restored original detailed status updates, fixed repeats

This commit is contained in:
Chris Malone 2025-03-24 21:00:30 +11:00
parent bb3f99012f
commit 646d9ace13

View File

@ -1,7 +1,6 @@
import os
import time
import threading
from typing import Dict, Any
import argparse
from mmgp import offload, safetensors2, profile_type
try:
@ -23,7 +22,6 @@ import traceback
import math
import asyncio
from wan.utils import prompt_parser
from typing import List
PROMPT_VARS_MAX = 10
target_mmgp_version = "3.3.0"
@ -49,19 +47,23 @@ def runner():
with tracker_lock:
progress = progress_tracker.get(task_id, {})
if item['status'] == "Processing":
if item['state'] != "Queued" and item['state'] != "Finished":
current_step = progress.get('current_step', 0)
total_steps = progress.get('total_steps', 0)
elapsed = time.time() - progress.get('start_time', time.time())
status = progress.get('status', "")
state = progress.get("state")
item.update({
'progress': f"{((current_step/total_steps)*100 if total_steps > 0 else 0):.1f}%",
'steps': f"{current_step}/{total_steps}",
'time': f"{elapsed:.1f}s"
'time': f"{elapsed:.1f}s",
'state': f"{state}",
'status': f"{status}"
})
if not any(item['status'] == "Processing" for item in queue):
if not any(item['state'] == "Processing" for item in queue):
for item in queue:
if item['status'] == "Queued":
item['status'] = "Processing"
if item['state'] == "Queued":
item['state'] = "Processing"
current_task_id = item['id']
threading.Thread(target=process_task, args=(item,)).start()
break
@ -157,7 +159,8 @@ def add_video_task(*params):
queue.append({
"id": current_task_id,
"params": (current_task_id,) + params,
"status": "Queued",
"state": "Queued",
"status": "0/0",
"progress": "0.0%",
"steps": f"0/{params[5]}",
"time": "--",
@ -209,6 +212,7 @@ def update_queue_data():
for item in queue:
data.append([
str(item['id']),
item['state'],
item['status'],
item.get('progress', "0.0%"),
item.get('steps', ''),
@ -985,29 +989,38 @@ def save_video(final_frames, output_path, fps=24):
final_frames = (final_frames * 255).astype(np.uint8)
ImageSequenceClip(list(final_frames), fps=fps).write_videofile(output_path, verbose= False, logger = None)
def build_callback(task_id, total_steps):
def build_callback(state, pipe, num_inference_steps, status):
start_time = time.time()
def update_progress(step, _):
def update_progress(step_idx, latents, read_state = False):
with tracker_lock:
step_idx += 1
if state.get("abort", False):
# pipe._interrupt = True
phase = "Aborting"
elif step_idx == num_inference_steps:
phase = "VAE Decoding"
else:
phase = "Denoising"
elapsed = time.time() - start_time
progress_tracker[task_id] = {
'current_step': step + 1,
'total_steps': total_steps,
'current_step': step_idx,
'total_steps': num_inference_steps,
'start_time': start_time,
'last_update': time.time()
'last_update': time.time(),
'status': status,
'state': phase
}
return update_progress
def refresh_gallery(state):
file_list = state.get("file_list", None)
return file_list
def finalize_gallery(state):
choice = 0
if "in_progress" in state:
del state["in_progress"]
choice = state.get("selected",0)
state["extra_orders"] = 0
time.sleep(0.2)
global gen_in_progress
gen_in_progress = False
@ -1067,6 +1080,7 @@ def generate_video(
offloadobj.release()
offloadobj = None
wan_model = None
gc.collect()
print(f"Loading model {get_model_name(file_model_needed)}...")
wan_model, offloadobj, trans = load_models(image2video)
print(f"Model loaded")
@ -1243,143 +1257,153 @@ def generate_video(
trans.teacache_skipped_steps = 0
trans.previous_residual_uncond = None
trans.previous_residual_cond = None
callback = build_callback(task_id, num_inference_steps)
video_no = 0
status = f"{video_no}/{repeat_generation}"
with tracker_lock:
if task_id in progress_tracker:
progress_tracker[task_id]['state'] = "Encoding Prompt"
progress_tracker[task_id]['status'] = status
callback = build_callback(state, trans, num_inference_steps, status)
offload.shared_state["callback"] = callback
gc.collect()
torch.cuda.empty_cache()
wan_model._interrupt = False
state["progress_status"] = "Starting"
try:
if image2video:
samples = wan_model.generate(
prompt,
image_to_continue.convert('RGB'),
image_to_end.convert('RGB') if image_to_end != None else None,
frame_num=(video_length // 4)* 4 + 1,
max_area=MAX_AREA_CONFIGS[resolution],
shift=flow_shift,
sampling_steps=num_inference_steps,
guide_scale=guidance_scale,
n_prompt=negative_prompt,
seed=seed,
offload_model=False,
callback=callback,
enable_RIFLEx = enable_RIFLEx,
VAE_tile_size = VAE_tile_size,
joint_pass = joint_pass,
slg_layers = slg_layers,
slg_start = slg_start/100,
slg_end = slg_end/100,
)
for i in range(repeat_generation):
try:
with tracker_lock:
if task_id in progress_tracker:
progress_tracker[task_id]['status'] = video_no
video_no += 1
if image2video:
samples = wan_model.generate(
prompt,
image_to_continue.convert('RGB'),
image_to_end.convert('RGB') if image_to_end != None else None,
frame_num=(video_length // 4)* 4 + 1,
max_area=MAX_AREA_CONFIGS[resolution],
shift=flow_shift,
sampling_steps=num_inference_steps,
guide_scale=guidance_scale,
n_prompt=negative_prompt,
seed=seed,
offload_model=False,
callback=callback,
enable_RIFLEx = enable_RIFLEx,
VAE_tile_size = VAE_tile_size,
joint_pass = joint_pass,
slg_layers = slg_layers,
slg_start = slg_start/100,
slg_end = slg_end/100,
)
else:
samples = wan_model.generate(
prompt,
frame_num=(video_length // 4)* 4 + 1,
size=(width, height),
shift=flow_shift,
sampling_steps=num_inference_steps,
guide_scale=guidance_scale,
n_prompt=negative_prompt,
seed=seed,
offload_model=False,
callback=callback,
enable_RIFLEx = enable_RIFLEx,
VAE_tile_size = VAE_tile_size,
joint_pass = joint_pass,
slg_layers = slg_layers,
slg_start = slg_start/100,
slg_end = slg_end/100,
)
except Exception as e:
gen_in_progress = False
if temp_filename!= None and os.path.isfile(temp_filename):
os.remove(temp_filename)
else:
samples = wan_model.generate(
prompt,
frame_num=(video_length // 4)* 4 + 1,
size=(width, height),
shift=flow_shift,
sampling_steps=num_inference_steps,
guide_scale=guidance_scale,
n_prompt=negative_prompt,
seed=seed,
offload_model=False,
callback=callback,
enable_RIFLEx = enable_RIFLEx,
VAE_tile_size = VAE_tile_size,
joint_pass = joint_pass,
slg_layers = slg_layers,
slg_start = slg_start/100,
slg_end = slg_end/100,
)
except Exception as e:
gen_in_progress = False
if temp_filename!= None and os.path.isfile(temp_filename):
os.remove(temp_filename)
offload.last_offload_obj.unload_all()
offload.unload_loras_from_model(trans)
# if compile:
# cache_size = torch._dynamo.config.cache_size_limit
# torch.compiler.reset()
# torch._dynamo.config.cache_size_limit = cache_size
gc.collect()
torch.cuda.empty_cache()
s = str(e)
keyword_list = ["vram", "VRAM", "memory","allocat"]
VRAM_crash= False
if any( keyword in s for keyword in keyword_list):
VRAM_crash = True
else:
stack = traceback.extract_stack(f=None, limit=5)
for frame in stack:
if any( keyword in frame.name for keyword in keyword_list):
VRAM_crash = True
break
state["prompt"] = ""
if VRAM_crash:
raise gr.Error("The generation of the video has encountered an error: it is likely that you have unsufficient VRAM and you should therefore reduce the video resolution or its number of frames.")
else:
raise gr.Error(f"The generation of the video has encountered an error, please check your terminal for more information. '{s}'")
finally:
with tracker_lock:
if task_id in progress_tracker:
del progress_tracker[task_id]
if trans.enable_teacache:
print(f"Teacache Skipped Steps:{trans.teacache_skipped_steps}/{num_inference_steps}" )
trans.previous_residual_uncond = None
trans.previous_residual_cond = None
if samples != None:
samples = samples.to("cpu")
offload.last_offload_obj.unload_all()
offload.unload_loras_from_model(trans)
# if compile:
# cache_size = torch._dynamo.config.cache_size_limit
# torch.compiler.reset()
# torch._dynamo.config.cache_size_limit = cache_size
gc.collect()
torch.cuda.empty_cache()
s = str(e)
keyword_list = ["vram", "VRAM", "memory","allocat"]
VRAM_crash= False
if any( keyword in s for keyword in keyword_list):
VRAM_crash = True
if samples == None:
end_time = time.time()
abort = True
state["prompt"] = ""
else:
stack = traceback.extract_stack(f=None, limit=5)
for frame in stack:
if any( keyword in frame.name for keyword in keyword_list):
VRAM_crash = True
break
state["prompt"] = ""
if VRAM_crash:
raise gr.Error("The generation of the video has encountered an error: it is likely that you have unsufficient VRAM and you should therefore reduce the video resolution or its number of frames.")
else:
raise gr.Error(f"The generation of the video has encountered an error, please check your terminal for more information. '{s}'")
finally:
with tracker_lock:
if task_id in progress_tracker:
del progress_tracker[task_id]
sample = samples.cpu()
# video = rearrange(sample.cpu().numpy(), "c t h w -> t h w c")
if trans.enable_teacache:
print(f"Teacache Skipped Steps:{trans.teacache_skipped_steps}/{num_inference_steps}" )
trans.previous_residual_uncond = None
trans.previous_residual_cond = None
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%Hh%Mm%Ss")
if os.name == 'nt':
file_name = f"{time_flag}_seed{seed}_{sanitize_file_name(prompt[:50]).strip()}.mp4"
else:
file_name = f"{time_flag}_seed{seed}_{sanitize_file_name(prompt[:100]).strip()}.mp4"
video_path = os.path.join(save_path, file_name)
cache_video(
tensor=sample[None],
save_file=video_path,
fps=16,
nrow=1,
normalize=True,
value_range=(-1, 1))
if samples != None:
samples = samples.to("cpu")
offload.last_offload_obj.unload_all()
gc.collect()
torch.cuda.empty_cache()
configs = {
'prompt': prompt,
'negative_prompt': negative_prompt,
'resolution': resolution,
'video_length': video_length,
'seed': seed,
'num_inference_steps': num_inference_steps,
}
if samples == None:
end_time = time.time()
abort = True
state["prompt"] = ""
else:
sample = samples.cpu()
# video = rearrange(sample.cpu().numpy(), "c t h w -> t h w c")
metadata_choice = server_config.get("metadata_choice","metadata")
if metadata_choice == "json":
with open(video_path.replace('.mp4', '.json'), 'w') as f:
json.dump(configs, f, indent=4)
elif metadata_choice == "metadata":
from mutagen.mp4 import MP4
file = MP4(video_path)
file.tags['©cmt'] = [json.dumps(configs)]
file.save()
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%Hh%Mm%Ss")
if os.name == 'nt':
file_name = f"{time_flag}_seed{seed}_{sanitize_file_name(prompt[:50]).strip()}.mp4"
else:
file_name = f"{time_flag}_seed{seed}_{sanitize_file_name(prompt[:100]).strip()}.mp4"
video_path = os.path.join(save_path, file_name)
cache_video(
tensor=sample[None],
save_file=video_path,
fps=16,
nrow=1,
normalize=True,
value_range=(-1, 1))
configs = {
'prompt': prompt,
'negative_prompt': negative_prompt,
'resolution': resolution,
'video_length': video_length,
'seed': seed,
'num_inference_steps': num_inference_steps,
}
metadata_choice = server_config.get("metadata_choice","metadata")
if metadata_choice == "json":
with open(video_path.replace('.mp4', '.json'), 'w') as f:
json.dump(configs, f, indent=4)
elif metadata_choice == "metadata":
from mutagen.mp4 import MP4
file = MP4(video_path)
file.tags['©cmt'] = [json.dumps(configs)]
file.save()
print(f"New video saved to Path: "+video_path)
file_list.append(video_path)
seed += 1
print(f"New video saved to Path: "+video_path)
file_list.append(video_path)
seed += 1
if temp_filename!= None and os.path.isfile(temp_filename):
os.remove(temp_filename)
@ -2006,10 +2030,10 @@ def generate_video_tab(image2video=False):
, columns=[3], rows=[1], object_fit="contain", height=450, selected_index=0, interactive= False)
generate_btn = gr.Button("Generate")
queue_df = gr.DataFrame(
headers=["ID", "Status", "Progress", "Steps", "Time", "Prompt", "", "", ""],
datatype=["str", "str", "str", "str", "str", "str", "str", "str", "str"],
headers=["ID", "Status", "Repeats", "Progress", "Steps", "Time", "Prompt", "", "", ""],
datatype=["str", "str", "str", "str", "str", "str", "str", "str", "str", "str"],
interactive=False,
col_count=(9, "fixed"),
col_count=(10, "fixed"),
wrap=True,
value=update_queue_data,
every=1,