mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-07-13 11:10:11 +00:00
[feat] enable taylor cache
This commit is contained in:
parent
feba2a62c8
commit
6686e7fd18
422
taylor_generator.py
Normal file
422
taylor_generator.py
Normal file
@ -0,0 +1,422 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import argparse
|
||||
from datetime import datetime
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
import torch, random
|
||||
import torch.distributed as dist
|
||||
from PIL import Image
|
||||
|
||||
import wan
|
||||
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
|
||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
||||
from wan.utils.utils import cache_video, cache_image, str2bool
|
||||
from wan.taylorseer.generates import wan_t2v_generate, wan_i2v_generate
|
||||
from wan.taylorseer.forwards import wan_forward, xfusers_wan_forward, wan_attention_forward
|
||||
import types
|
||||
|
||||
EXAMPLE_PROMPT = {
|
||||
"t2v-1.3B": {
|
||||
"prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
||||
},
|
||||
"t2v-14B": {
|
||||
"prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
||||
},
|
||||
"t2i-14B": {
|
||||
"prompt": "一个朴素端庄的美人",
|
||||
},
|
||||
"i2v-14B": {
|
||||
"prompt":
|
||||
"Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
|
||||
"image":
|
||||
"examples/i2v_input.JPG",
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def _validate_args(args):
|
||||
# Basic check
|
||||
assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
|
||||
assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
|
||||
assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
|
||||
|
||||
# The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
|
||||
if args.sample_steps is None:
|
||||
args.sample_steps = 40 if "i2v" in args.task else 50
|
||||
|
||||
if args.sample_shift is None:
|
||||
args.sample_shift = 5.0
|
||||
if "i2v" in args.task and args.size in ["832*480", "480*832"]:
|
||||
args.sample_shift = 3.0
|
||||
|
||||
# The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
|
||||
if args.frame_num is None:
|
||||
args.frame_num = 1 if "t2i" in args.task else 81
|
||||
|
||||
# T2I frame_num check
|
||||
if "t2i" in args.task:
|
||||
assert args.frame_num == 1, f"Unsupport frame_num {args.frame_num} for task {args.task}"
|
||||
|
||||
args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
|
||||
0, sys.maxsize)
|
||||
# Size check
|
||||
assert args.size in SUPPORTED_SIZES[
|
||||
args.
|
||||
task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
|
||||
|
||||
|
||||
def _parse_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Generate a image or video from a text prompt or image using Wan"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--task",
|
||||
type=str,
|
||||
default="t2v-14B",
|
||||
choices=list(WAN_CONFIGS.keys()),
|
||||
help="The task to run.")
|
||||
parser.add_argument(
|
||||
"--size",
|
||||
type=str,
|
||||
default="1280*720",
|
||||
choices=list(SIZE_CONFIGS.keys()),
|
||||
help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--frame_num",
|
||||
type=int,
|
||||
default=None,
|
||||
help="How many frames to sample from a image or video. The number should be 4n+1"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ckpt_dir",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The path to the checkpoint directory.")
|
||||
parser.add_argument(
|
||||
"--offload_model",
|
||||
type=str2bool,
|
||||
default=None,
|
||||
help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--ulysses_size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The size of the ulysses parallelism in DiT.")
|
||||
parser.add_argument(
|
||||
"--ring_size",
|
||||
type=int,
|
||||
default=1,
|
||||
help="The size of the ring attention parallelism in DiT.")
|
||||
parser.add_argument(
|
||||
"--t5_fsdp",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Whether to use FSDP for T5.")
|
||||
parser.add_argument(
|
||||
"--t5_cpu",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Whether to place T5 model on CPU.")
|
||||
parser.add_argument(
|
||||
"--dit_fsdp",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Whether to use FSDP for DiT.")
|
||||
parser.add_argument(
|
||||
"--save_file",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The file to save the generated image or video to.")
|
||||
parser.add_argument(
|
||||
"--prompt",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The prompt to generate the image or video from.")
|
||||
parser.add_argument(
|
||||
"--use_prompt_extend",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="Whether to use prompt extend.")
|
||||
parser.add_argument(
|
||||
"--prompt_extend_method",
|
||||
type=str,
|
||||
default="local_qwen",
|
||||
choices=["dashscope", "local_qwen"],
|
||||
help="The prompt extend method to use.")
|
||||
parser.add_argument(
|
||||
"--prompt_extend_model",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The prompt extend model to use.")
|
||||
parser.add_argument(
|
||||
"--prompt_extend_target_lang",
|
||||
type=str,
|
||||
default="zh",
|
||||
choices=["zh", "en"],
|
||||
help="The target language of prompt extend.")
|
||||
parser.add_argument(
|
||||
"--base_seed",
|
||||
type=int,
|
||||
default=-1,
|
||||
help="The seed to use for generating the image or video.")
|
||||
parser.add_argument(
|
||||
"--image",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The image to generate the video from.")
|
||||
parser.add_argument(
|
||||
"--sample_solver",
|
||||
type=str,
|
||||
default='unipc',
|
||||
choices=['unipc', 'dpm++'],
|
||||
help="The solver used to sample.")
|
||||
parser.add_argument(
|
||||
"--sample_steps", type=int, default=None, help="The sampling steps.")
|
||||
parser.add_argument(
|
||||
"--sample_shift",
|
||||
type=float,
|
||||
default=None,
|
||||
help="Sampling shift factor for flow matching schedulers.")
|
||||
parser.add_argument(
|
||||
"--sample_guide_scale",
|
||||
type=float,
|
||||
default=5.0,
|
||||
help="Classifier free guidance scale.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
_validate_args(args)
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def _init_logging(rank):
|
||||
# logging
|
||||
if rank == 0:
|
||||
# set format
|
||||
logging.basicConfig(
|
||||
level=logging.INFO,
|
||||
format="[%(asctime)s] %(levelname)s: %(message)s",
|
||||
handlers=[logging.StreamHandler(stream=sys.stdout)])
|
||||
else:
|
||||
logging.basicConfig(level=logging.ERROR)
|
||||
|
||||
|
||||
def generate(args):
|
||||
rank = int(os.getenv("RANK", 0))
|
||||
world_size = int(os.getenv("WORLD_SIZE", 1))
|
||||
local_rank = int(os.getenv("LOCAL_RANK", 0))
|
||||
device = local_rank
|
||||
_init_logging(rank)
|
||||
|
||||
if args.offload_model is None:
|
||||
args.offload_model = False if world_size > 1 else True
|
||||
logging.info(
|
||||
f"offload_model is not specified, set to {args.offload_model}.")
|
||||
if world_size > 1:
|
||||
torch.cuda.set_device(local_rank)
|
||||
dist.init_process_group(
|
||||
backend="nccl",
|
||||
init_method="env://",
|
||||
rank=rank,
|
||||
world_size=world_size)
|
||||
else:
|
||||
assert not (
|
||||
args.t5_fsdp or args.dit_fsdp
|
||||
), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
|
||||
assert not (
|
||||
args.ulysses_size > 1 or args.ring_size > 1
|
||||
), f"context parallel are not supported in non-distributed environments."
|
||||
|
||||
if args.ulysses_size > 1 or args.ring_size > 1:
|
||||
assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
|
||||
from xfuser.core.distributed import (initialize_model_parallel,
|
||||
init_distributed_environment)
|
||||
init_distributed_environment(
|
||||
rank=dist.get_rank(), world_size=dist.get_world_size())
|
||||
|
||||
initialize_model_parallel(
|
||||
sequence_parallel_degree=dist.get_world_size(),
|
||||
ring_degree=args.ring_size,
|
||||
ulysses_degree=args.ulysses_size,
|
||||
)
|
||||
|
||||
if args.use_prompt_extend:
|
||||
if args.prompt_extend_method == "dashscope":
|
||||
prompt_expander = DashScopePromptExpander(
|
||||
model_name=args.prompt_extend_model, is_vl="i2v" in args.task)
|
||||
elif args.prompt_extend_method == "local_qwen":
|
||||
prompt_expander = QwenPromptExpander(
|
||||
model_name=args.prompt_extend_model,
|
||||
is_vl="i2v" in args.task,
|
||||
device=rank)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"Unsupport prompt_extend_method: {args.prompt_extend_method}")
|
||||
|
||||
cfg = WAN_CONFIGS[args.task]
|
||||
if args.ulysses_size > 1:
|
||||
assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."
|
||||
|
||||
logging.info(f"Generation job args: {args}")
|
||||
logging.info(f"Generation model config: {cfg}")
|
||||
|
||||
if dist.is_initialized():
|
||||
base_seed = [args.base_seed] if rank == 0 else [None]
|
||||
dist.broadcast_object_list(base_seed, src=0)
|
||||
args.base_seed = base_seed[0]
|
||||
|
||||
if "t2v" in args.task or "t2i" in args.task:
|
||||
if args.prompt is None:
|
||||
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
||||
logging.info(f"Input prompt: {args.prompt}")
|
||||
if args.use_prompt_extend:
|
||||
logging.info("Extending prompt ...")
|
||||
if rank == 0:
|
||||
prompt_output = prompt_expander(
|
||||
args.prompt,
|
||||
tar_lang=args.prompt_extend_target_lang,
|
||||
seed=args.base_seed)
|
||||
if prompt_output.status == False:
|
||||
logging.info(
|
||||
f"Extending prompt failed: {prompt_output.message}")
|
||||
logging.info("Falling back to original prompt.")
|
||||
input_prompt = args.prompt
|
||||
else:
|
||||
input_prompt = prompt_output.prompt
|
||||
input_prompt = [input_prompt]
|
||||
else:
|
||||
input_prompt = [None]
|
||||
if dist.is_initialized():
|
||||
dist.broadcast_object_list(input_prompt, src=0)
|
||||
args.prompt = input_prompt[0]
|
||||
logging.info(f"Extended prompt: {args.prompt}")
|
||||
|
||||
logging.info("Creating WanT2V pipeline.")
|
||||
wan_t2v = wan.WanT2V(
|
||||
config=cfg,
|
||||
checkpoint_dir=args.ckpt_dir,
|
||||
device_id=device,
|
||||
rank=rank,
|
||||
t5_fsdp=args.t5_fsdp,
|
||||
dit_fsdp=args.dit_fsdp,
|
||||
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
||||
t5_cpu=args.t5_cpu, use_taylor_cache= True
|
||||
)
|
||||
|
||||
logging.info(
|
||||
f"Generating {'image' if 't2i' in args.task else 'video'} ...")
|
||||
|
||||
# TaylorSeer
|
||||
wan_t2v.generate = types.MethodType(wan_t2v_generate, wan_t2v)
|
||||
#wan_t2v = torch.compile(wan_t2v, mode="max-autotune")
|
||||
video = wan_t2v.generate(
|
||||
args.prompt,
|
||||
size=SIZE_CONFIGS[args.size],
|
||||
frame_num=args.frame_num,
|
||||
shift=args.sample_shift,
|
||||
sample_solver=args.sample_solver,
|
||||
sampling_steps=args.sample_steps,
|
||||
guide_scale=args.sample_guide_scale,
|
||||
seed=args.base_seed,
|
||||
offload_model=args.offload_model)
|
||||
|
||||
else:
|
||||
if args.prompt is None:
|
||||
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
||||
if args.image is None:
|
||||
args.image = EXAMPLE_PROMPT[args.task]["image"]
|
||||
logging.info(f"Input prompt: {args.prompt}")
|
||||
logging.info(f"Input image: {args.image}")
|
||||
|
||||
img = Image.open(args.image).convert("RGB")
|
||||
if args.use_prompt_extend:
|
||||
logging.info("Extending prompt ...")
|
||||
if rank == 0:
|
||||
prompt_output = prompt_expander(
|
||||
args.prompt,
|
||||
tar_lang=args.prompt_extend_target_lang,
|
||||
image=img,
|
||||
seed=args.base_seed)
|
||||
if prompt_output.status == False:
|
||||
logging.info(
|
||||
f"Extending prompt failed: {prompt_output.message}")
|
||||
logging.info("Falling back to original prompt.")
|
||||
input_prompt = args.prompt
|
||||
else:
|
||||
input_prompt = prompt_output.prompt
|
||||
input_prompt = [input_prompt]
|
||||
else:
|
||||
input_prompt = [None]
|
||||
if dist.is_initialized():
|
||||
dist.broadcast_object_list(input_prompt, src=0)
|
||||
args.prompt = input_prompt[0]
|
||||
logging.info(f"Extended prompt: {args.prompt}")
|
||||
|
||||
logging.info("Creating WanI2V pipeline.")
|
||||
wan_i2v = wan.WanI2V(
|
||||
config=cfg,
|
||||
checkpoint_dir=args.ckpt_dir,
|
||||
device_id=device,
|
||||
rank=rank,
|
||||
t5_fsdp=args.t5_fsdp,
|
||||
dit_fsdp=args.dit_fsdp,
|
||||
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
||||
t5_cpu=args.t5_cpu,
|
||||
)
|
||||
|
||||
logging.info("Generating video ...")
|
||||
|
||||
# TaylorSeer
|
||||
wan_i2v.generate = types.MethodType(wan_i2v_generate, wan_i2v)
|
||||
|
||||
video = wan_i2v.generate(
|
||||
args.prompt,
|
||||
img,
|
||||
max_area=MAX_AREA_CONFIGS[args.size],
|
||||
frame_num=args.frame_num,
|
||||
shift=args.sample_shift,
|
||||
sample_solver=args.sample_solver,
|
||||
sampling_steps=args.sample_steps,
|
||||
guide_scale=args.sample_guide_scale,
|
||||
seed=args.base_seed,
|
||||
offload_model=args.offload_model)
|
||||
|
||||
if rank == 0:
|
||||
if args.save_file is None:
|
||||
formatted_time = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
formatted_prompt = args.prompt.replace(" ", "_").replace("/",
|
||||
"_")[:50]
|
||||
suffix = '.png' if "t2i" in args.task else '.mp4'
|
||||
args.save_file = f"{args.task}_{args.size.replace('*','x') if sys.platform=='win32' else args.size}_{args.ulysses_size}_{args.ring_size}_{formatted_prompt}_{formatted_time}" + suffix
|
||||
|
||||
if "t2i" in args.task:
|
||||
logging.info(f"Saving generated image to {args.save_file}")
|
||||
cache_image(
|
||||
tensor=video.squeeze(1)[None],
|
||||
save_file=args.save_file,
|
||||
nrow=1,
|
||||
normalize=True,
|
||||
value_range=(-1, 1))
|
||||
else:
|
||||
logging.info(f"Saving generated video to {args.save_file}")
|
||||
cache_video(
|
||||
tensor=video[None],
|
||||
save_file=args.save_file,
|
||||
fps=cfg.sample_fps,
|
||||
nrow=1,
|
||||
normalize=True,
|
||||
value_range=(-1, 1))
|
||||
logging.info("Finished.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = _parse_args()
|
||||
generate(args)
|
192
wan/distributed/xdit_context_parallel_taylor.py
Normal file
192
wan/distributed/xdit_context_parallel_taylor.py
Normal file
@ -0,0 +1,192 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
from xfuser.core.distributed import (get_sequence_parallel_rank,
|
||||
get_sequence_parallel_world_size,
|
||||
get_sp_group)
|
||||
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
|
||||
|
||||
from ..modules.model import sinusoidal_embedding_1d
|
||||
|
||||
|
||||
def pad_freqs(original_tensor, target_len):
|
||||
seq_len, s1, s2 = original_tensor.shape
|
||||
pad_size = target_len - seq_len
|
||||
padding_tensor = torch.ones(
|
||||
pad_size,
|
||||
s1,
|
||||
s2,
|
||||
dtype=original_tensor.dtype,
|
||||
device=original_tensor.device)
|
||||
padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
|
||||
return padded_tensor
|
||||
|
||||
|
||||
@amp.autocast(enabled=False)
|
||||
def rope_apply(x, grid_sizes, freqs):
|
||||
"""
|
||||
x: [B, L, N, C].
|
||||
grid_sizes: [B, 3].
|
||||
freqs: [M, C // 2].
|
||||
"""
|
||||
s, n, c = x.size(1), x.size(2), x.size(3) // 2
|
||||
# split freqs
|
||||
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
|
||||
|
||||
# loop over samples
|
||||
output = []
|
||||
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
||||
seq_len = f * h * w
|
||||
|
||||
# precompute multipliers
|
||||
x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape(
|
||||
s, n, -1, 2))
|
||||
freqs_i = torch.cat([
|
||||
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
||||
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
||||
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
||||
],
|
||||
dim=-1).reshape(seq_len, 1, -1)
|
||||
|
||||
# apply rotary embedding
|
||||
sp_size = get_sequence_parallel_world_size()
|
||||
sp_rank = get_sequence_parallel_rank()
|
||||
freqs_i = pad_freqs(freqs_i, s * sp_size)
|
||||
s_per_rank = s
|
||||
freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) *
|
||||
s_per_rank), :, :]
|
||||
x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2)
|
||||
x_i = torch.cat([x_i, x[i, s:]])
|
||||
|
||||
# append to collection
|
||||
output.append(x_i)
|
||||
return torch.stack(output).float()
|
||||
|
||||
|
||||
def usp_dit_forward(
|
||||
self,
|
||||
x,
|
||||
t,
|
||||
context,
|
||||
seq_len,
|
||||
clip_fea=None,
|
||||
y=None,
|
||||
):
|
||||
"""
|
||||
x: A list of videos each with shape [C, T, H, W].
|
||||
t: [B].
|
||||
context: A list of text embeddings each with shape [L, C].
|
||||
"""
|
||||
if self.model_type == 'i2v':
|
||||
assert clip_fea is not None and y is not None
|
||||
# params
|
||||
device = self.patch_embedding.weight.device
|
||||
if self.freqs.device != device:
|
||||
self.freqs = self.freqs.to(device)
|
||||
|
||||
if y is not None:
|
||||
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
||||
|
||||
# embeddings
|
||||
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
||||
grid_sizes = torch.stack(
|
||||
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
||||
x = [u.flatten(2).transpose(1, 2) for u in x]
|
||||
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
||||
assert seq_lens.max() <= seq_len
|
||||
x = torch.cat([
|
||||
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
|
||||
for u in x
|
||||
])
|
||||
|
||||
# time embeddings
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t).float())
|
||||
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
||||
assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
||||
|
||||
# context
|
||||
context_lens = None
|
||||
context = self.text_embedding(
|
||||
torch.stack([
|
||||
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
||||
for u in context
|
||||
]))
|
||||
|
||||
if clip_fea is not None:
|
||||
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||||
context = torch.concat([context_clip, context], dim=1)
|
||||
|
||||
# arguments
|
||||
kwargs = dict(
|
||||
e=e0,
|
||||
seq_lens=seq_lens,
|
||||
grid_sizes=grid_sizes,
|
||||
freqs=self.freqs,
|
||||
context=context,
|
||||
context_lens=context_lens)
|
||||
|
||||
# Context Parallel
|
||||
x = torch.chunk(
|
||||
x, get_sequence_parallel_world_size(),
|
||||
dim=1)[get_sequence_parallel_rank()]
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x, **kwargs)
|
||||
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
# Context Parallel
|
||||
x = get_sp_group().all_gather(x, dim=1)
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return [u.float() for u in x]
|
||||
|
||||
|
||||
def usp_attn_forward(self,
|
||||
x,
|
||||
seq_lens,
|
||||
grid_sizes,
|
||||
freqs,
|
||||
dtype=torch.bfloat16):
|
||||
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
||||
half_dtypes = (torch.float16, torch.bfloat16)
|
||||
|
||||
def half(x):
|
||||
return x if x.dtype in half_dtypes else x.to(dtype)
|
||||
|
||||
# query, key, value function
|
||||
def qkv_fn(x):
|
||||
q = self.norm_q(self.q(x)).view(b, s, n, d)
|
||||
k = self.norm_k(self.k(x)).view(b, s, n, d)
|
||||
v = self.v(x).view(b, s, n, d)
|
||||
return q, k, v
|
||||
|
||||
q, k, v = qkv_fn(x)
|
||||
q = rope_apply(q, grid_sizes, freqs)
|
||||
k = rope_apply(k, grid_sizes, freqs)
|
||||
|
||||
# TODO: We should use unpaded q,k,v for attention.
|
||||
# k_lens = seq_lens // get_sequence_parallel_world_size()
|
||||
# if k_lens is not None:
|
||||
# q = torch.cat([u[:l] for u, l in zip(q, k_lens)]).unsqueeze(0)
|
||||
# k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0)
|
||||
# v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0)
|
||||
|
||||
x = xFuserLongContextAttention()(
|
||||
None,
|
||||
query=half(q),
|
||||
key=half(k),
|
||||
value=half(v),
|
||||
window_size=self.window_size)
|
||||
|
||||
# TODO: padding after attention.
|
||||
# x = torch.cat([x, x.new_zeros(b, s - x.size(1), n, d)], dim=1)
|
||||
|
||||
# output
|
||||
x = x.flatten(2)
|
||||
x = self.o(x)
|
||||
return x
|
@ -8,6 +8,7 @@ from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.models.modeling_utils import ModelMixin
|
||||
|
||||
from .attention import flash_attention
|
||||
from wan.taylorseer.cache_functions import cache_init
|
||||
|
||||
__all__ = ['WanModel']
|
||||
|
||||
@ -506,8 +507,11 @@ class WanModel(ModelMixin, ConfigMixin):
|
||||
self.img_emb = MLPProj(1280, dim, flf_pos_emb=model_type == 'flf2v')
|
||||
|
||||
# initialize weights
|
||||
self.init_weights()
|
||||
self.init_weights()
|
||||
self.cache_init()
|
||||
|
||||
def cache_init(self):
|
||||
self.cache_dic, self.current = cache_init(self)
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
|
3
wan/taylorseer/cache_functions/__init__.py
Normal file
3
wan/taylorseer/cache_functions/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from .cache_init import cache_init
|
||||
from .cal_type import cal_type
|
||||
from .force_scheduler import force_scheduler
|
67
wan/taylorseer/cache_functions/cache_init.py
Normal file
67
wan/taylorseer/cache_functions/cache_init.py
Normal file
@ -0,0 +1,67 @@
|
||||
#from wan.modules import WanModel
|
||||
|
||||
def cache_init(self, num_steps= 50):
|
||||
'''
|
||||
Initialization for cache.
|
||||
'''
|
||||
cache_dic = {}
|
||||
cache = {}
|
||||
cache[-1]={}
|
||||
cache[-1]['cond_stream']={}
|
||||
cache[-1]['uncond_stream']={}
|
||||
cache_dic['cache_counter'] = 0
|
||||
|
||||
for j in range(self.num_layers):
|
||||
cache[-1]['cond_stream'][j] = {}
|
||||
cache[-1]['uncond_stream'][j] = {}
|
||||
|
||||
cache_dic['taylor_cache'] = False
|
||||
cache_dic['Delta-DiT'] = False
|
||||
|
||||
|
||||
cache_dic['cache_type'] = 'random'
|
||||
cache_dic['fresh_ratio_schedule'] = 'ToCa'
|
||||
cache_dic['fresh_ratio'] = 0.0
|
||||
cache_dic['fresh_threshold'] = 1
|
||||
cache_dic['force_fresh'] = 'global'
|
||||
|
||||
mode = 'Taylor'
|
||||
|
||||
if mode == 'original':
|
||||
cache_dic['cache'] = cache
|
||||
cache_dic['force_fresh'] = 'global'
|
||||
cache_dic['max_order'] = 0
|
||||
cache_dic['first_enhance'] = 3
|
||||
|
||||
elif mode == 'ToCa':
|
||||
cache_dic['cache_type'] = 'attention'
|
||||
cache_dic['cache'] = cache
|
||||
cache_dic['fresh_ratio_schedule'] = 'ToCa'
|
||||
cache_dic['fresh_ratio'] = 0.1
|
||||
cache_dic['fresh_threshold'] = 5
|
||||
cache_dic['force_fresh'] = 'global'
|
||||
cache_dic['soft_fresh_weight'] = 0.0
|
||||
cache_dic['max_order'] = 0
|
||||
cache_dic['first_enhance'] = 3
|
||||
|
||||
elif mode == 'Taylor':
|
||||
cache_dic['cache'] = cache
|
||||
cache_dic['fresh_threshold'] = 5
|
||||
cache_dic['taylor_cache'] = True
|
||||
cache_dic['max_order'] = 1
|
||||
cache_dic['first_enhance'] = 1
|
||||
|
||||
elif mode == 'Delta':
|
||||
cache_dic['cache'] = cache
|
||||
cache_dic['fresh_ratio'] = 0.0
|
||||
cache_dic['fresh_threshold'] = 3
|
||||
cache_dic['Delta-DiT'] = True
|
||||
cache_dic['max_order'] = 0
|
||||
cache_dic['first_enhance'] = 1
|
||||
|
||||
current = {}
|
||||
current['activated_steps'] = [0]
|
||||
current['step'] = 0
|
||||
current['num_steps'] = num_steps
|
||||
|
||||
return cache_dic, current
|
42
wan/taylorseer/cache_functions/cal_type.py
Normal file
42
wan/taylorseer/cache_functions/cal_type.py
Normal file
@ -0,0 +1,42 @@
|
||||
from .force_scheduler import force_scheduler
|
||||
|
||||
def cal_type(cache_dic, current):
|
||||
'''
|
||||
Determine calculation type for this step
|
||||
'''
|
||||
if (cache_dic['fresh_ratio'] == 0.0) and (not cache_dic['taylor_cache']):
|
||||
# FORA:Uniform
|
||||
first_step = (current['step'] == 0)
|
||||
else:
|
||||
# ToCa: First enhanced
|
||||
first_step = (current['step'] < cache_dic['first_enhance'])
|
||||
#first_step = (current['step'] <= 3)
|
||||
|
||||
force_fresh = cache_dic['force_fresh']
|
||||
if not first_step:
|
||||
fresh_interval = cache_dic['cal_threshold']
|
||||
else:
|
||||
fresh_interval = cache_dic['fresh_threshold']
|
||||
|
||||
if (first_step) or (cache_dic['cache_counter'] == fresh_interval - 1 ):
|
||||
current['type'] = 'full'
|
||||
cache_dic['cache_counter'] = 0
|
||||
current['activated_steps'].append(current['step'])
|
||||
#current['activated_times'].append(current['t'])
|
||||
force_scheduler(cache_dic, current)
|
||||
|
||||
elif (cache_dic['taylor_cache']):
|
||||
cache_dic['cache_counter'] += 1
|
||||
current['type'] = 'Taylor'
|
||||
|
||||
|
||||
elif (cache_dic['cache_counter'] % 2 == 1): # 0: ToCa-Aggresive-ToCa, 1: Aggresive-ToCa-Aggresive
|
||||
cache_dic['cache_counter'] += 1
|
||||
current['type'] = 'ToCa'
|
||||
# 'cache_noise' 'ToCa' 'FORA'
|
||||
elif cache_dic['Delta-DiT']:
|
||||
cache_dic['cache_counter'] += 1
|
||||
current['type'] = 'Delta-Cache'
|
||||
else:
|
||||
cache_dic['cache_counter'] += 1
|
||||
current['type'] = 'ToCa'
|
16
wan/taylorseer/cache_functions/force_scheduler.py
Normal file
16
wan/taylorseer/cache_functions/force_scheduler.py
Normal file
@ -0,0 +1,16 @@
|
||||
import torch
|
||||
def force_scheduler(cache_dic, current):
|
||||
if cache_dic['fresh_ratio'] == 0:
|
||||
# FORA
|
||||
linear_step_weight = 0.0
|
||||
else:
|
||||
# TokenCache
|
||||
linear_step_weight = 0.0
|
||||
step_factor = torch.tensor(1 - linear_step_weight + 2 * linear_step_weight * current['step'] / current['num_steps'])
|
||||
threshold = torch.round(cache_dic['fresh_threshold'] / step_factor)
|
||||
|
||||
# no force constrain for sensitive steps, cause the performance is good enough.
|
||||
# you may have a try.
|
||||
|
||||
cache_dic['cal_threshold'] = threshold
|
||||
#return threshold
|
5
wan/taylorseer/forwards/__init__.py
Normal file
5
wan/taylorseer/forwards/__init__.py
Normal file
@ -0,0 +1,5 @@
|
||||
from .wan_forward import wan_forward
|
||||
from .xfusers_wan_forward import xfusers_wan_forward
|
||||
from .wan_attention_forward import wan_attention_forward
|
||||
from .wan_attention_forward_cache_step import wan_attention_forward_cache_step
|
||||
from .wan_cache_forward import wan_cache_forward
|
23
wan/taylorseer/forwards/wan_attention_cache_forward.py
Normal file
23
wan/taylorseer/forwards/wan_attention_cache_forward.py
Normal file
@ -0,0 +1,23 @@
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
from typing import Dict
|
||||
from wan.taylorseer.taylorseer_utils import taylor_cache_init, derivative_approximation, taylor_formula
|
||||
|
||||
@torch.compile
|
||||
def wan_attention_cache_forward(sa_dict:Dict, ca_dict:Dict, ffn_dict:Dict, e:tuple, x:torch.Tensor, distance:int):
|
||||
|
||||
seer_sa = taylor_formula(derivative_dict=sa_dict, distance=distance)
|
||||
seer_ca = taylor_formula(derivative_dict=ca_dict, distance=distance)
|
||||
seer_ffn = taylor_formula(derivative_dict=ffn_dict, distance=distance)
|
||||
|
||||
x = cache_add(x, seer_sa, seer_ca, seer_ffn, e)
|
||||
|
||||
return x
|
||||
|
||||
def cache_add(x, sa, ca, ffn, e):
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
x = x + sa * e[2]
|
||||
x = x + ca
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
x = x + ffn * e[5]
|
||||
return x
|
82
wan/taylorseer/forwards/wan_attention_forward.py
Normal file
82
wan/taylorseer/forwards/wan_attention_forward.py
Normal file
@ -0,0 +1,82 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
import torch.nn as nn
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.models.modeling_utils import ModelMixin
|
||||
from wan.modules import WanModel
|
||||
from wan.modules.model import sinusoidal_embedding_1d, WanAttentionBlock
|
||||
from wan.modules.attention import flash_attention
|
||||
|
||||
from wan.taylorseer.taylorseer_utils import taylor_cache_init, derivative_approximation, taylor_formula
|
||||
from .wan_attention_cache_forward import wan_attention_cache_forward
|
||||
|
||||
def wan_attention_forward(
|
||||
self:WanAttentionBlock,
|
||||
x,
|
||||
e,
|
||||
seq_lens,
|
||||
grid_sizes,
|
||||
freqs,
|
||||
context,
|
||||
context_lens,
|
||||
cache_dic,
|
||||
current
|
||||
):
|
||||
r"""
|
||||
Args:
|
||||
x(Tensor): Shape [B, L, C]
|
||||
e(Tensor): Shape [B, 6, C]
|
||||
seq_lens(Tensor): Shape [B], length of each sequence in batch
|
||||
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
||||
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
||||
"""
|
||||
assert e.dtype == torch.float32
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
e = (self.modulation + e).chunk(6, dim=1)
|
||||
assert e[0].dtype == torch.float32
|
||||
|
||||
if current['type'] == 'full':
|
||||
|
||||
# self-attention
|
||||
current['module'] = 'self-attention'
|
||||
taylor_cache_init(cache_dic=cache_dic, current=current)
|
||||
y = self.self_attn(
|
||||
self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes,
|
||||
freqs)
|
||||
derivative_approximation(cache_dic=cache_dic, current=current, feature=y)
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
x = x + y * e[2]
|
||||
|
||||
# cross-attention
|
||||
current['module'] = 'cross-attention'
|
||||
taylor_cache_init(cache_dic=cache_dic, current=current)
|
||||
y = self.cross_attn(self.norm3(x), context, context_lens)
|
||||
derivative_approximation(cache_dic=cache_dic, current=current, feature=y)
|
||||
x = x + y
|
||||
|
||||
# ffn
|
||||
current['module'] = 'ffn'
|
||||
taylor_cache_init(cache_dic=cache_dic, current=current)
|
||||
y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3])
|
||||
derivative_approximation(cache_dic=cache_dic, current=current, feature=y)
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
x = x + y * e[5]
|
||||
|
||||
elif current['type'] == 'Taylor':
|
||||
|
||||
#x = wan_attention_cache_forward(cache_dic, current, e, x)
|
||||
x = wan_attention_cache_forward(
|
||||
sa_dict=cache_dic['cache'][-1][current['stream']][current['layer']]['self-attention'],
|
||||
ca_dict=cache_dic['cache'][-1][current['stream']][current['layer']]['cross-attention'],
|
||||
ffn_dict=cache_dic['cache'][-1][current['stream']][current['layer']]['ffn'],
|
||||
e=e,
|
||||
x=x,
|
||||
distance= current['step'] - current['activated_steps'][-1]
|
||||
)
|
||||
|
||||
else:
|
||||
raise ValueError(f"Not supported type: {current['type']}")
|
||||
|
||||
return x
|
37
wan/taylorseer/forwards/wan_attention_forward_cache_step.py
Normal file
37
wan/taylorseer/forwards/wan_attention_forward_cache_step.py
Normal file
@ -0,0 +1,37 @@
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from wan.modules.model import WanAttentionBlock
|
||||
|
||||
from .wan_attention_cache_forward import wan_attention_cache_forward
|
||||
|
||||
def wan_attention_forward_cache_step(
|
||||
self:WanAttentionBlock,
|
||||
x,
|
||||
e,
|
||||
layer_cache_dict,
|
||||
distance,
|
||||
):
|
||||
r"""
|
||||
Args:
|
||||
x(Tensor): Shape [B, L, C]
|
||||
e(Tensor): Shape [B, 6, C]
|
||||
seq_lens(Tensor): Shape [B], length of each sequence in batch
|
||||
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
||||
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
||||
"""
|
||||
assert e.dtype == torch.float32
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
e = (self.modulation + e).chunk(6, dim=1)
|
||||
assert e[0].dtype == torch.float32
|
||||
|
||||
x = wan_attention_cache_forward(
|
||||
sa_dict= layer_cache_dict['self-attention'],
|
||||
ca_dict= layer_cache_dict['cross-attention'],
|
||||
ffn_dict= layer_cache_dict['ffn'],
|
||||
e=e,
|
||||
x=x,
|
||||
distance= distance
|
||||
)
|
||||
|
||||
return x
|
18
wan/taylorseer/forwards/wan_cache_forward.py
Normal file
18
wan/taylorseer/forwards/wan_cache_forward.py
Normal file
@ -0,0 +1,18 @@
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
from wan.modules import WanModel
|
||||
|
||||
@torch.compile
|
||||
def wan_cache_forward(self:WanModel,
|
||||
e:torch.Tensor,
|
||||
cond_cache_dict:dict,
|
||||
distance:int,
|
||||
x:torch.Tensor) -> torch.Tensor:
|
||||
|
||||
for i, block in enumerate(self.blocks):
|
||||
x = block.cache_step_forward(x,
|
||||
e=e,
|
||||
layer_cache_dict=cond_cache_dict[i],
|
||||
distance=distance)
|
||||
|
||||
return x
|
114
wan/taylorseer/forwards/wan_forward.py
Normal file
114
wan/taylorseer/forwards/wan_forward.py
Normal file
@ -0,0 +1,114 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
import torch.nn as nn
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.models.modeling_utils import ModelMixin
|
||||
from wan.modules import WanModel
|
||||
from wan.modules.model import sinusoidal_embedding_1d
|
||||
from wan.taylorseer.cache_functions import cal_type
|
||||
from wan.taylorseer.taylorseer_utils import taylor_formula
|
||||
from .wan_cache_forward import wan_cache_forward
|
||||
|
||||
def wan_forward(
|
||||
self:WanModel,
|
||||
x,
|
||||
t,
|
||||
context,
|
||||
seq_len,
|
||||
current_step,
|
||||
current_stream,
|
||||
clip_fea=None,
|
||||
y=None,
|
||||
):
|
||||
r"""
|
||||
Forward pass through the diffusion model
|
||||
|
||||
Args:
|
||||
x (List[Tensor]):
|
||||
List of input video tensors, each with shape [C_in, F, H, W]
|
||||
t (Tensor):
|
||||
Diffusion timesteps tensor of shape [B]
|
||||
context (List[Tensor]):
|
||||
List of text embeddings each with shape [L, C]
|
||||
seq_len (`int`):
|
||||
Maximum sequence length for positional encoding
|
||||
clip_fea (Tensor, *optional*):
|
||||
CLIP image features for image-to-video mode
|
||||
y (List[Tensor], *optional*):
|
||||
Conditional video inputs for image-to-video mode, same shape as x
|
||||
|
||||
Returns:
|
||||
List[Tensor]:
|
||||
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
||||
"""
|
||||
|
||||
self.current['step'] = current_step
|
||||
self.current['stream'] = current_stream
|
||||
if current_stream == 'cond_stream':
|
||||
cal_type(self.cache_dic, self.current)
|
||||
|
||||
if self.model_type == 'i2v':
|
||||
assert clip_fea is not None and y is not None
|
||||
# params
|
||||
device = self.patch_embedding.weight.device
|
||||
if self.freqs.device != device:
|
||||
self.freqs = self.freqs.to(device)
|
||||
|
||||
if y is not None:
|
||||
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
||||
|
||||
# embeddings
|
||||
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
||||
grid_sizes = torch.stack(
|
||||
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
||||
x = [u.flatten(2).transpose(1, 2) for u in x]
|
||||
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
||||
assert seq_lens.max() <= seq_len
|
||||
x = torch.cat([
|
||||
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
|
||||
dim=1) for u in x
|
||||
])
|
||||
|
||||
# time embeddings
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t).float())
|
||||
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
||||
assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
||||
|
||||
# context
|
||||
context_lens = None
|
||||
context = self.text_embedding(
|
||||
torch.stack([
|
||||
torch.cat(
|
||||
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
||||
for u in context
|
||||
]))
|
||||
|
||||
if clip_fea is not None:
|
||||
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||||
context = torch.concat([context_clip, context], dim=1)
|
||||
|
||||
# arguments
|
||||
kwargs = dict(
|
||||
e=e0,
|
||||
seq_lens=seq_lens,
|
||||
grid_sizes=grid_sizes,
|
||||
freqs=self.freqs,
|
||||
context=context,
|
||||
context_lens=context_lens,
|
||||
cache_dic=self.cache_dic,
|
||||
current=self.current)
|
||||
|
||||
for i, block in enumerate(self.blocks):
|
||||
self.current['layer'] = i
|
||||
x = block(x, **kwargs)
|
||||
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return [u.float() for u in x]
|
104
wan/taylorseer/forwards/xfusers_wan_forward.py
Normal file
104
wan/taylorseer/forwards/xfusers_wan_forward.py
Normal file
@ -0,0 +1,104 @@
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
from xfuser.core.distributed import (get_sequence_parallel_rank,
|
||||
get_sequence_parallel_world_size,
|
||||
get_sp_group)
|
||||
from wan.modules import WanModel
|
||||
from wan.modules.model import sinusoidal_embedding_1d
|
||||
from wan.taylorseer.cache_functions import cal_type
|
||||
from wan.taylorseer.taylorseer_utils import taylor_formula
|
||||
from .wan_cache_forward import wan_cache_forward
|
||||
|
||||
def xfusers_wan_forward(
|
||||
self:WanModel,
|
||||
x,
|
||||
t,
|
||||
context,
|
||||
seq_len,
|
||||
current_step,
|
||||
current_stream,
|
||||
clip_fea=None,
|
||||
y=None,
|
||||
):
|
||||
"""
|
||||
x: A list of videos each with shape [C, T, H, W].
|
||||
t: [B].
|
||||
context: A list of text embeddings each with shape [L, C].
|
||||
"""
|
||||
|
||||
self.current['step'] = current_step
|
||||
self.current['stream'] = current_stream
|
||||
|
||||
if current_stream == 'cond_stream':
|
||||
cal_type(self.cache_dic, self.current)
|
||||
|
||||
if self.model_type == 'i2v':
|
||||
assert clip_fea is not None and y is not None
|
||||
# params
|
||||
device = self.patch_embedding.weight.device
|
||||
if self.freqs.device != device:
|
||||
self.freqs = self.freqs.to(device)
|
||||
|
||||
if y is not None:
|
||||
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
||||
|
||||
# embeddings
|
||||
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
||||
grid_sizes = torch.stack(
|
||||
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
||||
x = [u.flatten(2).transpose(1, 2) for u in x]
|
||||
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
||||
assert seq_lens.max() <= seq_len
|
||||
x = torch.cat([
|
||||
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
|
||||
for u in x
|
||||
])
|
||||
|
||||
# time embeddings
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t).float())
|
||||
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
||||
assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
||||
|
||||
# context
|
||||
context_lens = None
|
||||
context = self.text_embedding(
|
||||
torch.stack([
|
||||
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
||||
for u in context
|
||||
]))
|
||||
|
||||
if clip_fea is not None:
|
||||
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||||
context = torch.concat([context_clip, context], dim=1)
|
||||
|
||||
# arguments
|
||||
kwargs = dict(
|
||||
e=e0,
|
||||
seq_lens=seq_lens,
|
||||
grid_sizes=grid_sizes,
|
||||
freqs=self.freqs,
|
||||
context=context,
|
||||
context_lens=context_lens,
|
||||
cache_dic=self.cache_dic,
|
||||
current=self.current)
|
||||
|
||||
# Context Parallel
|
||||
x = torch.chunk(
|
||||
x, get_sequence_parallel_world_size(),
|
||||
dim=1)[get_sequence_parallel_rank()]
|
||||
|
||||
for i, block in enumerate(self.blocks):
|
||||
self.current['layer'] = i
|
||||
x = block(x, **kwargs)
|
||||
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
# Context Parallel
|
||||
x = get_sp_group().all_gather(x, dim=1)
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return [u.float() for u in x]
|
2
wan/taylorseer/generates/__init__.py
Normal file
2
wan/taylorseer/generates/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
from .wan_t2v_generate import wan_t2v_generate
|
||||
from .wan_i2v_generate import wan_i2v_generate
|
264
wan/taylorseer/generates/wan_i2v_generate.py
Normal file
264
wan/taylorseer/generates/wan_i2v_generate.py
Normal file
@ -0,0 +1,264 @@
|
||||
import gc
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import types
|
||||
from contextlib import contextmanager
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
import torch.distributed as dist
|
||||
import torchvision.transforms.functional as TF
|
||||
from tqdm import tqdm
|
||||
|
||||
from wan.distributed.fsdp import shard_model
|
||||
from wan.modules.clip import CLIPModel
|
||||
from wan.modules.model import WanModel
|
||||
from wan.modules.t5 import T5EncoderModel
|
||||
from wan.modules.vae import WanVAE
|
||||
from wan.utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
|
||||
get_sampling_sigmas, retrieve_timesteps)
|
||||
from wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
from wan import WanI2V
|
||||
|
||||
def wan_i2v_generate(self:WanI2V,
|
||||
input_prompt,
|
||||
img,
|
||||
max_area=720 * 1280,
|
||||
frame_num=81,
|
||||
shift=5.0,
|
||||
sample_solver='unipc',
|
||||
sampling_steps=40,
|
||||
guide_scale=5.0,
|
||||
n_prompt="",
|
||||
seed=-1,
|
||||
offload_model=True):
|
||||
r"""
|
||||
Generates video frames from input image and text prompt using diffusion process.
|
||||
|
||||
Args:
|
||||
input_prompt (`str`):
|
||||
Text prompt for content generation.
|
||||
img (PIL.Image.Image):
|
||||
Input image tensor. Shape: [3, H, W]
|
||||
max_area (`int`, *optional*, defaults to 720*1280):
|
||||
Maximum pixel area for latent space calculation. Controls video resolution scaling
|
||||
frame_num (`int`, *optional*, defaults to 81):
|
||||
How many frames to sample from a video. The number should be 4n+1
|
||||
shift (`float`, *optional*, defaults to 5.0):
|
||||
Noise schedule shift parameter. Affects temporal dynamics
|
||||
[NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
|
||||
sample_solver (`str`, *optional*, defaults to 'unipc'):
|
||||
Solver used to sample the video.
|
||||
sampling_steps (`int`, *optional*, defaults to 40):
|
||||
Number of diffusion sampling steps. Higher values improve quality but slow generation
|
||||
guide_scale (`float`, *optional*, defaults 5.0):
|
||||
Classifier-free guidance scale. Controls prompt adherence vs. creativity
|
||||
n_prompt (`str`, *optional*, defaults to ""):
|
||||
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
|
||||
seed (`int`, *optional*, defaults to -1):
|
||||
Random seed for noise generation. If -1, use random seed
|
||||
offload_model (`bool`, *optional*, defaults to True):
|
||||
If True, offloads models to CPU during generation to save VRAM
|
||||
|
||||
Returns:
|
||||
torch.Tensor:
|
||||
Generated video frames tensor. Dimensions: (C, N H, W) where:
|
||||
- C: Color channels (3 for RGB)
|
||||
- N: Number of frames (81)
|
||||
- H: Frame height (from max_area)
|
||||
- W: Frame width from max_area)
|
||||
"""
|
||||
img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device)
|
||||
|
||||
F = frame_num
|
||||
h, w = img.shape[1:]
|
||||
aspect_ratio = h / w
|
||||
lat_h = round(
|
||||
np.sqrt(max_area * aspect_ratio) // self.vae_stride[1] //
|
||||
self.patch_size[1] * self.patch_size[1])
|
||||
lat_w = round(
|
||||
np.sqrt(max_area / aspect_ratio) // self.vae_stride[2] //
|
||||
self.patch_size[2] * self.patch_size[2])
|
||||
h = lat_h * self.vae_stride[1]
|
||||
w = lat_w * self.vae_stride[2]
|
||||
|
||||
max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
|
||||
self.patch_size[1] * self.patch_size[2])
|
||||
max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size
|
||||
|
||||
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
||||
seed_g = torch.Generator(device=self.device)
|
||||
seed_g.manual_seed(seed)
|
||||
noise = torch.randn(
|
||||
16,
|
||||
21,
|
||||
lat_h,
|
||||
lat_w,
|
||||
dtype=torch.float32,
|
||||
generator=seed_g,
|
||||
device=self.device)
|
||||
|
||||
msk = torch.ones(1, 81, lat_h, lat_w, device=self.device)
|
||||
msk[:, 1:] = 0
|
||||
msk = torch.concat([
|
||||
torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
|
||||
],
|
||||
dim=1)
|
||||
msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
|
||||
msk = msk.transpose(1, 2)[0]
|
||||
|
||||
if n_prompt == "":
|
||||
n_prompt = self.sample_neg_prompt
|
||||
|
||||
# preprocess
|
||||
if not self.t5_cpu:
|
||||
self.text_encoder.model.to(self.device)
|
||||
context = self.text_encoder([input_prompt], self.device)
|
||||
context_null = self.text_encoder([n_prompt], self.device)
|
||||
if offload_model:
|
||||
self.text_encoder.model.cpu()
|
||||
else:
|
||||
context = self.text_encoder([input_prompt], torch.device('cpu'))
|
||||
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
|
||||
context = [t.to(self.device) for t in context]
|
||||
context_null = [t.to(self.device) for t in context_null]
|
||||
|
||||
self.clip.model.to(self.device)
|
||||
clip_context = self.clip.visual([img[:, None, :, :]])
|
||||
if offload_model:
|
||||
self.clip.model.cpu()
|
||||
|
||||
y = self.vae.encode([
|
||||
torch.concat([
|
||||
torch.nn.functional.interpolate(
|
||||
img[None].cpu(), size=(h, w), mode='bicubic').transpose(
|
||||
0, 1),
|
||||
torch.zeros(3, 80, h, w)
|
||||
],
|
||||
dim=1).to(self.device)
|
||||
])[0]
|
||||
y = torch.concat([msk, y])
|
||||
|
||||
@contextmanager
|
||||
def noop_no_sync():
|
||||
yield
|
||||
|
||||
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
|
||||
|
||||
# evaluation mode
|
||||
with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
|
||||
|
||||
if sample_solver == 'unipc':
|
||||
sample_scheduler = FlowUniPCMultistepScheduler(
|
||||
num_train_timesteps=self.num_train_timesteps,
|
||||
shift=1,
|
||||
use_dynamic_shifting=False)
|
||||
sample_scheduler.set_timesteps(
|
||||
sampling_steps, device=self.device, shift=shift)
|
||||
timesteps = sample_scheduler.timesteps
|
||||
elif sample_solver == 'dpm++':
|
||||
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
||||
num_train_timesteps=self.num_train_timesteps,
|
||||
shift=1,
|
||||
use_dynamic_shifting=False)
|
||||
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
||||
timesteps, _ = retrieve_timesteps(
|
||||
sample_scheduler,
|
||||
device=self.device,
|
||||
sigmas=sampling_sigmas)
|
||||
else:
|
||||
raise NotImplementedError("Unsupported solver.")
|
||||
|
||||
# sample videos
|
||||
latent = noise
|
||||
|
||||
arg_c = {
|
||||
'context': [context[0]],
|
||||
'clip_fea': clip_context,
|
||||
'seq_len': max_seq_len,
|
||||
'y': [y],
|
||||
}
|
||||
|
||||
arg_null = {
|
||||
'context': context_null,
|
||||
'clip_fea': clip_context,
|
||||
'seq_len': max_seq_len,
|
||||
'y': [y],
|
||||
}
|
||||
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
self.model.to(self.device)
|
||||
|
||||
for i, t in enumerate(tqdm(timesteps)):
|
||||
|
||||
current_step = i
|
||||
|
||||
latent_model_input = [latent.to(self.device)]
|
||||
timestep = [t]
|
||||
|
||||
timestep = torch.stack(timestep).to(self.device)
|
||||
|
||||
current_stream = 'cond_stream'
|
||||
|
||||
noise_pred_cond = self.model(
|
||||
latent_model_input, t=timestep,
|
||||
current_step = current_step,
|
||||
current_stream = current_stream,
|
||||
**arg_c)[0].to(
|
||||
torch.device('cpu') if offload_model else self.device)
|
||||
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
current_stream = 'uncond_stream'
|
||||
|
||||
noise_pred_uncond = self.model(
|
||||
latent_model_input, t=timestep,
|
||||
current_step = current_step,
|
||||
current_stream = current_stream,
|
||||
**arg_null)[0].to(
|
||||
torch.device('cpu') if offload_model else self.device)
|
||||
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
noise_pred = noise_pred_uncond + guide_scale * (
|
||||
noise_pred_cond - noise_pred_uncond)
|
||||
|
||||
latent = latent.to(
|
||||
torch.device('cpu') if offload_model else self.device)
|
||||
|
||||
temp_x0 = sample_scheduler.step(
|
||||
noise_pred.unsqueeze(0),
|
||||
t,
|
||||
latent.unsqueeze(0),
|
||||
return_dict=False,
|
||||
generator=seed_g)[0]
|
||||
latent = temp_x0.squeeze(0)
|
||||
|
||||
x0 = [latent.to(self.device)]
|
||||
del latent_model_input, timestep
|
||||
|
||||
if offload_model:
|
||||
self.model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
if self.rank == 0:
|
||||
videos = self.vae.decode(x0)
|
||||
|
||||
del noise, latent
|
||||
del sample_scheduler
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
|
||||
return videos[0] if self.rank == 0 else None
|
207
wan/taylorseer/generates/wan_t2v_generate.py
Normal file
207
wan/taylorseer/generates/wan_t2v_generate.py
Normal file
@ -0,0 +1,207 @@
|
||||
import gc
|
||||
import logging
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import types
|
||||
from contextlib import contextmanager
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
import torch.distributed as dist
|
||||
from tqdm import tqdm
|
||||
|
||||
from wan.distributed.fsdp import shard_model
|
||||
from wan.modules.model import WanModel
|
||||
from wan.modules.t5 import T5EncoderModel
|
||||
from wan.modules.vae import WanVAE
|
||||
from wan.utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
|
||||
get_sampling_sigmas, retrieve_timesteps)
|
||||
from wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
|
||||
from wan import WanT2V
|
||||
from wan.taylorseer.cache_functions import cache_init, cal_type
|
||||
|
||||
def wan_t2v_generate(self:WanT2V,
|
||||
input_prompt,
|
||||
size=(1280, 720),
|
||||
frame_num=81,
|
||||
shift=5.0,
|
||||
sample_solver='unipc',
|
||||
sampling_steps=50,
|
||||
guide_scale=5.0,
|
||||
n_prompt="",
|
||||
seed=-1,
|
||||
offload_model=True):
|
||||
r"""
|
||||
Generates video frames from text prompt using diffusion process.
|
||||
Args:
|
||||
input_prompt (`str`):
|
||||
Text prompt for content generation
|
||||
size (tupele[`int`], *optional*, defaults to (1280,720)):
|
||||
Controls video resolution, (width,height).
|
||||
frame_num (`int`, *optional*, defaults to 81):
|
||||
How many frames to sample from a video. The number should be 4n+1
|
||||
shift (`float`, *optional*, defaults to 5.0):
|
||||
Noise schedule shift parameter. Affects temporal dynamics
|
||||
sample_solver (`str`, *optional*, defaults to 'unipc'):
|
||||
Solver used to sample the video.
|
||||
sampling_steps (`int`, *optional*, defaults to 40):
|
||||
Number of diffusion sampling steps. Higher values improve quality but slow generation
|
||||
guide_scale (`float`, *optional*, defaults 5.0):
|
||||
Classifier-free guidance scale. Controls prompt adherence vs. creativity
|
||||
n_prompt (`str`, *optional*, defaults to ""):
|
||||
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
|
||||
seed (`int`, *optional*, defaults to -1):
|
||||
Random seed for noise generation. If -1, use random seed.
|
||||
offload_model (`bool`, *optional*, defaults to True):
|
||||
If True, offloads models to CPU during generation to save VRAM
|
||||
Returns:
|
||||
torch.Tensor:
|
||||
Generated video frames tensor. Dimensions: (C, N H, W) where:
|
||||
- C: Color channels (3 for RGB)
|
||||
- N: Number of frames (81)
|
||||
- H: Frame height (from size)
|
||||
- W: Frame width from size)
|
||||
"""
|
||||
# preprocess
|
||||
F = frame_num
|
||||
|
||||
target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
|
||||
size[1] // self.vae_stride[1],
|
||||
size[0] // self.vae_stride[2])
|
||||
|
||||
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
|
||||
(self.patch_size[1] * self.patch_size[2]) *
|
||||
target_shape[1] / self.sp_size) * self.sp_size
|
||||
if n_prompt == "":
|
||||
n_prompt = self.sample_neg_prompt
|
||||
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
||||
seed_g = torch.Generator(device=self.device)
|
||||
seed_g.manual_seed(seed)
|
||||
|
||||
if not self.t5_cpu:
|
||||
self.text_encoder.model.to(self.device)
|
||||
context = self.text_encoder([input_prompt], self.device)
|
||||
context_null = self.text_encoder([n_prompt], self.device)
|
||||
if offload_model:
|
||||
self.text_encoder.model.cpu()
|
||||
else:
|
||||
context = self.text_encoder([input_prompt], torch.device('cpu'))
|
||||
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
|
||||
context = [t.to(self.device) for t in context]
|
||||
context_null = [t.to(self.device) for t in context_null]
|
||||
|
||||
noise = [
|
||||
torch.randn(
|
||||
target_shape[0],
|
||||
target_shape[1],
|
||||
target_shape[2],
|
||||
target_shape[3],
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
generator=seed_g)
|
||||
]
|
||||
|
||||
@contextmanager
|
||||
|
||||
def noop_no_sync():
|
||||
yield
|
||||
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
|
||||
|
||||
# evaluation mode
|
||||
with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
|
||||
|
||||
if sample_solver == 'unipc':
|
||||
|
||||
sample_scheduler = FlowUniPCMultistepScheduler(
|
||||
num_train_timesteps=self.num_train_timesteps,
|
||||
shift=1,
|
||||
use_dynamic_shifting=False)
|
||||
|
||||
sample_scheduler.set_timesteps(
|
||||
sampling_steps, device=self.device, shift=shift)
|
||||
|
||||
timesteps = sample_scheduler.timesteps
|
||||
|
||||
elif sample_solver == 'dpm++':
|
||||
|
||||
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
||||
num_train_timesteps=self.num_train_timesteps,
|
||||
shift=1,
|
||||
use_dynamic_shifting=False)
|
||||
|
||||
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
||||
|
||||
timesteps, _ = retrieve_timesteps(
|
||||
sample_scheduler,
|
||||
device=self.device,
|
||||
sigmas=sampling_sigmas)
|
||||
else:
|
||||
raise NotImplementedError("Unsupported solver.")
|
||||
|
||||
# sample videos
|
||||
latents = noise
|
||||
|
||||
arg_c = {'context': context, 'seq_len': seq_len}
|
||||
arg_null = {'context': context_null, 'seq_len': seq_len}
|
||||
|
||||
self.model.to(self.device)
|
||||
|
||||
for i, t in enumerate(tqdm(timesteps)):
|
||||
torch.compiler.cudagraph_mark_step_begin()
|
||||
current_step = i
|
||||
|
||||
latent_model_input = latents
|
||||
timestep = [t]
|
||||
timestep = torch.stack(timestep)
|
||||
|
||||
current_stream = 'cond_stream'
|
||||
|
||||
noise_pred_cond = self.model(
|
||||
latent_model_input, t=timestep,
|
||||
current_step = current_step,
|
||||
current_stream = current_stream,
|
||||
**arg_c)[0]
|
||||
|
||||
current_stream = 'uncond_stream'
|
||||
|
||||
noise_pred_uncond = self.model(
|
||||
latent_model_input, t=timestep,
|
||||
current_step = current_step,
|
||||
current_stream = current_stream,
|
||||
**arg_null)[0]
|
||||
|
||||
noise_pred = noise_pred_uncond + guide_scale * (
|
||||
noise_pred_cond - noise_pred_uncond)
|
||||
|
||||
temp_x0 = sample_scheduler.step(
|
||||
noise_pred.unsqueeze(0),
|
||||
t,
|
||||
latents[0].unsqueeze(0),
|
||||
return_dict=False,
|
||||
generator=seed_g)[0]
|
||||
latents = [temp_x0.squeeze(0)]
|
||||
|
||||
x0 = latents
|
||||
|
||||
if offload_model:
|
||||
self.model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
if self.rank == 0:
|
||||
videos = self.vae.decode(x0)
|
||||
|
||||
del noise, latents
|
||||
del sample_scheduler
|
||||
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
|
||||
return videos[0] if self.rank == 0 else None
|
47
wan/taylorseer/taylorseer_utils/__init__.py
Normal file
47
wan/taylorseer/taylorseer_utils/__init__.py
Normal file
@ -0,0 +1,47 @@
|
||||
from typing import Dict
|
||||
import torch
|
||||
import math
|
||||
|
||||
def derivative_approximation(cache_dic: Dict, current: Dict, feature: torch.Tensor):
|
||||
"""
|
||||
Compute derivative approximation.
|
||||
|
||||
:param cache_dic: Cache dictionary
|
||||
:param current: Information of the current step
|
||||
"""
|
||||
difference_distance = current['activated_steps'][-1] - current['activated_steps'][-2]
|
||||
#difference_distance = current['activated_times'][-1] - current['activated_times'][-2]
|
||||
|
||||
updated_taylor_factors = {}
|
||||
updated_taylor_factors[0] = feature
|
||||
|
||||
for i in range(cache_dic['max_order']):
|
||||
if (cache_dic['cache'][-1][current['stream']][current['layer']][current['module']].get(i, None) is not None) and (current['step'] > cache_dic['first_enhance'] - 2):
|
||||
updated_taylor_factors[i + 1] = (updated_taylor_factors[i] - cache_dic['cache'][-1][current['stream']][current['layer']][current['module']][i]) / difference_distance
|
||||
else:
|
||||
break
|
||||
|
||||
cache_dic['cache'][-1][current['stream']][current['layer']][current['module']] = updated_taylor_factors
|
||||
|
||||
def taylor_formula(derivative_dict: Dict, distance: int) -> torch.Tensor:
|
||||
"""
|
||||
Compute Taylor expansion error.
|
||||
|
||||
:param derivative_dict: Derivative dictionary
|
||||
:param x: Current step
|
||||
"""
|
||||
output=0
|
||||
for i in range(len(derivative_dict)):
|
||||
output += (1 / math.factorial(i)) * derivative_dict[i] * (distance ** i)
|
||||
|
||||
return output
|
||||
|
||||
def taylor_cache_init(cache_dic: Dict, current: Dict):
|
||||
"""
|
||||
Initialize Taylor cache and allocate storage for different-order derivatives in the Taylor cache.
|
||||
|
||||
:param cache_dic: Cache dictionary
|
||||
:param current: Information of the current step
|
||||
"""
|
||||
if (current['step'] == 0) and (cache_dic['taylor_cache']):
|
||||
cache_dic['cache'][-1][current['stream']][current['layer']][current['module']] = {}
|
@ -38,6 +38,7 @@ class WanT2V:
|
||||
dit_fsdp=False,
|
||||
use_usp=False,
|
||||
t5_cpu=False,
|
||||
use_taylor_cache = False
|
||||
):
|
||||
r"""
|
||||
Initializes the Wan text-to-video generation model components.
|
||||
@ -86,21 +87,49 @@ class WanT2V:
|
||||
logging.info(f"Creating WanModel from {checkpoint_dir}")
|
||||
self.model = WanModel.from_pretrained(checkpoint_dir)
|
||||
self.model.eval().requires_grad_(False)
|
||||
|
||||
|
||||
from wan.taylorseer.forwards import wan_attention_forward, xfusers_wan_forward, wan_forward#, wan_attention_forward_cache_step
|
||||
if use_usp:
|
||||
from xfuser.core.distributed import get_sequence_parallel_world_size
|
||||
from xfuser.core.distributed import \
|
||||
get_sequence_parallel_world_size
|
||||
|
||||
from .distributed.xdit_context_parallel import (
|
||||
usp_attn_forward,
|
||||
usp_dit_forward,
|
||||
)
|
||||
from .distributed.xdit_context_parallel import (usp_attn_forward,
|
||||
usp_dit_forward)
|
||||
|
||||
for block in self.model.blocks:
|
||||
block.self_attn.forward = types.MethodType(
|
||||
usp_attn_forward, block.self_attn)
|
||||
self.model.forward = types.MethodType(usp_dit_forward, self.model)
|
||||
|
||||
if use_taylor_cache:
|
||||
block.forward = types.MethodType(wan_attention_forward, block)
|
||||
#block.cache_step_forward = types.MethodType(wan_attention_forward_cache_step, block)
|
||||
else :
|
||||
self.model.forward = types.MethodType(usp_dit_forward, self.model)
|
||||
if use_taylor_cache:
|
||||
self.model.forward = types.MethodType(xfusers_wan_forward, self.model)
|
||||
self.sp_size = get_sequence_parallel_world_size()
|
||||
else:
|
||||
if use_taylor_cache:
|
||||
for block in self.model.blocks:
|
||||
block.forward = types.MethodType(wan_attention_forward, block)
|
||||
#block.cache_step_forward = types.MethodType(wan_attention_forward_cache_step, block)
|
||||
|
||||
self.model.forward = types.MethodType(wan_forward, self.model)
|
||||
self.sp_size = 1
|
||||
|
||||
#if use_usp:
|
||||
# from xfuser.core.distributed import \
|
||||
# get_sequence_parallel_world_size
|
||||
#
|
||||
# from .distributed.xdit_context_parallel import (usp_attn_forward,
|
||||
# usp_dit_forward)
|
||||
# for block in self.model.blocks:
|
||||
# block.self_attn.forward = types.MethodType(
|
||||
# usp_attn_forward, block.self_attn)
|
||||
# self.model.forward = types.MethodType(usp_dit_forward, self.model)
|
||||
# self.sp_size = get_sequence_parallel_world_size()
|
||||
#else:
|
||||
# self.sp_size = 1
|
||||
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
|
Loading…
Reference in New Issue
Block a user