diff --git a/README.md b/README.md index be50728..3d35664 100644 --- a/README.md +++ b/README.md @@ -20,10 +20,12 @@ WanGP supports the Wan (and derived models), Hunyuan Video and LTV Video models **Follow DeepBeepMeep on Twitter/X to get the Latest News**: https://x.com/deepbeepmeep ## 🔥 Latest Updates : -### August 10 2025: WanGP v7.75 - Faster than the VAE ... +### August 10 2025: WanGP v7.76 - Faster than the VAE ... We have a funny one here today: FastWan 2.2 5B, the Fastest Video Generator, only 20s to generate 121 frames at 720p. The snag is that VAE is twice as slow... Thanks to Kijai for extracting the Lora that is used to build the corresponding finetune. +*WanGP 7.76: fixed the messed up I did to i2v models (loras path was wrong for Wan2.2 and Clip broken)* + ### August 9 2025: WanGP v7.74 - Qwen Rebirth part 2 Added support for Qwen Lightning lora for a 8 steps generation (https://huggingface.co/lightx2v/Qwen-Image-Lightning/blob/main/Qwen-Image-Lightning-8steps-V1.0.safetensors). Lora is not normalized and you can use a multiplier around 0.1. diff --git a/models/wan/any2video.py b/models/wan/any2video.py index 463a1d6..9528540 100644 --- a/models/wan/any2video.py +++ b/models/wan/any2video.py @@ -97,7 +97,7 @@ class WanAny2V: device=self.device, checkpoint_path=os.path.join(checkpoint_dir , config.clip_checkpoint), - tokenizer_path=os.path.join(checkpoint_dir , "clip_vit_large_patch14")) + tokenizer_path=os.path.join(checkpoint_dir , "xlm-roberta-large")) if base_model_type in ["ti2v_2_2"]: diff --git a/wgp.py b/wgp.py index 4e9784e..bd7ba44 100644 --- a/wgp.py +++ b/wgp.py @@ -53,7 +53,7 @@ AUTOSAVE_FILENAME = "queue.zip" PROMPT_VARS_MAX = 10 target_mmgp_version = "3.5.8" -WanGP_version = "7.75" +WanGP_version = "7.76" settings_version = 2.23 max_source_video_frames = 3000 prompt_enhancer_image_caption_model, prompt_enhancer_image_caption_processor, prompt_enhancer_llm_model, prompt_enhancer_llm_tokenizer = None, None, None, None @@ -1620,7 +1620,7 @@ def _parse_args(): def get_lora_dir(model_type): model_family = get_model_family(model_type) base_model_type = get_base_model_type(model_type) - i2v = test_class_i2v(model_type) or base_model_type == "i2v_2_2" + i2v = test_class_i2v(model_type) and not base_model_type in ["i2v_2_2", "i2v_2_2_multitalk"] if model_family == "wan": lora_dir =args.lora_dir if i2v and len(lora_dir)==0: