This commit is contained in:
DeepBeepMeep 2025-07-10 22:40:13 +02:00
parent 8d2164aaf1
commit 597d26b7e0
6 changed files with 234 additions and 102 deletions

View File

@ -20,6 +20,15 @@ WanGP supports the Wan (and derived models), Hunyuan Video and LTV Video models
**Follow DeepBeepMeep on Twitter/X to get the Latest News**: https://x.com/deepbeepmeep
## 🔥 Latest Updates
### July 10 2025: WanGP v6.7, is NAG a game changer ? you tell me
Maybe you knew that already but most *Loras accelerators* we use today (Causvid, FusioniX) don't use *Guidance* at all (that it is *CFG* is set to 1). This helps to get much faster generations but the downside is that *Negative Prompts* are completely ignored (including the default ones set by the models). **NAG** (https://github.com/ChenDarYen/Normalized-Attention-Guidance) aims to solve that by injecting the *Negative Prompt* during the *attention* processing phase.
So WanGP 6.7 gives you NAG, but not any NAG, a *Low VRAM* implementation, the default one ends being VRAM greedy. You will find NAG in the *General* advanced tab for most Wan models.
Use NAG especially when Guidance is set to 1. To turn it on set the **NAG scale** to something around 10. There are other NAG parameters **NAG tau** and **NAG alpha** which I recommend to change only if you don't get good results by just playing with the NAG scale. Don't hesitate to share on this discord server the best combinations for these 3 parameters.
The authors of NAG claim that NAG can also be used when using a Guidance (CFG > 1) and to improve the prompt adherence.
### July 8 2025: WanGP v6.6, WanGP offers you **Vace Multitalk Dual Voices Fusionix Infinite** :
**Vace** our beloved super Control Net has been combined with **Multitalk** the new king in town that can animate up to two people speaking (**Dual Voices**). It is accelerated by the **Fusionix** model and thanks to *Sliding Windows* support and *Adaptive Projected Guidance* (much slower but should reduce the reddish effect with long videos) your two people will be able to talk for very a long time (which is an **Infinite** amount of time in the field of video generation).

View File

@ -393,7 +393,7 @@ class MMSingleStreamBlock(nn.Module):
##### More spagheti VRAM optimizations done by DeepBeepMeep !
# I am sure you are a nice person and as you copy this code, you will give me proper credits:
# Please link to https://github.com/deepbeepmeep/HunyuanVideoGP and @deepbeepmeep on twitter
# Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter
if condition_type == "token_replace":
mod, tr_mod = self.modulation(vec,

View File

@ -392,6 +392,9 @@ class WanAny2V:
keep_frames_parsed = [],
model_type = None,
loras_slists = None,
NAG_scale = 0,
NAG_tau = 3.5,
NAG_alpha = 0.5,
offloadobj = None,
apg_switch = False,
**bbargs
@ -443,11 +446,21 @@ class WanAny2V:
context_null = self.text_encoder([n_prompt], self.device)[0]
context = context.to(self.dtype)
context_null = context_null.to(self.dtype)
text_len = self.model.text_len
context = torch.cat([context, context.new_zeros(text_len -context.size(0), context.size(1)) ]).unsqueeze(0)
context_null = torch.cat([context_null, context_null.new_zeros(text_len -context_null.size(0), context_null.size(1)) ]).unsqueeze(0)
# NAG_prompt = "static, low resolution, blurry"
# context_NAG = self.text_encoder([NAG_prompt], self.device)[0]
# context_NAG = context_NAG.to(self.dtype)
# context_NAG = torch.cat([context_NAG, context_NAG.new_zeros(text_len -context_NAG.size(0), context_NAG.size(1)) ]).unsqueeze(0)
# from mmgp import offload
# offloadobj.unload_all()
if self._interrupt:
return None
offload.shared_state.update({"_nag_scale" : NAG_scale, "_nag_tau" : NAG_tau, "_nag_alpha": NAG_alpha })
if NAG_scale > 1: context = torch.cat([context, context_null], dim=0)
# if NAG_scale > 1: context = torch.cat([context, context_NAG], dim=0)
if self._interrupt: return None
vace = model_type in ["vace_1.3B","vace_14B", "vace_multitalk_14B"]
phantom = model_type in ["phantom_1.3B", "phantom_14B"]

View File

@ -45,7 +45,7 @@ class DTT2V:
self.dtype = dtype
self.num_train_timesteps = config.num_train_timesteps
self.param_dtype = config.param_dtype
self.text_len = config.text_len
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
@ -250,11 +250,15 @@ class DTT2V:
if self._interrupt:
return None
text_len = self.text_len
prompt_embeds = self.text_encoder([input_prompt], self.device)[0]
prompt_embeds = prompt_embeds.to(self.dtype).to(self.device)
prompt_embeds = torch.cat([prompt_embeds, prompt_embeds.new_zeros(text_len -prompt_embeds.size(0), prompt_embeds.size(1)) ]).unsqueeze(0)
if self.do_classifier_free_guidance:
negative_prompt_embeds = self.text_encoder([n_prompt], self.device)[0]
negative_prompt_embeds = negative_prompt_embeds.to(self.dtype).to(self.device)
negative_prompt_embeds = torch.cat([negative_prompt_embeds, negative_prompt_embeds.new_zeros(text_len -negative_prompt_embeds.size(0), negative_prompt_embeds.size(1)) ]).unsqueeze(0)
if self._interrupt:
return None

View File

@ -1,4 +1,7 @@
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
##### Enjoy this spagheti VRAM optimizations done by DeepBeepMeep !
# I am sure you are a nice person and as you copy this code, you will give me officially proper credits:
# Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter
import math
from einops import rearrange
import torch
@ -176,6 +179,70 @@ class WanSelfAttention(nn.Module):
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
def text_cross_attention(self, xlist, context, return_q = False):
x = xlist[0]
xlist.clear()
b, n, d = x.size(0), self.num_heads, self.head_dim
nag_scale = offload.shared_state.get("_nag_scale",0)
# compute query, key, value
q = self.q(x)
del x
self.norm_q(q)
q= q.view(b, -1, n, d)
k = self.k(context)
self.norm_k(k)
k = k.view(context.shape[0], -1, n, d)
v = self.v(context).view(context.shape[0], -1, n, d)
if nag_scale <= 1 or len(k)==1:
qvl_list=[q, k, v]
if not return_q: del q
del k, v
x = pay_attention(qvl_list, cross_attn= True)
x = x.flatten(2, 3)
else:
nag_tau = offload.shared_state["_nag_tau"]
nag_alpha = offload.shared_state["_nag_alpha"]
qvl_list=[q, k[:1], v[:1]]
x_pos = pay_attention(qvl_list, cross_attn= True)
qvl_list=[q, k[1:], v[1:]]
if not return_q: del q
del k, v
x_neg = pay_attention(qvl_list, cross_attn= True)
x_pos = x_pos.flatten(2, 3)
x_neg = x_neg.flatten(2, 3)
# Behold DeepBeepMeep as the NAG Butcher !: reduce highly VRAM consumption while at the same time turn the source in gibberish
x_neg.mul_(1-nag_scale)
x_neg.add_(x_pos, alpha= nag_scale)
x_guidance = x_neg
del x_neg
norm_positive = torch.norm(x_pos, p=1, dim=-1, keepdim=True)
norm_guidance = torch.norm(x_guidance, p=1, dim=-1, keepdim=True)
scale = norm_guidance / norm_positive
scale = torch.nan_to_num(scale, 10)
factor = 1 / (norm_guidance + 1e-7) * norm_positive * nag_tau
x_guidance = torch.where(scale > nag_tau, x_guidance * factor, x_guidance )
del norm_positive, norm_guidance
x_pos.mul_(1 - nag_alpha)
x_guidance.mul_(nag_alpha)
x_guidance.add_(x_pos)
x = x_guidance
# x_guidance = x_pos * nag_scale - x_neg * (nag_scale - 1)
# norm_positive = torch.norm(x_pos, p=1, dim=-1, keepdim=True).expand(*x_pos.shape)
# norm_guidance = torch.norm(x_guidance, p=1, dim=-1, keepdim=True).expand(*x_guidance.shape)
# scale = norm_guidance / norm_positive
# scale = torch.nan_to_num(scale, 10)
# x_guidance[scale > nag_tau] = x_guidance[scale > nag_tau] / (norm_guidance[scale > nag_tau] + 1e-7) * norm_positive[scale > nag_tau] * nag_tau
# x = x_guidance * nag_alpha + x_pos * (1 - nag_alpha)
if return_q:
return x, q
else:
return x, None
def forward(self, xlist, grid_sizes, freqs, block_mask = None, ref_target_masks = None, ref_images_count = 0):
r"""
Args:
@ -246,28 +313,7 @@ class WanT2VCrossAttention(WanSelfAttention):
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
"""
x = xlist[0]
xlist.clear()
b, n, d = x.size(0), self.num_heads, self.head_dim
# compute query, key, value
q = self.q(x)
del x
self.norm_q(q)
q= q.view(b, -1, n, d)
k = self.k(context)
self.norm_k(k)
k = k.view(b, -1, n, d)
v = self.v(context).view(b, -1, n, d)
# compute attention
v = v.contiguous().clone()
qvl_list=[q, k, v]
del q, k, v
x = pay_attention(qvl_list, cross_attn= True)
# output
x = x.flatten(2)
x, _ = self.text_cross_attention( xlist, context)
x = self.o(x)
return x
@ -295,30 +341,14 @@ class WanI2VCrossAttention(WanSelfAttention):
context(Tensor): Shape [B, L2, C]
"""
##### Enjoy this spagheti VRAM optimizations done by DeepBeepMeep !
# I am sure you are a nice person and as you copy this code, you will give me officially proper credits:
# Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter
x = xlist[0]
xlist.clear()
context_img = context[:, :257]
context = context[:, 257:]
b, n, d = x.size(0), self.num_heads, self.head_dim
# compute query, key, value
q = self.q(x)
del x
self.norm_q(q)
q= q.view(b, -1, n, d)
k = self.k(context)
self.norm_k(k)
k = k.view(b, -1, n, d)
v = self.v(context).view(b, -1, n, d)
qkv_list = [q, k, v]
del k,v
x = pay_attention(qkv_list)
x, q = self.text_cross_attention( xlist, context, return_q = True)
if len(q) != len(context_img):
context_img = context_img[:len(q)]
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
if audio_scale != None:
audio_x = self.processor(q, audio_proj, grid_sizes[0], audio_context_lens)
@ -329,12 +359,9 @@ class WanI2VCrossAttention(WanSelfAttention):
qkv_list = [q, k_img, v_img]
del q, k_img, v_img
img_x = pay_attention(qkv_list)
# compute attention
img_x = img_x.flatten(2)
# output
x = x.flatten(2)
img_x = img_x.flatten(2)
x += img_x
del img_x
if audio_scale != None:
@ -1187,11 +1214,18 @@ class WanModel(ModelMixin, ConfigMixin):
e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim))
# context
context = [self.text_embedding( torch.cat( [u, u.new_zeros(self.text_len - u.size(0), u.size(1))] ).unsqueeze(0) ) for u in context ]
context = [self.text_embedding( u ) for u in context ]
if clip_fea is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = [ torch.cat( [context_clip, u ], dim=1 ) for u in context ]
context_list = []
for one_context in context:
if len(one_context) != len(context_clip):
context_list.append( torch.cat( [context_clip.repeat(len(one_context), 1, 1), one_context ], dim=1 ))
else:
context_list.append( torch.cat( [context_clip, one_context ], dim=1 ))
else:
context_list = context
if multitalk_audio != None:
multitalk_audio_list = []
@ -1208,7 +1242,6 @@ class WanModel(ModelMixin, ConfigMixin):
else:
multitalk_masks_list = [None] * len(x_list)
context_list = context
if audio_scale != None:
audio_scale_list = audio_scale
else:

169
wgp.py
View File

@ -50,8 +50,8 @@ AUTOSAVE_FILENAME = "queue.zip"
PROMPT_VARS_MAX = 10
target_mmgp_version = "3.5.1"
WanGP_version = "6.6"
settings_version = 2.21
WanGP_version = "6.7"
settings_version = 2.22
max_source_video_frames = 1000
prompt_enhancer_image_caption_model, prompt_enhancer_image_caption_processor, prompt_enhancer_llm_model, prompt_enhancer_llm_tokenizer = None, None, None, None
@ -1675,7 +1675,7 @@ model_types = [ "t2v_1.3B", "t2v", "i2v", "i2v_720p", "vace_1.3B", "phantom_1.3
"hunyuan", "hunyuan_i2v", "hunyuan_custom", "hunyuan_custom_audio", "hunyuan_custom_edit", "hunyuan_avatar"]
model_signatures = {"t2v": "text2video_14B", "t2v_1.3B" : "text2video_1.3B", "fun_inp_1.3B" : "Fun_InP_1.3B", "fun_inp" : "Fun_InP_14B",
"i2v" : "image2video_480p", "i2v_720p" : "image2video_720p" , "vace_1.3B" : "Vace_1.3B","recam_1.3B": "recammaster_1.3B",
"i2v" : "image2video_480p", "i2v_720p" : "image2video_720p" , "vace_1.3B" : "Vace_1.3B", "vace_14B": "Vace_14B", "recam_1.3B": "recammaster_1.3B",
"sky_df_1.3B" : "sky_reels2_diffusion_forcing_1.3B", "sky_df_14B" : "sky_reels2_diffusion_forcing_14B",
"sky_df_720p_14B" : "sky_reels2_diffusion_forcing_720p_14B",
"phantom_1.3B" : "phantom_1.3B", "phantom_14B" : "phantom_14B", "ltxv_13B" : "ltxv_0.9.7_13B_dev", "ltxv_13B_distilled" : "ltxv_0.9.7_13B_distilled",
@ -1736,6 +1736,8 @@ def get_model_family(model_type):
return "hunyuan"
elif "ltxv" in model_type:
return "ltxv"
elif "flux" in model_type:
return "flux"
else:
return "wan"
@ -1866,6 +1868,22 @@ def get_model_name(model_type, description_container = [""]):
def get_model_record(model_name):
return f"WanGP v{WanGP_version} by DeepBeepMeep - " + model_name
def get_finetune_URLs(model_type, stack= []):
finetune_def = finetunes.get(model_type, None)
if finetune_def != None:
URLs = finetune_def["URLs"]
if isinstance(URLs, str):
if len(stack) > 10: raise Exception(f"Circular Reference in Model URLs dependencies: {stack}")
return get_finetune_URLs(URLs, stack = stack + [URLs] )
else:
return URLs
else:
if model_type in model_types:
return model_type
else:
raise Exception(f"Unknown model type '{model_type}'")
def get_model_filename(model_type, quantization ="int8", dtype_policy = "", is_module = False, stack=[]):
if is_module:
choices = modules_files.get(model_type, None)
@ -1969,13 +1987,13 @@ def fix_settings(model_type, ui_defaults):
remove_background_images_ref = ui_defaults.get("remove_background_images_ref", 0)
if video_settings_version < 2.21:
if video_settings_version < 2.22:
if "I" in video_prompt_type:
if remove_background_images_ref == 2:
video_prompt_type = video_prompt_type.replace("I", "KI")
if remove_background_images_ref != 0:
remove_background_images_ref = 1
ui_defaults["remove_background_images_ref"] = remove_background_images_ref
if remove_background_images_ref != 0:
remove_background_images_ref = 1
ui_defaults["remove_background_images_ref"] = remove_background_images_ref
ui_defaults["video_prompt_type"] = video_prompt_type
@ -2331,12 +2349,12 @@ def download_models(model_filename, model_type):
shared_def = {
"repoId" : "DeepBeepMeep/Wan2.1",
"sourceFolderList" : [ "pose", "scribble", "flow", "depth", "mask", "wav2vec", "chinese-wav2vec2-base", "pyannote" "" ],
"sourceFolderList" : [ "pose", "scribble", "flow", "depth", "mask", "wav2vec", "chinese-wav2vec2-base", "pyannote", "" ],
"fileList" : [ ["dw-ll_ucoco_384.onnx", "yolox_l.onnx"],["netG_A_latest.pth"], ["raft-things.pth"],
["depth_anything_v2_vitl.pth","depth_anything_v2_vitb.pth"], ["sam_vit_h_4b8939_fp16.safetensors"],
["config.json", "feature_extractor_config.json", "model.safetensors", "preprocessor_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.json"],
["config.json", "pytorch_model.bin", "preprocessor_config.json"],
["pyannote_model_wespeaker-voxceleb-resnet34-LM.bin", "pytorch_model_segmentation-3.0.bin"], [ "flownet.pkl" ] ]
["pyannote_model_wespeaker-voxceleb-resnet34-LM.bin", "pytorch_model_segmentation-3.0.bin"], [ "flownet.pkl" ] ]
}
process_files_def(**shared_def)
@ -2374,18 +2392,22 @@ def download_models(model_filename, model_type):
finetune_def = get_model_finetune_def(model_type)
if finetune_def != None and not model_type in modules_files:
if not os.path.isfile(model_filename ):
use_url = model_filename
for url in finetune_def["URLs"]:
if os.path.basename(model_filename) in url:
use_url = url
break
if not url.startswith("http"):
raise Exception(f"Model '{model_filename}' was not found locally and no URL was provided to download it. Please add an URL in the finetune definition file.")
try:
download_file(use_url, model_filename)
except Exception as e:
if os.path.isfile(model_filename): os.remove(model_filename)
raise Exception(f"URL '{use_url}' is invalid for Model '{model_filename}' : {str(e)}'")
URLs = get_finetune_URLs(model_type)
if not isinstance(URLs, str): # dont download anything right now if a base type is referenced as the download will occur just after
use_url = model_filename
for url in URLs:
if os.path.basename(model_filename) in url:
use_url = url
break
if not url.startswith("http"):
raise Exception(f"Model '{model_filename}' was not found locally and no URL was provided to download it. Please add an URL in the finetune definition file.")
try:
download_file(use_url, model_filename)
except Exception as e:
if os.path.isfile(model_filename): os.remove(model_filename)
raise Exception(f"URL '{use_url}' is invalid for Model '{model_filename}' : {str(e)}'")
model_filename = None
for url in finetune_def.get("preload_URLs", []):
filename = "ckpts/" + url.split("/")[-1]
if not os.path.isfile(filename ):
@ -2396,7 +2418,6 @@ def download_models(model_filename, model_type):
except Exception as e:
if os.path.isfile(filename): os.remove(filename)
raise Exception(f"Preload URL '{url}' is invalid: {str(e)}'")
model_filename = None
if model_family == "wan":
text_encoder_filename = get_wan_text_encoder_filename(text_encoder_quantization)
model_def = {
@ -3123,10 +3144,17 @@ def select_video(state, input_file_list, event_data: gr.EventData):
video_video_prompt_type = configs.get("video_prompt_type", "")
video_image_prompt_type = configs.get("image_prompt_type", "")
video_audio_prompt_type = configs.get("audio_prompt_type", "")
map_video_prompt = {"V" : "Control Video", "A" : "Mask Video", "I" : "Reference Images"}
def check(src, cond):
pos, neg = cond if isinstance(cond, tuple) else (cond, None)
if not all_letters(src, pos): return False
if neg is not None and any_letters(src, neg): return False
return True
map_video_prompt = {"V" : "Control Video", ("VA", "U") : "Mask Video", "I" : "Reference Images"}
map_image_prompt = {"V" : "Source Video", "L" : "Last Video", "S" : "Start Image", "E" : "End Image"}
map_audio_prompt = {"A" : "Audio Source", "B" : "Audio Source #2"}
video_other_prompts = [ v for s,v in map_image_prompt.items() if s in video_image_prompt_type] + [ v for s,v in map_video_prompt.items() if s in video_video_prompt_type] + [ v for s,v in map_audio_prompt.items() if s in video_audio_prompt_type]
video_other_prompts = [ v for s,v in map_image_prompt.items() if all_letters(video_image_prompt_type,s)] \
+ [ v for s,v in map_video_prompt.items() if check(video_video_prompt_type,s)] \
+ [ v for s,v in map_audio_prompt.items() if all_letters(video_audio_prompt_type,s)]
video_model_type = configs.get("model_type", "t2v")
video_other_prompts = ", ".join(video_other_prompts)
video_resolution = configs.get("resolution", "") + f" (real: {width}x{height})"
@ -3138,24 +3166,31 @@ def select_video(state, input_file_list, event_data: gr.EventData):
video_length_summary += " ("
if video_length != frames_count: video_length_summary += f"real: {frames_count} frames, "
video_length_summary += f"{frames_count/fps:.1f}s, {round(fps)} fps)"
video_guidance_scale = configs.get("video_guidance_scale", 1)
video_guidance_scale = configs.get("guidance_scale", 1)
video_NAG_scale = configs.get("NAG_scale", 1)
video_embedded_guidance_scale = configs.get("video_embedded_guidance_scale ", 1)
if get_model_family(video_model_type) == "hunyuan":
video_guidance_scale = video_embedded_guidance_scale
video_guidance_label = "Embedded Guidance Scale"
else:
video_guidance_label = "Guidance Scale"
video_guidance_label = "Guidance"
video_flow_shift = configs.get("flow_shift", 1)
video_video_guide_outpainting = configs.get("video_guide_outpainting", "")
video_outpainting = ""
if len(video_video_guide_outpainting) > 0 and not video_video_guide_outpainting.startswith("#"):
if len(video_video_guide_outpainting) > 0 and not video_video_guide_outpainting.startswith("#") \
and (any_letters(video_video_prompt_type, "VFK") or any_letters(video_image_prompt_type, "VL")) :
video_video_guide_outpainting = video_video_guide_outpainting.split(" ")
video_outpainting = f"Top={video_video_guide_outpainting[0]}%, Bottom={video_video_guide_outpainting[1]}%, Left={video_video_guide_outpainting[2]}%, Right={video_video_guide_outpainting[3]}%"
video_num_inference_steps = configs.get("num_inference_steps", 0)
video_creation_date = str(get_file_creation_date(file_name))
if "." in video_creation_date: video_creation_date = video_creation_date[:video_creation_date.rfind(".")]
video_generation_time = str(configs.get("generation_time", "0")) + "s"
video_activated_loras = "<BR>".join(configs.get("activated_loras", []))
video_activated_loras = configs.get("activated_loras", [])
video_loras_multipliers = configs.get("loras_multipliers", "")
video_loras_multipliers = preparse_loras_multipliers(video_loras_multipliers)
video_loras_multipliers += [""] * len(video_activated_loras)
video_activated_loras = [ f"<TR><TD style='padding-top:0px;padding-left:0px'>{lora}</TD><TD>x{multiplier if len(multiplier)>0 else '1'}</TD></TR>" for lora, multiplier in zip(video_activated_loras, video_loras_multipliers) ]
video_activated_loras_str = "<TABLE style='border:0px;padding:0px'>" + "".join(video_activated_loras) + "</TABLE>" if len(video_activated_loras) > 0 else ""
values += misc_values + [video_prompt]
labels += misc_labels + ["Text Prompt"]
if len(video_other_prompts) >0 :
@ -3166,7 +3201,14 @@ def select_video(state, input_file_list, event_data: gr.EventData):
labels += ["Outpainting"]
values += [video_resolution, video_length_summary, video_seed, video_guidance_scale, video_flow_shift, video_num_inference_steps]
labels += [ "Resolution", "Video Length", "Seed", video_guidance_label, "Flow Shift", "Num Inference steps"]
video_negative_prompt = configs.get("negative_prompt", "")
if len(video_negative_prompt) > 0:
values += [video_negative_prompt]
labels += ["Negative Prompt"]
video_NAG_scale = configs.get("NAG_scale", 1)
if video_NAG_scale > 1:
values += [video_NAG_scale]
labels += ["NAG Scale"]
video_skip_steps_cache_type = configs.get("skip_steps_cache_type", "")
video_skip_steps_multiplier = configs.get("skip_steps_multiplier", 0)
video_skip_steps_cache_start_step_perc = configs.get("skip_steps_start_step_perc", 0)
@ -3180,8 +3222,8 @@ def select_video(state, input_file_list, event_data: gr.EventData):
values += pp_values
labels += pp_labels
if len(video_activated_loras) > 0:
values += [video_activated_loras]
if len(video_activated_loras_str) > 0:
values += [video_activated_loras_str]
labels += ["Loras"]
if nb_audio_tracks > 0:
values +=[nb_audio_tracks]
@ -3649,6 +3691,13 @@ def get_available_filename(target_path, video_source, suffix = "", force_extensi
return full_path
counter += 1
def preparse_loras_multipliers(loras_multipliers):
loras_multipliers = loras_multipliers.strip(" \r\n")
loras_mult_choices_list = loras_multipliers.replace("\r", "").split("\n")
loras_mult_choices_list = [multi for multi in loras_mult_choices_list if len(multi)>0 and not multi.startswith("#")]
loras_multipliers = " ".join(loras_mult_choices_list)
return loras_multipliers.split(" ")
def set_seed(seed):
import random
seed = random.randint(0, 99999999) if seed == None or seed < 0 else seed
@ -3839,6 +3888,9 @@ def generate_video(
MMAudio_prompt,
MMAudio_neg_prompt,
RIFLEx_setting,
NAG_scale,
NAG_tau,
NAG_alpha,
slg_switch,
slg_layers,
slg_start_perc,
@ -3927,11 +3979,8 @@ def generate_video(
loras_list_mult_choices_nums = []
loras_multipliers = loras_multipliers.strip(" \r\n")
if len(loras_multipliers) > 0:
loras_mult_choices_list = loras_multipliers.replace("\r", "").split("\n")
loras_mult_choices_list = [multi for multi in loras_mult_choices_list if len(multi)>0 and not multi.startswith("#")]
loras_multipliers = " ".join(loras_mult_choices_list)
list_mult_choices_str = loras_multipliers.split(" ")
for i, mult in enumerate(list_mult_choices_str):
list_mult_choices_list = preparse_loras_multipliers(loras_multipliers)
for i, mult in enumerate(list_mult_choices_list):
mult = mult.strip()
if "," in mult:
multlist = mult.split(",")
@ -4446,6 +4495,9 @@ def generate_video(
model_filename = model_filename,
model_type = base_model_type,
loras_slists = loras_slists,
NAG_scale = NAG_scale,
NAG_tau = NAG_tau,
NAG_alpha = NAG_alpha,
offloadobj = offloadobj,
)
except Exception as e:
@ -5820,6 +5872,9 @@ def save_inputs(
MMAudio_prompt,
MMAudio_neg_prompt,
RIFLEx_setting,
NAG_scale,
NAG_tau,
NAG_alpha,
slg_switch,
slg_layers,
slg_start_perc,
@ -5975,6 +6030,18 @@ def unload_model_if_needed(state):
gc.collect()
reload_needed= True
def all_letters(source_str, letters):
for letter in letters:
if not letter in source_str:
return False
return True
def any_letters(source_str, letters):
for letter in letters:
if letter in source_str:
return True
return False
def filter_letters(source_str, letters):
ret = ""
for letter in letters:
@ -6301,10 +6368,10 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
image_prompt_type = gr.Radio( [("Start Video with Image", "S"),("Continue Video", "V"),("Text Prompt Only", "T")], value =image_prompt_type_value, label="Location", show_label= False, visible= True , scale= 3)
# image_start = gr.Image(label= "Image as a starting point for a new video", type ="pil",value= ui_defaults.get("image_start", None), visible= "S" in image_prompt_type_value )
image_start = gr.Gallery(
image_start = gr.Gallery(preview= True,
label="Images as starting points for new videos", type ="pil", #file_types= "image",
columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, value= ui_defaults.get("image_start", None), visible= "S" in image_prompt_type_value)
image_end = gr.Gallery(
image_end = gr.Gallery(preview= True,
label="Images as ending points for new videos", type ="pil", #file_types= "image",
columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, visible="E" in image_prompt_type_value, value= ui_defaults.get("image_end", None))
video_source = gr.Video(label= "Video to Continue", visible= "V" in image_prompt_type_value, value= ui_defaults.get("video_source", None),)
@ -6355,11 +6422,11 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
image_prompt_type_choices += [("Use both a Start and an End Image", "SE")]
image_prompt_type = gr.Radio( image_prompt_type_choices, value =image_prompt_type_value, label="Location", show_label= False, visible= not hunyuan_i2v, scale= 3)
image_start = gr.Gallery(
image_start = gr.Gallery(preview= True,
label="Images as starting points for new videos", type ="pil", #file_types= "image",
columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, value= ui_defaults.get("image_start", None), visible= "S" in image_prompt_type_value)
image_end = gr.Gallery(
image_end = gr.Gallery(preview= True,
label="Images as ending points for new videos", type ="pil", #file_types= "image",
columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, visible="E" in image_prompt_type_value, value= ui_defaults.get("image_end", None))
else:
@ -6495,7 +6562,7 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
mask_expand = gr.Slider(-10, 50, value=ui_defaults.get("mask_expand", 0), step=1, label="Expand / Shrink Mask Area", visible= "V" in video_prompt_type_value and "A" in video_prompt_type_value and not "U" in video_prompt_type_value )
image_refs = gr.Gallery( label ="Start Image" if hunyuan_video_avatar else "Reference Images",
image_refs = gr.Gallery(preview= True, label ="Start Image" if hunyuan_video_avatar else "Reference Images",
type ="pil", show_label= True,
columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, visible= "I" in video_prompt_type_value,
value= ui_defaults.get("image_refs", None),
@ -6609,7 +6676,7 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
with gr.Column():
seed = gr.Slider(-1, 999999999, value=ui_defaults.get("seed",-1), step=1, label="Seed (-1 for random)")
with gr.Row(visible = not ltxv):
guidance_scale = gr.Slider(1.0, 20.0, value=ui_defaults.get("guidance_scale",5), step=0.5, label="Guidance Scale", visible=not (hunyuan_t2v or hunyuan_i2v))
guidance_scale = gr.Slider(1.0, 20.0, value=ui_defaults.get("guidance_scale",5), step=0.5, label="Guidance (CFG)", visible=not (hunyuan_t2v or hunyuan_i2v))
audio_guidance_scale = gr.Slider(1.0, 20.0, value=ui_defaults.get("audio_guidance_scale", 5 if fantasy else 4), step=0.5, label="Audio Guidance", visible=fantasy or multitalk)
embedded_guidance_scale = gr.Slider(1.0, 20.0, value=6.0, step=0.5, label="Embedded Guidance Scale", visible=(hunyuan_t2v or hunyuan_i2v))
flow_shift = gr.Slider(1.0, 25.0, value=ui_defaults.get("flow_shift",3), step=0.1, label="Shift Scale")
@ -6626,10 +6693,15 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
with gr.Row(visible = vace):
control_net_weight = gr.Slider(0.0, 2.0, value=ui_defaults.get("control_net_weight",1), step=0.1, label="Control Net Weight #1", visible=vace)
control_net_weight2 = gr.Slider(0.0, 2.0, value=ui_defaults.get("control_net_weight2",1), step=0.1, label="Control Net Weight #2", visible=vace)
negative_prompt = gr.Textbox(label="Negative Prompt (ignored if no Guidance that is if CFG = 1)", value=ui_defaults.get("negative_prompt", "") )
with gr.Column(visible = vace or t2v or test_class_i2v(model_type)) as NAG_col:
gr.Markdown("<B>NAG enforces Negative Prompt even if no Guidance is set (CFG = 1), set NAG Scale to > 1 to enable it</B>")
with gr.Row():
NAG_scale = gr.Slider(1.0, 20.0, value=ui_defaults.get("NAG_scale",1), step=0.1, label="NAG Scale", visible = True)
NAG_tau = gr.Slider(1.0, 5.0, value=ui_defaults.get("NAG_tau",3.5), step=0.1, label="NAG Tau", visible = True)
NAG_alpha = gr.Slider(1.0, 2.0, value=ui_defaults.get("NAG_alpha",.5), step=0.1, label="NAG Alpha", visible = True)
with gr.Row():
negative_prompt = gr.Textbox(label="Negative Prompt", value=ui_defaults.get("negative_prompt", "") )
with gr.Row():
repeat_generation = gr.Slider(1, 25.0, value=ui_defaults.get("repeat_generation",1), step=1, label="Default Number of Generated Videos per Prompt")
repeat_generation = gr.Slider(1, 25.0, value=ui_defaults.get("repeat_generation",1), step=1, label="Num. of Generated Videos per Prompt")
multi_images_gen_type = gr.Dropdown( value=ui_defaults.get("multi_images_gen_type",0),
choices=[
("Generate every combination of images and texts", 0),
@ -6647,7 +6719,7 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
multiselect= True,
label="Activated Loras"
)
loras_multipliers = gr.Textbox(label="Loras Multipliers (1.0 by default) separated by space characters or carriage returns, lines that start with # are ignored", value=launch_multis_str)
loras_multipliers = gr.Textbox(label="Loras Multipliers (1.0 by default) separated by Space chars or CR, lines that start with # are ignored", value=launch_multis_str)
with gr.Tab("Steps Skipping", visible = not ltxv) as speed_tab:
with gr.Column():
gr.Markdown("<B>Tea Cache and Mag Cache accelerate the Video Generation by skipping intelligently some steps, the more steps are skipped the lower the quality of the video.</B>")
@ -6894,7 +6966,7 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
gen_status = gr.Text(interactive= False, label = "Status")
status_trigger = gr.Text(interactive= False, visible=False)
default_files = []
output = gr.Gallery(value =default_files, label="Generated videos", show_label=False, elem_id="gallery" , columns=[3], rows=[1], object_fit="contain", height=450, selected_index=0, interactive= False)
output = gr.Gallery(value =default_files, label="Generated videos", preview= True, show_label=False, elem_id="gallery" , columns=[3], rows=[1], object_fit="contain", height=450, selected_index=0, interactive= False)
output_trigger = gr.Text(interactive= False, visible=False)
refresh_form_trigger = gr.Text(interactive= False, visible=False)
fill_wizard_prompt_trigger = gr.Text(interactive= False, visible=False)
@ -6973,7 +7045,8 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
sliding_window_tab, misc_tab, prompt_enhancer_row, inference_steps_row, skip_layer_guidance_row, audio_guide_row, RIFLEx_setting_col,
video_prompt_type_video_guide, video_prompt_type_video_mask, video_prompt_type_image_refs, apg_col, audio_prompt_type_sources, audio_prompt_type_remux_row,
video_guide_outpainting_col,video_guide_outpainting_top, video_guide_outpainting_bottom, video_guide_outpainting_left, video_guide_outpainting_right,
video_guide_outpainting_checkbox, video_guide_outpainting_row, show_advanced, video_info_to_control_video_btn, video_info_to_video_source_btn, sample_solver_row] # presets_column,
video_guide_outpainting_checkbox, video_guide_outpainting_row, show_advanced, video_info_to_control_video_btn, video_info_to_video_source_btn, sample_solver_row,
NAG_col] # presets_column,
if update_form:
locals_dict = locals()
gen_inputs = [state_dict if k=="state" else locals_dict[k] for k in inputs_names] + [state_dict] + extra_inputs