mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	more fixes
This commit is contained in:
		
							parent
							
								
									ca9e9b94cb
								
							
						
					
					
						commit
						5ba133cae9
					
				@ -1305,7 +1305,7 @@ class HunyuanVideoPipeline(DiffusionPipeline):
 | 
			
		||||
                # perform guidance
 | 
			
		||||
                if self.do_classifier_free_guidance:
 | 
			
		||||
                    if cfg_star_rescale:
 | 
			
		||||
                        batch_size = noise_pred_text.shape[0]
 | 
			
		||||
                        batch_size = 1 
 | 
			
		||||
                        positive_flat = noise_pred_text.view(batch_size, -1)
 | 
			
		||||
                        negative_flat = noise_pred_uncond.view(batch_size, -1)
 | 
			
		||||
                        dot_product = torch.sum(
 | 
			
		||||
 | 
			
		||||
@ -154,8 +154,8 @@ class LTXV:
 | 
			
		||||
        mixed_precision_transformer = False
 | 
			
		||||
    ):
 | 
			
		||||
 | 
			
		||||
        if dtype == torch.float16:
 | 
			
		||||
            dtype  = torch.bfloat16
 | 
			
		||||
        # if dtype == torch.float16:
 | 
			
		||||
        dtype  = torch.bfloat16
 | 
			
		||||
        self.mixed_precision_transformer = mixed_precision_transformer
 | 
			
		||||
        self.distilled = any("lora" in name for name in model_filepath)
 | 
			
		||||
        model_filepath = [name for name in model_filepath if not "lora" in name ]
 | 
			
		||||
@ -169,8 +169,8 @@ class LTXV:
 | 
			
		||||
 | 
			
		||||
        # vae = CausalVideoAutoencoder.from_pretrained(ckpt_path)
 | 
			
		||||
        vae = offload.fast_load_transformers_model("ckpts/ltxv_0.9.7_VAE.safetensors", modelClass=CausalVideoAutoencoder)
 | 
			
		||||
        if VAE_dtype == torch.float16:
 | 
			
		||||
            VAE_dtype = torch.bfloat16
 | 
			
		||||
        # if VAE_dtype == torch.float16:
 | 
			
		||||
        VAE_dtype = torch.bfloat16
 | 
			
		||||
 | 
			
		||||
        vae = vae.to(VAE_dtype)
 | 
			
		||||
        vae._model_dtype = VAE_dtype
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										58
									
								
								wgp.py
									
									
									
									
									
								
							
							
						
						
									
										58
									
								
								wgp.py
									
									
									
									
									
								
							@ -1483,7 +1483,10 @@ src_move = [ "ckpts/models_clip_open-clip-xlm-roberta-large-vit-huge-14-bf16.saf
 | 
			
		||||
tgt_move = [ "ckpts/xlm-roberta-large/", "ckpts/umt5-xxl/", "ckpts/umt5-xxl/"]
 | 
			
		||||
for src,tgt in zip(src_move,tgt_move):
 | 
			
		||||
    if os.path.isfile(src):
 | 
			
		||||
        shutil.move(src, tgt)
 | 
			
		||||
        try:
 | 
			
		||||
            shutil.move(src, tgt)
 | 
			
		||||
        except:
 | 
			
		||||
            pass
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
@ -2772,7 +2775,7 @@ def generate_video(
 | 
			
		||||
        if len(list_mult_choices_nums ) < len(activated_loras):
 | 
			
		||||
            list_mult_choices_nums  += [1.0] * ( len(activated_loras) - len(list_mult_choices_nums ) )        
 | 
			
		||||
        loras_selected = [ lora for lora in loras if os.path.basename(lora) in activated_loras]
 | 
			
		||||
        pinnedLora = profile !=5 #False # # # 
 | 
			
		||||
        pinnedLora = profile !=5 and transformer_loras_filenames == None #False # # # 
 | 
			
		||||
        split_linear_modules_map = getattr(trans,"split_linear_modules_map", None)
 | 
			
		||||
        if transformer_loras_filenames != None:
 | 
			
		||||
            loras_selected += transformer_loras_filenames
 | 
			
		||||
@ -3985,6 +3988,7 @@ def prepare_inputs_dict(target, inputs ):
 | 
			
		||||
        for k in unsaved_params:
 | 
			
		||||
            inputs.pop(k)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    if not "Vace" in model_filename or "diffusion_forcing" in model_filename or "ltxv" in model_filename:
 | 
			
		||||
        unsaved_params = [ "sliding_window_size", "sliding_window_overlap", "sliding_window_overlap_noise", "sliding_window_discard_last_frames"]
 | 
			
		||||
        for k in unsaved_params:
 | 
			
		||||
@ -4643,31 +4647,31 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
 | 
			
		||||
                        )
 | 
			
		||||
 | 
			
		||||
                with gr.Tab("Quality", visible = not ltxv) as quality_tab:
 | 
			
		||||
                        with gr.Row():
 | 
			
		||||
                        with gr.Column(visible = not (hunyuan_i2v or hunyuan_t2v or hunyuan_video_custom) ) as skip_layer_guidance_row:
 | 
			
		||||
                            gr.Markdown("<B>Skip Layer Guidance (improves video quality)</B>")
 | 
			
		||||
                        with gr.Row():
 | 
			
		||||
                            slg_switch = gr.Dropdown(
 | 
			
		||||
                                choices=[
 | 
			
		||||
                                    ("OFF", 0),
 | 
			
		||||
                                    ("ON", 1), 
 | 
			
		||||
                                ],
 | 
			
		||||
                                value=ui_defaults.get("slg_switch",0),
 | 
			
		||||
                                visible=True,
 | 
			
		||||
                                scale = 1,
 | 
			
		||||
                                label="Skip Layer guidance"
 | 
			
		||||
                            )
 | 
			
		||||
                            slg_layers = gr.Dropdown(
 | 
			
		||||
                                choices=[
 | 
			
		||||
                                    (str(i), i ) for i in range(40)
 | 
			
		||||
                                ],
 | 
			
		||||
                                value=ui_defaults.get("slg_layers", ["9"]),
 | 
			
		||||
                                multiselect= True,
 | 
			
		||||
                                label="Skip Layers",
 | 
			
		||||
                                scale= 3
 | 
			
		||||
                            )
 | 
			
		||||
                        with gr.Row():
 | 
			
		||||
                            slg_start_perc = gr.Slider(0, 100, value=ui_defaults.get("slg_start_perc",10), step=1, label="Denoising Steps % start") 
 | 
			
		||||
                            slg_end_perc = gr.Slider(0, 100, value=ui_defaults.get("slg_end_perc",90), step=1, label="Denoising Steps % end") 
 | 
			
		||||
                            with gr.Row():
 | 
			
		||||
                                slg_switch = gr.Dropdown(
 | 
			
		||||
                                    choices=[
 | 
			
		||||
                                        ("OFF", 0),
 | 
			
		||||
                                        ("ON", 1), 
 | 
			
		||||
                                    ],
 | 
			
		||||
                                    value=ui_defaults.get("slg_switch",0),
 | 
			
		||||
                                    visible=True,
 | 
			
		||||
                                    scale = 1,
 | 
			
		||||
                                    label="Skip Layer guidance"
 | 
			
		||||
                                )
 | 
			
		||||
                                slg_layers = gr.Dropdown(
 | 
			
		||||
                                    choices=[
 | 
			
		||||
                                        (str(i), i ) for i in range(40)
 | 
			
		||||
                                    ],
 | 
			
		||||
                                    value=ui_defaults.get("slg_layers", ["9"]),
 | 
			
		||||
                                    multiselect= True,
 | 
			
		||||
                                    label="Skip Layers",
 | 
			
		||||
                                    scale= 3
 | 
			
		||||
                                )
 | 
			
		||||
                            with gr.Row():
 | 
			
		||||
                                slg_start_perc = gr.Slider(0, 100, value=ui_defaults.get("slg_start_perc",10), step=1, label="Denoising Steps % start") 
 | 
			
		||||
                                slg_end_perc = gr.Slider(0, 100, value=ui_defaults.get("slg_end_perc",90), step=1, label="Denoising Steps % end") 
 | 
			
		||||
 | 
			
		||||
                        with gr.Row():
 | 
			
		||||
                            gr.Markdown("<B>Experimental: Classifier-Free Guidance Zero Star, better adherence to Text Prompt")
 | 
			
		||||
@ -4772,7 +4776,7 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
 | 
			
		||||
 | 
			
		||||
        extra_inputs = prompt_vars + [wizard_prompt, wizard_variables_var, wizard_prompt_activated_var, video_prompt_column, image_prompt_column,
 | 
			
		||||
                                      prompt_column_advanced, prompt_column_wizard_vars, prompt_column_wizard, lset_name, advanced_row, speed_tab, quality_tab,
 | 
			
		||||
                                      sliding_window_tab, misc_tab, prompt_enhancer_row, inference_steps_row,
 | 
			
		||||
                                      sliding_window_tab, misc_tab, prompt_enhancer_row, inference_steps_row, skip_layer_guidance_row,
 | 
			
		||||
                                      video_prompt_type_video_guide, video_prompt_type_image_refs] # show_advanced presets_column,
 | 
			
		||||
        if update_form:
 | 
			
		||||
            locals_dict = locals()
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user