices if quantization in name]
if len(sub_choices) > 0:
return sub_choices[0]
raw_filename = choices[0]
else:
return choices[0]
sub_choices = [ name for name in choices if quantization in name]
if len(sub_choices) > 0:
raw_filename = sub_choices[0]
else:
raw_filename = choices[0]
if transformer_dtype == torch.float16 :
if "quanto_int8" in raw_filename:
raw_filename = raw_filename.replace("quanto_int8", "quanto_fp16_int8")
elif "quanto_mbf16_int8":
raw_filename= raw_filename.replace("quanto_mbf16_int8", "quanto_mfp16_int8")
return raw_filename
def get_settings_file_name(model_filename):
return os.path.join(args.settings, get_model_type(model_filename) + "_settings.json")
@ -1599,6 +1608,13 @@ def get_default_settings(filename):
ui_defaults["num_inference_steps"] = default_number_steps
return ui_defaults
major, minor = torch.cuda.get_device_capability(args.gpu if len(args.gpu) > 0 else None)
if major < 8:
print("Switching to f16 models as GPU architecture doesn't support bf16")
transformer_dtype = torch.float16
else:
transformer_dtype = torch.float16 if args.fp16 else torch.bfloat16
transformer_types = server_config.get("transformer_types", [])
transformer_type = transformer_types[0] if len(transformer_types) > 0 else model_types[0]
transformer_quantization =server_config.get("transformer_quantization", "int8")
@ -1892,32 +1908,17 @@ def load_models(model_filename):
global transformer_filename
perc_reserved_mem_max = args.perc_reserved_mem_max
major, minor = torch.cuda.get_device_capability(args.gpu if len(args.gpu) > 0 else None)
if major < 8:
print("Switching to f16 model as GPU architecture doesn't support bf16")
default_dtype = torch.float16
else:
default_dtype = torch.float16 if args.fp16 else torch.bfloat16
model_filelist = get_dependent_models(model_filename, quantization= transformer_quantization) + [model_filename]
updated_model_filename = []
for filename in model_filelist:
if default_dtype == torch.float16 :
if "quanto_int8" in filename:
filename = filename.replace("quanto_int8", "quanto_fp16_int8")
elif "quanto_mbf16_int8":
filename = filename.replace("quanto_mbf16_int8", "quanto_mfp16_int8")
updated_model_filename.append(filename)
download_models(filename, text_encoder_filename)
model_filelist = updated_model_filename
VAE_dtype = torch.float16 if server_config.get("vae_precision","16") == "16" else torch.float
mixed_precision_transformer = server_config.get("mixed_precision","0") == "1"
transformer_filename = None
new_transformer_filename = model_filelist[-1]
if test_class_i2v(new_transformer_filename):
wan_model, pipe = load_i2v_model(model_filelist, quantizeTransformer = quantizeTransformer, dtype = default_dtype, VAE_dtype = VAE_dtype, mixed_precision_transformer = mixed_precision_transformer)
wan_model, pipe = load_i2v_model(model_filelist, quantizeTransformer = quantizeTransformer, dtype = transformer_dtype, VAE_dtype = VAE_dtype, mixed_precision_transformer = mixed_precision_transformer)
else:
wan_model, pipe = load_t2v_model(model_filelist, quantizeTransformer = quantizeTransformer, dtype = default_dtype, VAE_dtype = VAE_dtype, mixed_precision_transformer = mixed_precision_transformer)
wan_model, pipe = load_t2v_model(model_filelist, quantizeTransformer = quantizeTransformer, dtype = transformer_dtype, VAE_dtype = VAE_dtype, mixed_precision_transformer = mixed_precision_transformer)
wan_model._model_file_name = new_transformer_filename
kwargs = { "extraModelsToQuantize": None}
if profile == 2 or profile == 4:
@ -1926,7 +1927,7 @@ def load_models(model_filename):
# kwargs["partialPinning"] = True
elif profile == 3:
kwargs["budgets"] = { "*" : "70%" }
offloadobj = offload.profile(pipe, profile_no= profile, compile = compile, quantizeTransformer = quantizeTransformer, loras = "transformer", coTenantsMap= {}, perc_reserved_mem_max = perc_reserved_mem_max , convertWeightsFloatTo = default_dtype, **kwargs)
offloadobj = offload.profile(pipe, profile_no= profile, compile = compile, quantizeTransformer = quantizeTransformer, loras = "transformer", coTenantsMap= {}, perc_reserved_mem_max = perc_reserved_mem_max , convertWeightsFloatTo = transformer_dtype, **kwargs)
if len(args.gpu) > 0:
torch.set_default_device(args.gpu)
transformer_filename = new_transformer_filename
@ -2410,6 +2411,7 @@ def generate_video(
):
global wan_model, offloadobj, reload_needed
gen = get_gen_info(state)
torch.set_grad_enabled(False)
file_list = gen["file_list"]
prompt_no = gen["prompt_no"]
@ -2574,6 +2576,7 @@ def generate_video(
if seed == None or seed <0:
seed = random.randint(0, 999999999)
torch.set_grad_enabled(False)
global save_path
os.makedirs(save_path, exist_ok=True)
abort = False