mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	[feat] enable taylor cache
This commit is contained in:
		
							parent
							
								
									feba2a62c8
								
							
						
					
					
						commit
						6686e7fd18
					
				
							
								
								
									
										422
									
								
								taylor_generator.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										422
									
								
								taylor_generator.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,422 @@
 | 
			
		||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
			
		||||
import argparse
 | 
			
		||||
from datetime import datetime
 | 
			
		||||
import logging
 | 
			
		||||
import os
 | 
			
		||||
import sys
 | 
			
		||||
import warnings
 | 
			
		||||
 | 
			
		||||
warnings.filterwarnings('ignore')
 | 
			
		||||
 | 
			
		||||
import torch, random
 | 
			
		||||
import torch.distributed as dist
 | 
			
		||||
from PIL import Image
 | 
			
		||||
 | 
			
		||||
import wan
 | 
			
		||||
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
 | 
			
		||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
 | 
			
		||||
from wan.utils.utils import cache_video, cache_image, str2bool
 | 
			
		||||
from wan.taylorseer.generates import wan_t2v_generate, wan_i2v_generate
 | 
			
		||||
from wan.taylorseer.forwards import wan_forward, xfusers_wan_forward, wan_attention_forward
 | 
			
		||||
import types
 | 
			
		||||
 | 
			
		||||
EXAMPLE_PROMPT = {
 | 
			
		||||
    "t2v-1.3B": {
 | 
			
		||||
        "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
 | 
			
		||||
    },
 | 
			
		||||
    "t2v-14B": {
 | 
			
		||||
        "prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
 | 
			
		||||
    },
 | 
			
		||||
    "t2i-14B": {
 | 
			
		||||
        "prompt": "一个朴素端庄的美人",
 | 
			
		||||
    },
 | 
			
		||||
    "i2v-14B": {
 | 
			
		||||
        "prompt":
 | 
			
		||||
            "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
 | 
			
		||||
        "image":
 | 
			
		||||
            "examples/i2v_input.JPG",
 | 
			
		||||
    },
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _validate_args(args):
 | 
			
		||||
    # Basic check
 | 
			
		||||
    assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
 | 
			
		||||
    assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
 | 
			
		||||
    assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
 | 
			
		||||
 | 
			
		||||
    # The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
 | 
			
		||||
    if args.sample_steps is None:
 | 
			
		||||
        args.sample_steps = 40 if "i2v" in args.task else 50
 | 
			
		||||
 | 
			
		||||
    if args.sample_shift is None:
 | 
			
		||||
        args.sample_shift = 5.0
 | 
			
		||||
        if "i2v" in args.task and args.size in ["832*480", "480*832"]:
 | 
			
		||||
            args.sample_shift = 3.0
 | 
			
		||||
 | 
			
		||||
    # The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
 | 
			
		||||
    if args.frame_num is None:
 | 
			
		||||
        args.frame_num = 1 if "t2i" in args.task else 81
 | 
			
		||||
 | 
			
		||||
    # T2I frame_num check
 | 
			
		||||
    if "t2i" in args.task:
 | 
			
		||||
        assert args.frame_num == 1, f"Unsupport frame_num {args.frame_num} for task {args.task}"
 | 
			
		||||
 | 
			
		||||
    args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
 | 
			
		||||
        0, sys.maxsize)
 | 
			
		||||
    # Size check
 | 
			
		||||
    assert args.size in SUPPORTED_SIZES[
 | 
			
		||||
        args.
 | 
			
		||||
        task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _parse_args():
 | 
			
		||||
    parser = argparse.ArgumentParser(
 | 
			
		||||
        description="Generate a image or video from a text prompt or image using Wan"
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--task",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="t2v-14B",
 | 
			
		||||
        choices=list(WAN_CONFIGS.keys()),
 | 
			
		||||
        help="The task to run.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--size",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="1280*720",
 | 
			
		||||
        choices=list(SIZE_CONFIGS.keys()),
 | 
			
		||||
        help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--frame_num",
 | 
			
		||||
        type=int,
 | 
			
		||||
        default=None,
 | 
			
		||||
        help="How many frames to sample from a image or video. The number should be 4n+1"
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--ckpt_dir",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default=None,
 | 
			
		||||
        help="The path to the checkpoint directory.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--offload_model",
 | 
			
		||||
        type=str2bool,
 | 
			
		||||
        default=None,
 | 
			
		||||
        help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
 | 
			
		||||
    )
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--ulysses_size",
 | 
			
		||||
        type=int,
 | 
			
		||||
        default=1,
 | 
			
		||||
        help="The size of the ulysses parallelism in DiT.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--ring_size",
 | 
			
		||||
        type=int,
 | 
			
		||||
        default=1,
 | 
			
		||||
        help="The size of the ring attention parallelism in DiT.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--t5_fsdp",
 | 
			
		||||
        action="store_true",
 | 
			
		||||
        default=False,
 | 
			
		||||
        help="Whether to use FSDP for T5.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--t5_cpu",
 | 
			
		||||
        action="store_true",
 | 
			
		||||
        default=False,
 | 
			
		||||
        help="Whether to place T5 model on CPU.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--dit_fsdp",
 | 
			
		||||
        action="store_true",
 | 
			
		||||
        default=False,
 | 
			
		||||
        help="Whether to use FSDP for DiT.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--save_file",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default=None,
 | 
			
		||||
        help="The file to save the generated image or video to.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--prompt",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default=None,
 | 
			
		||||
        help="The prompt to generate the image or video from.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--use_prompt_extend",
 | 
			
		||||
        action="store_true",
 | 
			
		||||
        default=False,
 | 
			
		||||
        help="Whether to use prompt extend.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--prompt_extend_method",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="local_qwen",
 | 
			
		||||
        choices=["dashscope", "local_qwen"],
 | 
			
		||||
        help="The prompt extend method to use.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--prompt_extend_model",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default=None,
 | 
			
		||||
        help="The prompt extend model to use.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--prompt_extend_target_lang",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default="zh",
 | 
			
		||||
        choices=["zh", "en"],
 | 
			
		||||
        help="The target language of prompt extend.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--base_seed",
 | 
			
		||||
        type=int,
 | 
			
		||||
        default=-1,
 | 
			
		||||
        help="The seed to use for generating the image or video.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--image",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default=None,
 | 
			
		||||
        help="The image to generate the video from.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--sample_solver",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default='unipc',
 | 
			
		||||
        choices=['unipc', 'dpm++'],
 | 
			
		||||
        help="The solver used to sample.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--sample_steps", type=int, default=None, help="The sampling steps.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--sample_shift",
 | 
			
		||||
        type=float,
 | 
			
		||||
        default=None,
 | 
			
		||||
        help="Sampling shift factor for flow matching schedulers.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--sample_guide_scale",
 | 
			
		||||
        type=float,
 | 
			
		||||
        default=5.0,
 | 
			
		||||
        help="Classifier free guidance scale.")
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
 | 
			
		||||
    _validate_args(args)
 | 
			
		||||
 | 
			
		||||
    return args
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _init_logging(rank):
 | 
			
		||||
    # logging
 | 
			
		||||
    if rank == 0:
 | 
			
		||||
        # set format
 | 
			
		||||
        logging.basicConfig(
 | 
			
		||||
            level=logging.INFO,
 | 
			
		||||
            format="[%(asctime)s] %(levelname)s: %(message)s",
 | 
			
		||||
            handlers=[logging.StreamHandler(stream=sys.stdout)])
 | 
			
		||||
    else:
 | 
			
		||||
        logging.basicConfig(level=logging.ERROR)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def generate(args):
 | 
			
		||||
    rank = int(os.getenv("RANK", 0))
 | 
			
		||||
    world_size = int(os.getenv("WORLD_SIZE", 1))
 | 
			
		||||
    local_rank = int(os.getenv("LOCAL_RANK", 0))
 | 
			
		||||
    device = local_rank
 | 
			
		||||
    _init_logging(rank)
 | 
			
		||||
 | 
			
		||||
    if args.offload_model is None:
 | 
			
		||||
        args.offload_model = False if world_size > 1 else True
 | 
			
		||||
        logging.info(
 | 
			
		||||
            f"offload_model is not specified, set to {args.offload_model}.")
 | 
			
		||||
    if world_size > 1:
 | 
			
		||||
        torch.cuda.set_device(local_rank)
 | 
			
		||||
        dist.init_process_group(
 | 
			
		||||
            backend="nccl",
 | 
			
		||||
            init_method="env://",
 | 
			
		||||
            rank=rank,
 | 
			
		||||
            world_size=world_size)
 | 
			
		||||
    else:
 | 
			
		||||
        assert not (
 | 
			
		||||
            args.t5_fsdp or args.dit_fsdp
 | 
			
		||||
        ), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
 | 
			
		||||
        assert not (
 | 
			
		||||
            args.ulysses_size > 1 or args.ring_size > 1
 | 
			
		||||
        ), f"context parallel are not supported in non-distributed environments."
 | 
			
		||||
 | 
			
		||||
    if args.ulysses_size > 1 or args.ring_size > 1:
 | 
			
		||||
        assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
 | 
			
		||||
        from xfuser.core.distributed import (initialize_model_parallel,
 | 
			
		||||
                                             init_distributed_environment)
 | 
			
		||||
        init_distributed_environment(
 | 
			
		||||
            rank=dist.get_rank(), world_size=dist.get_world_size())
 | 
			
		||||
 | 
			
		||||
        initialize_model_parallel(
 | 
			
		||||
            sequence_parallel_degree=dist.get_world_size(),
 | 
			
		||||
            ring_degree=args.ring_size,
 | 
			
		||||
            ulysses_degree=args.ulysses_size,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    if args.use_prompt_extend:
 | 
			
		||||
        if args.prompt_extend_method == "dashscope":
 | 
			
		||||
            prompt_expander = DashScopePromptExpander(
 | 
			
		||||
                model_name=args.prompt_extend_model, is_vl="i2v" in args.task)
 | 
			
		||||
        elif args.prompt_extend_method == "local_qwen":
 | 
			
		||||
            prompt_expander = QwenPromptExpander(
 | 
			
		||||
                model_name=args.prompt_extend_model,
 | 
			
		||||
                is_vl="i2v" in args.task,
 | 
			
		||||
                device=rank)
 | 
			
		||||
        else:
 | 
			
		||||
            raise NotImplementedError(
 | 
			
		||||
                f"Unsupport prompt_extend_method: {args.prompt_extend_method}")
 | 
			
		||||
 | 
			
		||||
    cfg = WAN_CONFIGS[args.task]
 | 
			
		||||
    if args.ulysses_size > 1:
 | 
			
		||||
        assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."
 | 
			
		||||
 | 
			
		||||
    logging.info(f"Generation job args: {args}")
 | 
			
		||||
    logging.info(f"Generation model config: {cfg}")
 | 
			
		||||
 | 
			
		||||
    if dist.is_initialized():
 | 
			
		||||
        base_seed = [args.base_seed] if rank == 0 else [None]
 | 
			
		||||
        dist.broadcast_object_list(base_seed, src=0)
 | 
			
		||||
        args.base_seed = base_seed[0]
 | 
			
		||||
 | 
			
		||||
    if "t2v" in args.task or "t2i" in args.task:
 | 
			
		||||
        if args.prompt is None:
 | 
			
		||||
            args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
 | 
			
		||||
        logging.info(f"Input prompt: {args.prompt}")
 | 
			
		||||
        if args.use_prompt_extend:
 | 
			
		||||
            logging.info("Extending prompt ...")
 | 
			
		||||
            if rank == 0:
 | 
			
		||||
                prompt_output = prompt_expander(
 | 
			
		||||
                    args.prompt,
 | 
			
		||||
                    tar_lang=args.prompt_extend_target_lang,
 | 
			
		||||
                    seed=args.base_seed)
 | 
			
		||||
                if prompt_output.status == False:
 | 
			
		||||
                    logging.info(
 | 
			
		||||
                        f"Extending prompt failed: {prompt_output.message}")
 | 
			
		||||
                    logging.info("Falling back to original prompt.")
 | 
			
		||||
                    input_prompt = args.prompt
 | 
			
		||||
                else:
 | 
			
		||||
                    input_prompt = prompt_output.prompt
 | 
			
		||||
                input_prompt = [input_prompt]
 | 
			
		||||
            else:
 | 
			
		||||
                input_prompt = [None]
 | 
			
		||||
            if dist.is_initialized():
 | 
			
		||||
                dist.broadcast_object_list(input_prompt, src=0)
 | 
			
		||||
            args.prompt = input_prompt[0]
 | 
			
		||||
            logging.info(f"Extended prompt: {args.prompt}")
 | 
			
		||||
 | 
			
		||||
        logging.info("Creating WanT2V pipeline.")
 | 
			
		||||
        wan_t2v = wan.WanT2V(
 | 
			
		||||
            config=cfg,
 | 
			
		||||
            checkpoint_dir=args.ckpt_dir,
 | 
			
		||||
            device_id=device,
 | 
			
		||||
            rank=rank,
 | 
			
		||||
            t5_fsdp=args.t5_fsdp,
 | 
			
		||||
            dit_fsdp=args.dit_fsdp,
 | 
			
		||||
            use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
 | 
			
		||||
            t5_cpu=args.t5_cpu, use_taylor_cache= True
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        logging.info(
 | 
			
		||||
            f"Generating {'image' if 't2i' in args.task else 'video'} ...")
 | 
			
		||||
 | 
			
		||||
        # TaylorSeer
 | 
			
		||||
        wan_t2v.generate = types.MethodType(wan_t2v_generate, wan_t2v)
 | 
			
		||||
        #wan_t2v = torch.compile(wan_t2v, mode="max-autotune")
 | 
			
		||||
        video = wan_t2v.generate(
 | 
			
		||||
            args.prompt,
 | 
			
		||||
            size=SIZE_CONFIGS[args.size],
 | 
			
		||||
            frame_num=args.frame_num,
 | 
			
		||||
            shift=args.sample_shift,
 | 
			
		||||
            sample_solver=args.sample_solver,
 | 
			
		||||
            sampling_steps=args.sample_steps,
 | 
			
		||||
            guide_scale=args.sample_guide_scale,
 | 
			
		||||
            seed=args.base_seed,
 | 
			
		||||
            offload_model=args.offload_model)
 | 
			
		||||
 | 
			
		||||
    else:
 | 
			
		||||
        if args.prompt is None:
 | 
			
		||||
            args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
 | 
			
		||||
        if args.image is None:
 | 
			
		||||
            args.image = EXAMPLE_PROMPT[args.task]["image"]
 | 
			
		||||
        logging.info(f"Input prompt: {args.prompt}")
 | 
			
		||||
        logging.info(f"Input image: {args.image}")
 | 
			
		||||
 | 
			
		||||
        img = Image.open(args.image).convert("RGB")
 | 
			
		||||
        if args.use_prompt_extend:
 | 
			
		||||
            logging.info("Extending prompt ...")
 | 
			
		||||
            if rank == 0:
 | 
			
		||||
                prompt_output = prompt_expander(
 | 
			
		||||
                    args.prompt,
 | 
			
		||||
                    tar_lang=args.prompt_extend_target_lang,
 | 
			
		||||
                    image=img,
 | 
			
		||||
                    seed=args.base_seed)
 | 
			
		||||
                if prompt_output.status == False:
 | 
			
		||||
                    logging.info(
 | 
			
		||||
                        f"Extending prompt failed: {prompt_output.message}")
 | 
			
		||||
                    logging.info("Falling back to original prompt.")
 | 
			
		||||
                    input_prompt = args.prompt
 | 
			
		||||
                else:
 | 
			
		||||
                    input_prompt = prompt_output.prompt
 | 
			
		||||
                input_prompt = [input_prompt]
 | 
			
		||||
            else:
 | 
			
		||||
                input_prompt = [None]
 | 
			
		||||
            if dist.is_initialized():
 | 
			
		||||
                dist.broadcast_object_list(input_prompt, src=0)
 | 
			
		||||
            args.prompt = input_prompt[0]
 | 
			
		||||
            logging.info(f"Extended prompt: {args.prompt}")
 | 
			
		||||
 | 
			
		||||
        logging.info("Creating WanI2V pipeline.")
 | 
			
		||||
        wan_i2v = wan.WanI2V(
 | 
			
		||||
            config=cfg,
 | 
			
		||||
            checkpoint_dir=args.ckpt_dir,
 | 
			
		||||
            device_id=device,
 | 
			
		||||
            rank=rank,
 | 
			
		||||
            t5_fsdp=args.t5_fsdp,
 | 
			
		||||
            dit_fsdp=args.dit_fsdp,
 | 
			
		||||
            use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
 | 
			
		||||
            t5_cpu=args.t5_cpu,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        logging.info("Generating video ...")
 | 
			
		||||
 | 
			
		||||
        # TaylorSeer
 | 
			
		||||
        wan_i2v.generate = types.MethodType(wan_i2v_generate, wan_i2v)
 | 
			
		||||
 | 
			
		||||
        video = wan_i2v.generate(
 | 
			
		||||
            args.prompt,
 | 
			
		||||
            img,
 | 
			
		||||
            max_area=MAX_AREA_CONFIGS[args.size],
 | 
			
		||||
            frame_num=args.frame_num,
 | 
			
		||||
            shift=args.sample_shift,
 | 
			
		||||
            sample_solver=args.sample_solver,
 | 
			
		||||
            sampling_steps=args.sample_steps,
 | 
			
		||||
            guide_scale=args.sample_guide_scale,
 | 
			
		||||
            seed=args.base_seed,
 | 
			
		||||
            offload_model=args.offload_model)
 | 
			
		||||
 | 
			
		||||
    if rank == 0:
 | 
			
		||||
        if args.save_file is None:
 | 
			
		||||
            formatted_time = datetime.now().strftime("%Y%m%d_%H%M%S")
 | 
			
		||||
            formatted_prompt = args.prompt.replace(" ", "_").replace("/",
 | 
			
		||||
                                                                     "_")[:50]
 | 
			
		||||
            suffix = '.png' if "t2i" in args.task else '.mp4'
 | 
			
		||||
            args.save_file = f"{args.task}_{args.size.replace('*','x') if sys.platform=='win32' else args.size}_{args.ulysses_size}_{args.ring_size}_{formatted_prompt}_{formatted_time}" + suffix
 | 
			
		||||
 | 
			
		||||
        if "t2i" in args.task:
 | 
			
		||||
            logging.info(f"Saving generated image to {args.save_file}")
 | 
			
		||||
            cache_image(
 | 
			
		||||
                tensor=video.squeeze(1)[None],
 | 
			
		||||
                save_file=args.save_file,
 | 
			
		||||
                nrow=1,
 | 
			
		||||
                normalize=True,
 | 
			
		||||
                value_range=(-1, 1))
 | 
			
		||||
        else:
 | 
			
		||||
            logging.info(f"Saving generated video to {args.save_file}")
 | 
			
		||||
            cache_video(
 | 
			
		||||
                tensor=video[None],
 | 
			
		||||
                save_file=args.save_file,
 | 
			
		||||
                fps=cfg.sample_fps,
 | 
			
		||||
                nrow=1,
 | 
			
		||||
                normalize=True,
 | 
			
		||||
                value_range=(-1, 1))
 | 
			
		||||
    logging.info("Finished.")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    args = _parse_args()
 | 
			
		||||
    generate(args)
 | 
			
		||||
							
								
								
									
										192
									
								
								wan/distributed/xdit_context_parallel_taylor.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										192
									
								
								wan/distributed/xdit_context_parallel_taylor.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,192 @@
 | 
			
		||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
			
		||||
import torch
 | 
			
		||||
import torch.cuda.amp as amp
 | 
			
		||||
from xfuser.core.distributed import (get_sequence_parallel_rank,
 | 
			
		||||
                                     get_sequence_parallel_world_size,
 | 
			
		||||
                                     get_sp_group)
 | 
			
		||||
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
 | 
			
		||||
 | 
			
		||||
from ..modules.model import sinusoidal_embedding_1d
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def pad_freqs(original_tensor, target_len):
 | 
			
		||||
    seq_len, s1, s2 = original_tensor.shape
 | 
			
		||||
    pad_size = target_len - seq_len
 | 
			
		||||
    padding_tensor = torch.ones(
 | 
			
		||||
        pad_size,
 | 
			
		||||
        s1,
 | 
			
		||||
        s2,
 | 
			
		||||
        dtype=original_tensor.dtype,
 | 
			
		||||
        device=original_tensor.device)
 | 
			
		||||
    padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
 | 
			
		||||
    return padded_tensor
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@amp.autocast(enabled=False)
 | 
			
		||||
def rope_apply(x, grid_sizes, freqs):
 | 
			
		||||
    """
 | 
			
		||||
    x:          [B, L, N, C].
 | 
			
		||||
    grid_sizes: [B, 3].
 | 
			
		||||
    freqs:      [M, C // 2].
 | 
			
		||||
    """
 | 
			
		||||
    s, n, c = x.size(1), x.size(2), x.size(3) // 2
 | 
			
		||||
    # split freqs
 | 
			
		||||
    freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
 | 
			
		||||
 | 
			
		||||
    # loop over samples
 | 
			
		||||
    output = []
 | 
			
		||||
    for i, (f, h, w) in enumerate(grid_sizes.tolist()):
 | 
			
		||||
        seq_len = f * h * w
 | 
			
		||||
 | 
			
		||||
        # precompute multipliers
 | 
			
		||||
        x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape(
 | 
			
		||||
            s, n, -1, 2))
 | 
			
		||||
        freqs_i = torch.cat([
 | 
			
		||||
            freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
 | 
			
		||||
            freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
 | 
			
		||||
            freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
 | 
			
		||||
        ],
 | 
			
		||||
                            dim=-1).reshape(seq_len, 1, -1)
 | 
			
		||||
 | 
			
		||||
        # apply rotary embedding
 | 
			
		||||
        sp_size = get_sequence_parallel_world_size()
 | 
			
		||||
        sp_rank = get_sequence_parallel_rank()
 | 
			
		||||
        freqs_i = pad_freqs(freqs_i, s * sp_size)
 | 
			
		||||
        s_per_rank = s
 | 
			
		||||
        freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) *
 | 
			
		||||
                                                       s_per_rank), :, :]
 | 
			
		||||
        x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2)
 | 
			
		||||
        x_i = torch.cat([x_i, x[i, s:]])
 | 
			
		||||
 | 
			
		||||
        # append to collection
 | 
			
		||||
        output.append(x_i)
 | 
			
		||||
    return torch.stack(output).float()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def usp_dit_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    x,
 | 
			
		||||
    t,
 | 
			
		||||
    context,
 | 
			
		||||
    seq_len,
 | 
			
		||||
    clip_fea=None,
 | 
			
		||||
    y=None,
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
    x:              A list of videos each with shape [C, T, H, W].
 | 
			
		||||
    t:              [B].
 | 
			
		||||
    context:        A list of text embeddings each with shape [L, C].
 | 
			
		||||
    """
 | 
			
		||||
    if self.model_type == 'i2v':
 | 
			
		||||
        assert clip_fea is not None and y is not None
 | 
			
		||||
    # params
 | 
			
		||||
    device = self.patch_embedding.weight.device
 | 
			
		||||
    if self.freqs.device != device:
 | 
			
		||||
        self.freqs = self.freqs.to(device)
 | 
			
		||||
 | 
			
		||||
    if y is not None:
 | 
			
		||||
        x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
 | 
			
		||||
 | 
			
		||||
    # embeddings
 | 
			
		||||
    x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
 | 
			
		||||
    grid_sizes = torch.stack(
 | 
			
		||||
        [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
 | 
			
		||||
    x = [u.flatten(2).transpose(1, 2) for u in x]
 | 
			
		||||
    seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
 | 
			
		||||
    assert seq_lens.max() <= seq_len
 | 
			
		||||
    x = torch.cat([
 | 
			
		||||
        torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
 | 
			
		||||
        for u in x
 | 
			
		||||
    ])
 | 
			
		||||
 | 
			
		||||
    # time embeddings
 | 
			
		||||
    with amp.autocast(dtype=torch.float32):
 | 
			
		||||
        e = self.time_embedding(
 | 
			
		||||
            sinusoidal_embedding_1d(self.freq_dim, t).float())
 | 
			
		||||
        e0 = self.time_projection(e).unflatten(1, (6, self.dim))
 | 
			
		||||
        assert e.dtype == torch.float32 and e0.dtype == torch.float32
 | 
			
		||||
 | 
			
		||||
    # context
 | 
			
		||||
    context_lens = None
 | 
			
		||||
    context = self.text_embedding(
 | 
			
		||||
        torch.stack([
 | 
			
		||||
            torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
 | 
			
		||||
            for u in context
 | 
			
		||||
        ]))
 | 
			
		||||
 | 
			
		||||
    if clip_fea is not None:
 | 
			
		||||
        context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
 | 
			
		||||
        context = torch.concat([context_clip, context], dim=1)
 | 
			
		||||
 | 
			
		||||
    # arguments
 | 
			
		||||
    kwargs = dict(
 | 
			
		||||
        e=e0,
 | 
			
		||||
        seq_lens=seq_lens,
 | 
			
		||||
        grid_sizes=grid_sizes,
 | 
			
		||||
        freqs=self.freqs,
 | 
			
		||||
        context=context,
 | 
			
		||||
        context_lens=context_lens)
 | 
			
		||||
 | 
			
		||||
    # Context Parallel
 | 
			
		||||
    x = torch.chunk(
 | 
			
		||||
        x, get_sequence_parallel_world_size(),
 | 
			
		||||
        dim=1)[get_sequence_parallel_rank()]
 | 
			
		||||
 | 
			
		||||
    for block in self.blocks:
 | 
			
		||||
        x = block(x, **kwargs)
 | 
			
		||||
 | 
			
		||||
    # head
 | 
			
		||||
    x = self.head(x, e)
 | 
			
		||||
 | 
			
		||||
    # Context Parallel
 | 
			
		||||
    x = get_sp_group().all_gather(x, dim=1)
 | 
			
		||||
 | 
			
		||||
    # unpatchify
 | 
			
		||||
    x = self.unpatchify(x, grid_sizes)
 | 
			
		||||
    return [u.float() for u in x]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def usp_attn_forward(self,
 | 
			
		||||
                     x,
 | 
			
		||||
                     seq_lens,
 | 
			
		||||
                     grid_sizes,
 | 
			
		||||
                     freqs,
 | 
			
		||||
                     dtype=torch.bfloat16):
 | 
			
		||||
    b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
 | 
			
		||||
    half_dtypes = (torch.float16, torch.bfloat16)
 | 
			
		||||
 | 
			
		||||
    def half(x):
 | 
			
		||||
        return x if x.dtype in half_dtypes else x.to(dtype)
 | 
			
		||||
 | 
			
		||||
    # query, key, value function
 | 
			
		||||
    def qkv_fn(x):
 | 
			
		||||
        q = self.norm_q(self.q(x)).view(b, s, n, d)
 | 
			
		||||
        k = self.norm_k(self.k(x)).view(b, s, n, d)
 | 
			
		||||
        v = self.v(x).view(b, s, n, d)
 | 
			
		||||
        return q, k, v
 | 
			
		||||
 | 
			
		||||
    q, k, v = qkv_fn(x)
 | 
			
		||||
    q = rope_apply(q, grid_sizes, freqs)
 | 
			
		||||
    k = rope_apply(k, grid_sizes, freqs)
 | 
			
		||||
 | 
			
		||||
    # TODO: We should use unpaded q,k,v for attention.
 | 
			
		||||
    # k_lens = seq_lens // get_sequence_parallel_world_size()
 | 
			
		||||
    # if k_lens is not None:
 | 
			
		||||
    #     q = torch.cat([u[:l] for u, l in zip(q, k_lens)]).unsqueeze(0)
 | 
			
		||||
    #     k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0)
 | 
			
		||||
    #     v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0)
 | 
			
		||||
 | 
			
		||||
    x = xFuserLongContextAttention()(
 | 
			
		||||
        None,
 | 
			
		||||
        query=half(q),
 | 
			
		||||
        key=half(k),
 | 
			
		||||
        value=half(v),
 | 
			
		||||
        window_size=self.window_size)
 | 
			
		||||
 | 
			
		||||
    # TODO: padding after attention.
 | 
			
		||||
    # x = torch.cat([x, x.new_zeros(b, s - x.size(1), n, d)], dim=1)
 | 
			
		||||
 | 
			
		||||
    # output
 | 
			
		||||
    x = x.flatten(2)
 | 
			
		||||
    x = self.o(x)
 | 
			
		||||
    return x
 | 
			
		||||
@ -8,6 +8,7 @@ from diffusers.configuration_utils import ConfigMixin, register_to_config
 | 
			
		||||
from diffusers.models.modeling_utils import ModelMixin
 | 
			
		||||
 | 
			
		||||
from .attention import flash_attention
 | 
			
		||||
from wan.taylorseer.cache_functions import cache_init
 | 
			
		||||
 | 
			
		||||
__all__ = ['WanModel']
 | 
			
		||||
 | 
			
		||||
@ -506,8 +507,11 @@ class WanModel(ModelMixin, ConfigMixin):
 | 
			
		||||
            self.img_emb = MLPProj(1280, dim, flf_pos_emb=model_type == 'flf2v')
 | 
			
		||||
 | 
			
		||||
        # initialize weights
 | 
			
		||||
        self.init_weights()
 | 
			
		||||
        self.init_weights()        
 | 
			
		||||
        self.cache_init()
 | 
			
		||||
 | 
			
		||||
    def cache_init(self):
 | 
			
		||||
        self.cache_dic, self.current = cache_init(self)
 | 
			
		||||
    def forward(
 | 
			
		||||
        self,
 | 
			
		||||
        x,
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										3
									
								
								wan/taylorseer/cache_functions/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										3
									
								
								wan/taylorseer/cache_functions/__init__.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,3 @@
 | 
			
		||||
from .cache_init import cache_init
 | 
			
		||||
from .cal_type import cal_type
 | 
			
		||||
from .force_scheduler import force_scheduler
 | 
			
		||||
							
								
								
									
										67
									
								
								wan/taylorseer/cache_functions/cache_init.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										67
									
								
								wan/taylorseer/cache_functions/cache_init.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,67 @@
 | 
			
		||||
#from wan.modules import WanModel
 | 
			
		||||
 | 
			
		||||
def cache_init(self, num_steps= 50):   
 | 
			
		||||
    '''
 | 
			
		||||
    Initialization for cache.
 | 
			
		||||
    '''
 | 
			
		||||
    cache_dic = {}
 | 
			
		||||
    cache = {}
 | 
			
		||||
    cache[-1]={}
 | 
			
		||||
    cache[-1]['cond_stream']={}
 | 
			
		||||
    cache[-1]['uncond_stream']={}
 | 
			
		||||
    cache_dic['cache_counter'] = 0
 | 
			
		||||
 | 
			
		||||
    for j in range(self.num_layers):
 | 
			
		||||
        cache[-1]['cond_stream'][j] = {}
 | 
			
		||||
        cache[-1]['uncond_stream'][j] = {}
 | 
			
		||||
 | 
			
		||||
    cache_dic['taylor_cache'] = False
 | 
			
		||||
    cache_dic['Delta-DiT'] = False
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    cache_dic['cache_type'] = 'random'
 | 
			
		||||
    cache_dic['fresh_ratio_schedule'] = 'ToCa' 
 | 
			
		||||
    cache_dic['fresh_ratio'] = 0.0
 | 
			
		||||
    cache_dic['fresh_threshold'] = 1
 | 
			
		||||
    cache_dic['force_fresh'] = 'global'
 | 
			
		||||
 | 
			
		||||
    mode = 'Taylor'
 | 
			
		||||
 | 
			
		||||
    if mode == 'original':
 | 
			
		||||
        cache_dic['cache'] = cache
 | 
			
		||||
        cache_dic['force_fresh'] = 'global'
 | 
			
		||||
        cache_dic['max_order'] = 0
 | 
			
		||||
        cache_dic['first_enhance'] = 3
 | 
			
		||||
        
 | 
			
		||||
    elif mode == 'ToCa':
 | 
			
		||||
        cache_dic['cache_type'] = 'attention'
 | 
			
		||||
        cache_dic['cache'] = cache
 | 
			
		||||
        cache_dic['fresh_ratio_schedule'] = 'ToCa' 
 | 
			
		||||
        cache_dic['fresh_ratio'] = 0.1
 | 
			
		||||
        cache_dic['fresh_threshold'] = 5
 | 
			
		||||
        cache_dic['force_fresh'] = 'global' 
 | 
			
		||||
        cache_dic['soft_fresh_weight'] = 0.0
 | 
			
		||||
        cache_dic['max_order'] = 0
 | 
			
		||||
        cache_dic['first_enhance'] = 3
 | 
			
		||||
    
 | 
			
		||||
    elif mode == 'Taylor':
 | 
			
		||||
        cache_dic['cache'] = cache
 | 
			
		||||
        cache_dic['fresh_threshold'] = 5
 | 
			
		||||
        cache_dic['taylor_cache'] = True
 | 
			
		||||
        cache_dic['max_order'] = 1
 | 
			
		||||
        cache_dic['first_enhance'] = 1
 | 
			
		||||
 | 
			
		||||
    elif mode == 'Delta':
 | 
			
		||||
        cache_dic['cache'] = cache
 | 
			
		||||
        cache_dic['fresh_ratio'] = 0.0
 | 
			
		||||
        cache_dic['fresh_threshold'] = 3
 | 
			
		||||
        cache_dic['Delta-DiT'] = True
 | 
			
		||||
        cache_dic['max_order'] = 0
 | 
			
		||||
        cache_dic['first_enhance'] = 1
 | 
			
		||||
 | 
			
		||||
    current = {}
 | 
			
		||||
    current['activated_steps'] = [0]
 | 
			
		||||
    current['step'] = 0
 | 
			
		||||
    current['num_steps'] = num_steps
 | 
			
		||||
 | 
			
		||||
    return cache_dic, current
 | 
			
		||||
							
								
								
									
										42
									
								
								wan/taylorseer/cache_functions/cal_type.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										42
									
								
								wan/taylorseer/cache_functions/cal_type.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,42 @@
 | 
			
		||||
from .force_scheduler import force_scheduler
 | 
			
		||||
 | 
			
		||||
def cal_type(cache_dic, current):
 | 
			
		||||
    '''
 | 
			
		||||
    Determine calculation type for this step
 | 
			
		||||
    '''
 | 
			
		||||
    if (cache_dic['fresh_ratio'] == 0.0) and (not cache_dic['taylor_cache']):
 | 
			
		||||
        # FORA:Uniform
 | 
			
		||||
        first_step = (current['step'] == 0)
 | 
			
		||||
    else:
 | 
			
		||||
        # ToCa: First enhanced
 | 
			
		||||
        first_step = (current['step'] < cache_dic['first_enhance'])
 | 
			
		||||
        #first_step = (current['step'] <= 3)
 | 
			
		||||
 | 
			
		||||
    force_fresh = cache_dic['force_fresh']
 | 
			
		||||
    if not first_step:
 | 
			
		||||
        fresh_interval = cache_dic['cal_threshold']
 | 
			
		||||
    else:
 | 
			
		||||
        fresh_interval = cache_dic['fresh_threshold']
 | 
			
		||||
 | 
			
		||||
    if (first_step) or (cache_dic['cache_counter'] == fresh_interval - 1 ):
 | 
			
		||||
        current['type'] = 'full'
 | 
			
		||||
        cache_dic['cache_counter'] = 0
 | 
			
		||||
        current['activated_steps'].append(current['step'])
 | 
			
		||||
        #current['activated_times'].append(current['t'])
 | 
			
		||||
        force_scheduler(cache_dic, current)
 | 
			
		||||
    
 | 
			
		||||
    elif (cache_dic['taylor_cache']):
 | 
			
		||||
        cache_dic['cache_counter'] += 1
 | 
			
		||||
        current['type'] = 'Taylor'
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
    elif (cache_dic['cache_counter'] % 2 == 1): # 0: ToCa-Aggresive-ToCa, 1: Aggresive-ToCa-Aggresive
 | 
			
		||||
        cache_dic['cache_counter'] += 1
 | 
			
		||||
        current['type'] = 'ToCa'
 | 
			
		||||
    # 'cache_noise' 'ToCa' 'FORA'
 | 
			
		||||
    elif cache_dic['Delta-DiT']:
 | 
			
		||||
        cache_dic['cache_counter'] += 1
 | 
			
		||||
        current['type'] = 'Delta-Cache'
 | 
			
		||||
    else:
 | 
			
		||||
        cache_dic['cache_counter'] += 1
 | 
			
		||||
        current['type'] = 'ToCa'
 | 
			
		||||
							
								
								
									
										16
									
								
								wan/taylorseer/cache_functions/force_scheduler.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										16
									
								
								wan/taylorseer/cache_functions/force_scheduler.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,16 @@
 | 
			
		||||
import torch
 | 
			
		||||
def force_scheduler(cache_dic, current):
 | 
			
		||||
    if cache_dic['fresh_ratio'] == 0:
 | 
			
		||||
        # FORA
 | 
			
		||||
        linear_step_weight = 0.0
 | 
			
		||||
    else: 
 | 
			
		||||
        # TokenCache
 | 
			
		||||
        linear_step_weight = 0.0
 | 
			
		||||
    step_factor = torch.tensor(1 - linear_step_weight + 2 * linear_step_weight * current['step'] / current['num_steps'])
 | 
			
		||||
    threshold = torch.round(cache_dic['fresh_threshold'] / step_factor)
 | 
			
		||||
 | 
			
		||||
    # no force constrain for sensitive steps, cause the performance is good enough.
 | 
			
		||||
    # you may have a try.
 | 
			
		||||
    
 | 
			
		||||
    cache_dic['cal_threshold'] = threshold
 | 
			
		||||
    #return threshold
 | 
			
		||||
							
								
								
									
										5
									
								
								wan/taylorseer/forwards/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								wan/taylorseer/forwards/__init__.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,5 @@
 | 
			
		||||
from .wan_forward import wan_forward
 | 
			
		||||
from .xfusers_wan_forward import xfusers_wan_forward
 | 
			
		||||
from .wan_attention_forward import wan_attention_forward
 | 
			
		||||
from .wan_attention_forward_cache_step import wan_attention_forward_cache_step
 | 
			
		||||
from .wan_cache_forward import wan_cache_forward
 | 
			
		||||
							
								
								
									
										23
									
								
								wan/taylorseer/forwards/wan_attention_cache_forward.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										23
									
								
								wan/taylorseer/forwards/wan_attention_cache_forward.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,23 @@
 | 
			
		||||
import torch
 | 
			
		||||
import torch.cuda.amp as amp
 | 
			
		||||
from typing import Dict
 | 
			
		||||
from wan.taylorseer.taylorseer_utils import taylor_cache_init, derivative_approximation, taylor_formula
 | 
			
		||||
 | 
			
		||||
@torch.compile
 | 
			
		||||
def wan_attention_cache_forward(sa_dict:Dict, ca_dict:Dict, ffn_dict:Dict, e:tuple, x:torch.Tensor, distance:int):
 | 
			
		||||
 | 
			
		||||
    seer_sa  = taylor_formula(derivative_dict=sa_dict,  distance=distance)
 | 
			
		||||
    seer_ca  = taylor_formula(derivative_dict=ca_dict,  distance=distance)
 | 
			
		||||
    seer_ffn = taylor_formula(derivative_dict=ffn_dict, distance=distance)
 | 
			
		||||
 | 
			
		||||
    x = cache_add(x, seer_sa, seer_ca, seer_ffn, e)
 | 
			
		||||
    
 | 
			
		||||
    return x
 | 
			
		||||
 | 
			
		||||
def cache_add(x, sa, ca, ffn, e):
 | 
			
		||||
    with amp.autocast(dtype=torch.float32):
 | 
			
		||||
        x = x + sa * e[2]
 | 
			
		||||
    x = x + ca
 | 
			
		||||
    with amp.autocast(dtype=torch.float32):
 | 
			
		||||
        x = x + ffn * e[5]
 | 
			
		||||
    return x
 | 
			
		||||
							
								
								
									
										82
									
								
								wan/taylorseer/forwards/wan_attention_forward.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										82
									
								
								wan/taylorseer/forwards/wan_attention_forward.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,82 @@
 | 
			
		||||
import math
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import torch.cuda.amp as amp
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
 | 
			
		||||
from diffusers.models.modeling_utils import ModelMixin
 | 
			
		||||
from wan.modules import WanModel
 | 
			
		||||
from wan.modules.model import sinusoidal_embedding_1d, WanAttentionBlock
 | 
			
		||||
from wan.modules.attention import flash_attention
 | 
			
		||||
 | 
			
		||||
from wan.taylorseer.taylorseer_utils import taylor_cache_init, derivative_approximation, taylor_formula
 | 
			
		||||
from .wan_attention_cache_forward import wan_attention_cache_forward
 | 
			
		||||
 | 
			
		||||
def wan_attention_forward(
 | 
			
		||||
    self:WanAttentionBlock,
 | 
			
		||||
    x,
 | 
			
		||||
    e,
 | 
			
		||||
    seq_lens,
 | 
			
		||||
    grid_sizes,
 | 
			
		||||
    freqs,
 | 
			
		||||
    context,
 | 
			
		||||
    context_lens,
 | 
			
		||||
    cache_dic,
 | 
			
		||||
    current
 | 
			
		||||
):
 | 
			
		||||
    r"""
 | 
			
		||||
    Args:
 | 
			
		||||
        x(Tensor): Shape [B, L, C]
 | 
			
		||||
        e(Tensor): Shape [B, 6, C]
 | 
			
		||||
        seq_lens(Tensor): Shape [B], length of each sequence in batch
 | 
			
		||||
        grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
 | 
			
		||||
        freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
 | 
			
		||||
    """
 | 
			
		||||
    assert e.dtype == torch.float32
 | 
			
		||||
    with amp.autocast(dtype=torch.float32):
 | 
			
		||||
        e = (self.modulation + e).chunk(6, dim=1)
 | 
			
		||||
    assert e[0].dtype == torch.float32
 | 
			
		||||
 | 
			
		||||
    if current['type'] == 'full':
 | 
			
		||||
        
 | 
			
		||||
        # self-attention
 | 
			
		||||
        current['module'] = 'self-attention'
 | 
			
		||||
        taylor_cache_init(cache_dic=cache_dic, current=current)
 | 
			
		||||
        y = self.self_attn(
 | 
			
		||||
            self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes,
 | 
			
		||||
            freqs)
 | 
			
		||||
        derivative_approximation(cache_dic=cache_dic, current=current, feature=y)
 | 
			
		||||
        with amp.autocast(dtype=torch.float32):
 | 
			
		||||
            x = x + y * e[2]
 | 
			
		||||
 | 
			
		||||
        # cross-attention 
 | 
			
		||||
        current['module'] = 'cross-attention'
 | 
			
		||||
        taylor_cache_init(cache_dic=cache_dic, current=current)
 | 
			
		||||
        y = self.cross_attn(self.norm3(x), context, context_lens)
 | 
			
		||||
        derivative_approximation(cache_dic=cache_dic, current=current, feature=y)
 | 
			
		||||
        x = x + y
 | 
			
		||||
 | 
			
		||||
        # ffn
 | 
			
		||||
        current['module'] = 'ffn'
 | 
			
		||||
        taylor_cache_init(cache_dic=cache_dic, current=current)
 | 
			
		||||
        y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3])
 | 
			
		||||
        derivative_approximation(cache_dic=cache_dic, current=current, feature=y)
 | 
			
		||||
        with amp.autocast(dtype=torch.float32):
 | 
			
		||||
            x = x + y * e[5]
 | 
			
		||||
 | 
			
		||||
    elif current['type'] == 'Taylor':
 | 
			
		||||
        
 | 
			
		||||
        #x = wan_attention_cache_forward(cache_dic, current, e, x)
 | 
			
		||||
        x = wan_attention_cache_forward(
 | 
			
		||||
            sa_dict=cache_dic['cache'][-1][current['stream']][current['layer']]['self-attention'],
 | 
			
		||||
            ca_dict=cache_dic['cache'][-1][current['stream']][current['layer']]['cross-attention'],
 | 
			
		||||
            ffn_dict=cache_dic['cache'][-1][current['stream']][current['layer']]['ffn'],
 | 
			
		||||
            e=e,
 | 
			
		||||
            x=x,
 | 
			
		||||
            distance= current['step'] - current['activated_steps'][-1]
 | 
			
		||||
        )
 | 
			
		||||
    
 | 
			
		||||
    else:
 | 
			
		||||
        raise ValueError(f"Not supported type: {current['type']}")
 | 
			
		||||
 | 
			
		||||
    return x
 | 
			
		||||
							
								
								
									
										37
									
								
								wan/taylorseer/forwards/wan_attention_forward_cache_step.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										37
									
								
								wan/taylorseer/forwards/wan_attention_forward_cache_step.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,37 @@
 | 
			
		||||
import torch
 | 
			
		||||
import torch.cuda.amp as amp
 | 
			
		||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
 | 
			
		||||
from wan.modules.model import WanAttentionBlock
 | 
			
		||||
 | 
			
		||||
from .wan_attention_cache_forward import wan_attention_cache_forward
 | 
			
		||||
 | 
			
		||||
def wan_attention_forward_cache_step(
 | 
			
		||||
    self:WanAttentionBlock,
 | 
			
		||||
    x,
 | 
			
		||||
    e,
 | 
			
		||||
    layer_cache_dict,
 | 
			
		||||
    distance,
 | 
			
		||||
):
 | 
			
		||||
    r"""
 | 
			
		||||
    Args:
 | 
			
		||||
        x(Tensor): Shape [B, L, C]
 | 
			
		||||
        e(Tensor): Shape [B, 6, C]
 | 
			
		||||
        seq_lens(Tensor): Shape [B], length of each sequence in batch
 | 
			
		||||
        grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
 | 
			
		||||
        freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
 | 
			
		||||
    """
 | 
			
		||||
    assert e.dtype == torch.float32
 | 
			
		||||
    with amp.autocast(dtype=torch.float32):
 | 
			
		||||
        e = (self.modulation + e).chunk(6, dim=1)
 | 
			
		||||
    assert e[0].dtype == torch.float32
 | 
			
		||||
 | 
			
		||||
    x = wan_attention_cache_forward(
 | 
			
		||||
        sa_dict=  layer_cache_dict['self-attention'],
 | 
			
		||||
        ca_dict=  layer_cache_dict['cross-attention'],
 | 
			
		||||
        ffn_dict= layer_cache_dict['ffn'],
 | 
			
		||||
        e=e,
 | 
			
		||||
        x=x,
 | 
			
		||||
        distance= distance
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    return x
 | 
			
		||||
							
								
								
									
										18
									
								
								wan/taylorseer/forwards/wan_cache_forward.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										18
									
								
								wan/taylorseer/forwards/wan_cache_forward.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,18 @@
 | 
			
		||||
import torch
 | 
			
		||||
import torch.cuda.amp as amp
 | 
			
		||||
from wan.modules import WanModel
 | 
			
		||||
 | 
			
		||||
@torch.compile
 | 
			
		||||
def wan_cache_forward(self:WanModel,
 | 
			
		||||
                      e:torch.Tensor,
 | 
			
		||||
                      cond_cache_dict:dict,
 | 
			
		||||
                      distance:int,
 | 
			
		||||
                      x:torch.Tensor) -> torch.Tensor:
 | 
			
		||||
 | 
			
		||||
    for i, block in enumerate(self.blocks):
 | 
			
		||||
        x = block.cache_step_forward(x,
 | 
			
		||||
                                     e=e,
 | 
			
		||||
                                     layer_cache_dict=cond_cache_dict[i], 
 | 
			
		||||
                                     distance=distance)
 | 
			
		||||
    
 | 
			
		||||
    return x
 | 
			
		||||
							
								
								
									
										114
									
								
								wan/taylorseer/forwards/wan_forward.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										114
									
								
								wan/taylorseer/forwards/wan_forward.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,114 @@
 | 
			
		||||
import math
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import torch.cuda.amp as amp
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
 | 
			
		||||
from diffusers.models.modeling_utils import ModelMixin
 | 
			
		||||
from wan.modules import WanModel
 | 
			
		||||
from wan.modules.model import sinusoidal_embedding_1d
 | 
			
		||||
from wan.taylorseer.cache_functions import cal_type
 | 
			
		||||
from wan.taylorseer.taylorseer_utils import taylor_formula
 | 
			
		||||
from .wan_cache_forward import wan_cache_forward
 | 
			
		||||
 | 
			
		||||
def wan_forward(
 | 
			
		||||
    self:WanModel,
 | 
			
		||||
    x,
 | 
			
		||||
    t,
 | 
			
		||||
    context,
 | 
			
		||||
    seq_len,
 | 
			
		||||
    current_step,
 | 
			
		||||
    current_stream,
 | 
			
		||||
    clip_fea=None,
 | 
			
		||||
    y=None,
 | 
			
		||||
    ):
 | 
			
		||||
    r"""
 | 
			
		||||
    Forward pass through the diffusion model
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        x (List[Tensor]):
 | 
			
		||||
            List of input video tensors, each with shape [C_in, F, H, W]
 | 
			
		||||
        t (Tensor):
 | 
			
		||||
            Diffusion timesteps tensor of shape [B]
 | 
			
		||||
        context (List[Tensor]):
 | 
			
		||||
            List of text embeddings each with shape [L, C]
 | 
			
		||||
        seq_len (`int`):
 | 
			
		||||
            Maximum sequence length for positional encoding
 | 
			
		||||
        clip_fea (Tensor, *optional*):
 | 
			
		||||
            CLIP image features for image-to-video mode
 | 
			
		||||
        y (List[Tensor], *optional*):
 | 
			
		||||
            Conditional video inputs for image-to-video mode, same shape as x
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        List[Tensor]:
 | 
			
		||||
            List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    self.current['step'] = current_step
 | 
			
		||||
    self.current['stream'] = current_stream
 | 
			
		||||
    if current_stream == 'cond_stream':
 | 
			
		||||
        cal_type(self.cache_dic, self.current)
 | 
			
		||||
 | 
			
		||||
    if self.model_type == 'i2v':
 | 
			
		||||
        assert clip_fea is not None and y is not None
 | 
			
		||||
    # params
 | 
			
		||||
    device = self.patch_embedding.weight.device
 | 
			
		||||
    if self.freqs.device != device:
 | 
			
		||||
        self.freqs = self.freqs.to(device)
 | 
			
		||||
 | 
			
		||||
    if y is not None:
 | 
			
		||||
        x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
 | 
			
		||||
 | 
			
		||||
    # embeddings
 | 
			
		||||
    x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
 | 
			
		||||
    grid_sizes = torch.stack(
 | 
			
		||||
        [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
 | 
			
		||||
    x = [u.flatten(2).transpose(1, 2) for u in x]
 | 
			
		||||
    seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
 | 
			
		||||
    assert seq_lens.max() <= seq_len
 | 
			
		||||
    x = torch.cat([
 | 
			
		||||
        torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
 | 
			
		||||
                  dim=1) for u in x
 | 
			
		||||
    ])
 | 
			
		||||
 | 
			
		||||
    # time embeddings
 | 
			
		||||
    with amp.autocast(dtype=torch.float32):
 | 
			
		||||
        e = self.time_embedding(
 | 
			
		||||
            sinusoidal_embedding_1d(self.freq_dim, t).float())
 | 
			
		||||
        e0 = self.time_projection(e).unflatten(1, (6, self.dim))
 | 
			
		||||
        assert e.dtype == torch.float32 and e0.dtype == torch.float32
 | 
			
		||||
 | 
			
		||||
    # context
 | 
			
		||||
    context_lens = None
 | 
			
		||||
    context = self.text_embedding(
 | 
			
		||||
        torch.stack([
 | 
			
		||||
            torch.cat(
 | 
			
		||||
                [u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
 | 
			
		||||
            for u in context
 | 
			
		||||
        ]))
 | 
			
		||||
 | 
			
		||||
    if clip_fea is not None:
 | 
			
		||||
        context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
 | 
			
		||||
        context = torch.concat([context_clip, context], dim=1)
 | 
			
		||||
 | 
			
		||||
    # arguments
 | 
			
		||||
    kwargs = dict(
 | 
			
		||||
        e=e0,
 | 
			
		||||
        seq_lens=seq_lens,
 | 
			
		||||
        grid_sizes=grid_sizes,
 | 
			
		||||
        freqs=self.freqs,
 | 
			
		||||
        context=context,
 | 
			
		||||
        context_lens=context_lens,
 | 
			
		||||
        cache_dic=self.cache_dic,
 | 
			
		||||
        current=self.current)
 | 
			
		||||
    
 | 
			
		||||
    for i, block in enumerate(self.blocks):
 | 
			
		||||
        self.current['layer'] = i
 | 
			
		||||
        x = block(x, **kwargs)
 | 
			
		||||
 | 
			
		||||
    # head
 | 
			
		||||
    x = self.head(x, e)
 | 
			
		||||
 | 
			
		||||
    # unpatchify
 | 
			
		||||
    x = self.unpatchify(x, grid_sizes)
 | 
			
		||||
    return [u.float() for u in x]
 | 
			
		||||
							
								
								
									
										104
									
								
								wan/taylorseer/forwards/xfusers_wan_forward.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										104
									
								
								wan/taylorseer/forwards/xfusers_wan_forward.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,104 @@
 | 
			
		||||
import torch
 | 
			
		||||
import torch.cuda.amp as amp
 | 
			
		||||
from xfuser.core.distributed import (get_sequence_parallel_rank,
 | 
			
		||||
                                     get_sequence_parallel_world_size,
 | 
			
		||||
                                     get_sp_group)
 | 
			
		||||
from wan.modules import WanModel
 | 
			
		||||
from wan.modules.model import sinusoidal_embedding_1d
 | 
			
		||||
from wan.taylorseer.cache_functions import cal_type
 | 
			
		||||
from wan.taylorseer.taylorseer_utils import taylor_formula
 | 
			
		||||
from .wan_cache_forward import wan_cache_forward
 | 
			
		||||
 | 
			
		||||
def xfusers_wan_forward(
 | 
			
		||||
    self:WanModel,
 | 
			
		||||
    x,
 | 
			
		||||
    t,
 | 
			
		||||
    context,
 | 
			
		||||
    seq_len,
 | 
			
		||||
    current_step,
 | 
			
		||||
    current_stream,
 | 
			
		||||
    clip_fea=None,
 | 
			
		||||
    y=None,
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
    x:              A list of videos each with shape [C, T, H, W].
 | 
			
		||||
    t:              [B].
 | 
			
		||||
    context:        A list of text embeddings each with shape [L, C].
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    self.current['step'] = current_step
 | 
			
		||||
    self.current['stream'] = current_stream
 | 
			
		||||
 | 
			
		||||
    if current_stream == 'cond_stream':
 | 
			
		||||
        cal_type(self.cache_dic, self.current)
 | 
			
		||||
 | 
			
		||||
    if self.model_type == 'i2v':
 | 
			
		||||
        assert clip_fea is not None and y is not None
 | 
			
		||||
    # params
 | 
			
		||||
    device = self.patch_embedding.weight.device
 | 
			
		||||
    if self.freqs.device != device:
 | 
			
		||||
        self.freqs = self.freqs.to(device)
 | 
			
		||||
 | 
			
		||||
    if y is not None:
 | 
			
		||||
        x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
 | 
			
		||||
 | 
			
		||||
    # embeddings
 | 
			
		||||
    x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
 | 
			
		||||
    grid_sizes = torch.stack(
 | 
			
		||||
        [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
 | 
			
		||||
    x = [u.flatten(2).transpose(1, 2) for u in x]
 | 
			
		||||
    seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
 | 
			
		||||
    assert seq_lens.max() <= seq_len
 | 
			
		||||
    x = torch.cat([
 | 
			
		||||
        torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
 | 
			
		||||
        for u in x
 | 
			
		||||
    ])
 | 
			
		||||
 | 
			
		||||
    # time embeddings
 | 
			
		||||
    with amp.autocast(dtype=torch.float32):
 | 
			
		||||
        e = self.time_embedding(
 | 
			
		||||
            sinusoidal_embedding_1d(self.freq_dim, t).float())
 | 
			
		||||
        e0 = self.time_projection(e).unflatten(1, (6, self.dim))
 | 
			
		||||
        assert e.dtype == torch.float32 and e0.dtype == torch.float32
 | 
			
		||||
 | 
			
		||||
    # context
 | 
			
		||||
    context_lens = None
 | 
			
		||||
    context = self.text_embedding(
 | 
			
		||||
        torch.stack([
 | 
			
		||||
            torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
 | 
			
		||||
            for u in context
 | 
			
		||||
        ]))
 | 
			
		||||
 | 
			
		||||
    if clip_fea is not None:
 | 
			
		||||
        context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
 | 
			
		||||
        context = torch.concat([context_clip, context], dim=1)
 | 
			
		||||
 | 
			
		||||
    # arguments
 | 
			
		||||
    kwargs = dict(
 | 
			
		||||
        e=e0,
 | 
			
		||||
        seq_lens=seq_lens,
 | 
			
		||||
        grid_sizes=grid_sizes,
 | 
			
		||||
        freqs=self.freqs,
 | 
			
		||||
        context=context,
 | 
			
		||||
        context_lens=context_lens,
 | 
			
		||||
        cache_dic=self.cache_dic,
 | 
			
		||||
        current=self.current)
 | 
			
		||||
 | 
			
		||||
    # Context Parallel
 | 
			
		||||
    x = torch.chunk(
 | 
			
		||||
        x, get_sequence_parallel_world_size(),
 | 
			
		||||
        dim=1)[get_sequence_parallel_rank()]
 | 
			
		||||
    
 | 
			
		||||
    for i, block in enumerate(self.blocks):
 | 
			
		||||
        self.current['layer'] = i
 | 
			
		||||
        x = block(x, **kwargs)
 | 
			
		||||
 | 
			
		||||
    # head
 | 
			
		||||
    x = self.head(x, e)
 | 
			
		||||
 | 
			
		||||
    # Context Parallel
 | 
			
		||||
    x = get_sp_group().all_gather(x, dim=1)
 | 
			
		||||
 | 
			
		||||
    # unpatchify
 | 
			
		||||
    x = self.unpatchify(x, grid_sizes)
 | 
			
		||||
    return [u.float() for u in x]
 | 
			
		||||
							
								
								
									
										2
									
								
								wan/taylorseer/generates/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										2
									
								
								wan/taylorseer/generates/__init__.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,2 @@
 | 
			
		||||
from .wan_t2v_generate import wan_t2v_generate
 | 
			
		||||
from .wan_i2v_generate import wan_i2v_generate
 | 
			
		||||
							
								
								
									
										264
									
								
								wan/taylorseer/generates/wan_i2v_generate.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										264
									
								
								wan/taylorseer/generates/wan_i2v_generate.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,264 @@
 | 
			
		||||
import gc
 | 
			
		||||
import logging
 | 
			
		||||
import math
 | 
			
		||||
import os
 | 
			
		||||
import random
 | 
			
		||||
import sys
 | 
			
		||||
import types
 | 
			
		||||
from contextlib import contextmanager
 | 
			
		||||
from functools import partial
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch
 | 
			
		||||
import torch.cuda.amp as amp
 | 
			
		||||
import torch.distributed as dist
 | 
			
		||||
import torchvision.transforms.functional as TF
 | 
			
		||||
from tqdm import tqdm
 | 
			
		||||
 | 
			
		||||
from wan.distributed.fsdp import shard_model
 | 
			
		||||
from wan.modules.clip import CLIPModel
 | 
			
		||||
from wan.modules.model import WanModel
 | 
			
		||||
from wan.modules.t5 import T5EncoderModel
 | 
			
		||||
from wan.modules.vae import WanVAE
 | 
			
		||||
from wan.utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
 | 
			
		||||
                               get_sampling_sigmas, retrieve_timesteps)
 | 
			
		||||
from wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
			
		||||
from wan import WanI2V
 | 
			
		||||
 | 
			
		||||
def wan_i2v_generate(self:WanI2V,
 | 
			
		||||
             input_prompt,
 | 
			
		||||
             img,
 | 
			
		||||
             max_area=720 * 1280,
 | 
			
		||||
             frame_num=81,
 | 
			
		||||
             shift=5.0,
 | 
			
		||||
             sample_solver='unipc',
 | 
			
		||||
             sampling_steps=40,
 | 
			
		||||
             guide_scale=5.0,
 | 
			
		||||
             n_prompt="",
 | 
			
		||||
             seed=-1,
 | 
			
		||||
             offload_model=True):
 | 
			
		||||
    r"""
 | 
			
		||||
    Generates video frames from input image and text prompt using diffusion process.
 | 
			
		||||
 | 
			
		||||
    Args:
 | 
			
		||||
        input_prompt (`str`):
 | 
			
		||||
            Text prompt for content generation.
 | 
			
		||||
        img (PIL.Image.Image):
 | 
			
		||||
            Input image tensor. Shape: [3, H, W]
 | 
			
		||||
        max_area (`int`, *optional*, defaults to 720*1280):
 | 
			
		||||
            Maximum pixel area for latent space calculation. Controls video resolution scaling
 | 
			
		||||
        frame_num (`int`, *optional*, defaults to 81):
 | 
			
		||||
            How many frames to sample from a video. The number should be 4n+1
 | 
			
		||||
        shift (`float`, *optional*, defaults to 5.0):
 | 
			
		||||
            Noise schedule shift parameter. Affects temporal dynamics
 | 
			
		||||
            [NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
 | 
			
		||||
        sample_solver (`str`, *optional*, defaults to 'unipc'):
 | 
			
		||||
            Solver used to sample the video.
 | 
			
		||||
        sampling_steps (`int`, *optional*, defaults to 40):
 | 
			
		||||
            Number of diffusion sampling steps. Higher values improve quality but slow generation
 | 
			
		||||
        guide_scale (`float`, *optional*, defaults 5.0):
 | 
			
		||||
            Classifier-free guidance scale. Controls prompt adherence vs. creativity
 | 
			
		||||
        n_prompt (`str`, *optional*, defaults to ""):
 | 
			
		||||
            Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
 | 
			
		||||
        seed (`int`, *optional*, defaults to -1):
 | 
			
		||||
            Random seed for noise generation. If -1, use random seed
 | 
			
		||||
        offload_model (`bool`, *optional*, defaults to True):
 | 
			
		||||
            If True, offloads models to CPU during generation to save VRAM
 | 
			
		||||
 | 
			
		||||
    Returns:
 | 
			
		||||
        torch.Tensor:
 | 
			
		||||
            Generated video frames tensor. Dimensions: (C, N H, W) where:
 | 
			
		||||
            - C: Color channels (3 for RGB)
 | 
			
		||||
            - N: Number of frames (81)
 | 
			
		||||
            - H: Frame height (from max_area)
 | 
			
		||||
            - W: Frame width from max_area)
 | 
			
		||||
    """
 | 
			
		||||
    img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device)
 | 
			
		||||
 | 
			
		||||
    F = frame_num
 | 
			
		||||
    h, w = img.shape[1:]
 | 
			
		||||
    aspect_ratio = h / w
 | 
			
		||||
    lat_h = round(
 | 
			
		||||
        np.sqrt(max_area * aspect_ratio) // self.vae_stride[1] //
 | 
			
		||||
        self.patch_size[1] * self.patch_size[1])
 | 
			
		||||
    lat_w = round(
 | 
			
		||||
        np.sqrt(max_area / aspect_ratio) // self.vae_stride[2] //
 | 
			
		||||
        self.patch_size[2] * self.patch_size[2])
 | 
			
		||||
    h = lat_h * self.vae_stride[1]
 | 
			
		||||
    w = lat_w * self.vae_stride[2]
 | 
			
		||||
 | 
			
		||||
    max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
 | 
			
		||||
        self.patch_size[1] * self.patch_size[2])
 | 
			
		||||
    max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size
 | 
			
		||||
 | 
			
		||||
    seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
 | 
			
		||||
    seed_g = torch.Generator(device=self.device)
 | 
			
		||||
    seed_g.manual_seed(seed)
 | 
			
		||||
    noise = torch.randn(
 | 
			
		||||
        16,
 | 
			
		||||
        21,
 | 
			
		||||
        lat_h,
 | 
			
		||||
        lat_w,
 | 
			
		||||
        dtype=torch.float32,
 | 
			
		||||
        generator=seed_g,
 | 
			
		||||
        device=self.device)
 | 
			
		||||
 | 
			
		||||
    msk = torch.ones(1, 81, lat_h, lat_w, device=self.device)
 | 
			
		||||
    msk[:, 1:] = 0
 | 
			
		||||
    msk = torch.concat([
 | 
			
		||||
        torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
 | 
			
		||||
    ],
 | 
			
		||||
                       dim=1)
 | 
			
		||||
    msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
 | 
			
		||||
    msk = msk.transpose(1, 2)[0]
 | 
			
		||||
 | 
			
		||||
    if n_prompt == "":
 | 
			
		||||
        n_prompt = self.sample_neg_prompt
 | 
			
		||||
 | 
			
		||||
    # preprocess
 | 
			
		||||
    if not self.t5_cpu:
 | 
			
		||||
        self.text_encoder.model.to(self.device)
 | 
			
		||||
        context = self.text_encoder([input_prompt], self.device)
 | 
			
		||||
        context_null = self.text_encoder([n_prompt], self.device)
 | 
			
		||||
        if offload_model:
 | 
			
		||||
            self.text_encoder.model.cpu()
 | 
			
		||||
    else:
 | 
			
		||||
        context = self.text_encoder([input_prompt], torch.device('cpu'))
 | 
			
		||||
        context_null = self.text_encoder([n_prompt], torch.device('cpu'))
 | 
			
		||||
        context = [t.to(self.device) for t in context]
 | 
			
		||||
        context_null = [t.to(self.device) for t in context_null]
 | 
			
		||||
 | 
			
		||||
    self.clip.model.to(self.device)
 | 
			
		||||
    clip_context = self.clip.visual([img[:, None, :, :]])
 | 
			
		||||
    if offload_model:
 | 
			
		||||
        self.clip.model.cpu()
 | 
			
		||||
 | 
			
		||||
    y = self.vae.encode([
 | 
			
		||||
        torch.concat([
 | 
			
		||||
            torch.nn.functional.interpolate(
 | 
			
		||||
                img[None].cpu(), size=(h, w), mode='bicubic').transpose(
 | 
			
		||||
                    0, 1),
 | 
			
		||||
            torch.zeros(3, 80, h, w)
 | 
			
		||||
        ],
 | 
			
		||||
                     dim=1).to(self.device)
 | 
			
		||||
    ])[0]
 | 
			
		||||
    y = torch.concat([msk, y])
 | 
			
		||||
 | 
			
		||||
    @contextmanager
 | 
			
		||||
    def noop_no_sync():
 | 
			
		||||
        yield
 | 
			
		||||
 | 
			
		||||
    no_sync = getattr(self.model, 'no_sync', noop_no_sync)
 | 
			
		||||
 | 
			
		||||
    # evaluation mode
 | 
			
		||||
    with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
 | 
			
		||||
 | 
			
		||||
        if sample_solver == 'unipc':
 | 
			
		||||
            sample_scheduler = FlowUniPCMultistepScheduler(
 | 
			
		||||
                num_train_timesteps=self.num_train_timesteps,
 | 
			
		||||
                shift=1,
 | 
			
		||||
                use_dynamic_shifting=False)
 | 
			
		||||
            sample_scheduler.set_timesteps(
 | 
			
		||||
                sampling_steps, device=self.device, shift=shift)
 | 
			
		||||
            timesteps = sample_scheduler.timesteps
 | 
			
		||||
        elif sample_solver == 'dpm++':
 | 
			
		||||
            sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
			
		||||
                num_train_timesteps=self.num_train_timesteps,
 | 
			
		||||
                shift=1,
 | 
			
		||||
                use_dynamic_shifting=False)
 | 
			
		||||
            sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
 | 
			
		||||
            timesteps, _ = retrieve_timesteps(
 | 
			
		||||
                sample_scheduler,
 | 
			
		||||
                device=self.device,
 | 
			
		||||
                sigmas=sampling_sigmas)
 | 
			
		||||
        else:
 | 
			
		||||
            raise NotImplementedError("Unsupported solver.")
 | 
			
		||||
 | 
			
		||||
        # sample videos
 | 
			
		||||
        latent = noise
 | 
			
		||||
 | 
			
		||||
        arg_c = {
 | 
			
		||||
            'context': [context[0]],
 | 
			
		||||
            'clip_fea': clip_context,
 | 
			
		||||
            'seq_len': max_seq_len,
 | 
			
		||||
            'y': [y],
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        arg_null = {
 | 
			
		||||
            'context': context_null,
 | 
			
		||||
            'clip_fea': clip_context,
 | 
			
		||||
            'seq_len': max_seq_len,
 | 
			
		||||
            'y': [y],
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if offload_model:
 | 
			
		||||
            torch.cuda.empty_cache()
 | 
			
		||||
 | 
			
		||||
        self.model.to(self.device)
 | 
			
		||||
 | 
			
		||||
        for i, t in enumerate(tqdm(timesteps)):
 | 
			
		||||
 | 
			
		||||
            current_step = i
 | 
			
		||||
 | 
			
		||||
            latent_model_input = [latent.to(self.device)]
 | 
			
		||||
            timestep = [t]
 | 
			
		||||
 | 
			
		||||
            timestep = torch.stack(timestep).to(self.device)
 | 
			
		||||
 | 
			
		||||
            current_stream = 'cond_stream'
 | 
			
		||||
 | 
			
		||||
            noise_pred_cond = self.model(
 | 
			
		||||
                latent_model_input, t=timestep,
 | 
			
		||||
                current_step = current_step,
 | 
			
		||||
                current_stream = current_stream,
 | 
			
		||||
                **arg_c)[0].to(
 | 
			
		||||
                    torch.device('cpu') if offload_model else self.device)
 | 
			
		||||
            
 | 
			
		||||
            if offload_model:
 | 
			
		||||
                torch.cuda.empty_cache()
 | 
			
		||||
 | 
			
		||||
            current_stream =  'uncond_stream'
 | 
			
		||||
 | 
			
		||||
            noise_pred_uncond = self.model(
 | 
			
		||||
                latent_model_input, t=timestep,
 | 
			
		||||
                current_step = current_step,
 | 
			
		||||
                current_stream = current_stream,
 | 
			
		||||
                **arg_null)[0].to(
 | 
			
		||||
                    torch.device('cpu') if offload_model else self.device)
 | 
			
		||||
            
 | 
			
		||||
            if offload_model:
 | 
			
		||||
                torch.cuda.empty_cache()
 | 
			
		||||
 | 
			
		||||
            noise_pred = noise_pred_uncond + guide_scale * (
 | 
			
		||||
                noise_pred_cond - noise_pred_uncond)
 | 
			
		||||
 | 
			
		||||
            latent = latent.to(
 | 
			
		||||
                torch.device('cpu') if offload_model else self.device)
 | 
			
		||||
 | 
			
		||||
            temp_x0 = sample_scheduler.step(
 | 
			
		||||
                noise_pred.unsqueeze(0),
 | 
			
		||||
                t,
 | 
			
		||||
                latent.unsqueeze(0),
 | 
			
		||||
                return_dict=False,
 | 
			
		||||
                generator=seed_g)[0]
 | 
			
		||||
            latent = temp_x0.squeeze(0)
 | 
			
		||||
 | 
			
		||||
            x0 = [latent.to(self.device)]
 | 
			
		||||
            del latent_model_input, timestep
 | 
			
		||||
 | 
			
		||||
        if offload_model:
 | 
			
		||||
            self.model.cpu()
 | 
			
		||||
            torch.cuda.empty_cache()
 | 
			
		||||
 | 
			
		||||
        if self.rank == 0:
 | 
			
		||||
            videos = self.vae.decode(x0)
 | 
			
		||||
 | 
			
		||||
    del noise, latent
 | 
			
		||||
    del sample_scheduler
 | 
			
		||||
    if offload_model:
 | 
			
		||||
        gc.collect()
 | 
			
		||||
        torch.cuda.synchronize()
 | 
			
		||||
    if dist.is_initialized():
 | 
			
		||||
        dist.barrier()
 | 
			
		||||
 | 
			
		||||
    return videos[0] if self.rank == 0 else None
 | 
			
		||||
							
								
								
									
										207
									
								
								wan/taylorseer/generates/wan_t2v_generate.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										207
									
								
								wan/taylorseer/generates/wan_t2v_generate.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,207 @@
 | 
			
		||||
import gc
 | 
			
		||||
import logging
 | 
			
		||||
import math
 | 
			
		||||
import os
 | 
			
		||||
import random
 | 
			
		||||
import sys
 | 
			
		||||
import types
 | 
			
		||||
from contextlib import contextmanager
 | 
			
		||||
from functools import partial
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
import torch.cuda.amp as amp
 | 
			
		||||
import torch.distributed as dist
 | 
			
		||||
from tqdm import tqdm
 | 
			
		||||
 | 
			
		||||
from wan.distributed.fsdp import shard_model
 | 
			
		||||
from wan.modules.model import WanModel
 | 
			
		||||
from wan.modules.t5 import T5EncoderModel
 | 
			
		||||
from wan.modules.vae import WanVAE
 | 
			
		||||
from wan.utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
 | 
			
		||||
                               get_sampling_sigmas, retrieve_timesteps)
 | 
			
		||||
from wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
			
		||||
 | 
			
		||||
from wan import WanT2V
 | 
			
		||||
from wan.taylorseer.cache_functions import cache_init, cal_type
 | 
			
		||||
 | 
			
		||||
def wan_t2v_generate(self:WanT2V,
 | 
			
		||||
             input_prompt,
 | 
			
		||||
             size=(1280, 720),
 | 
			
		||||
             frame_num=81,
 | 
			
		||||
             shift=5.0,
 | 
			
		||||
             sample_solver='unipc',
 | 
			
		||||
             sampling_steps=50,
 | 
			
		||||
             guide_scale=5.0,
 | 
			
		||||
             n_prompt="",
 | 
			
		||||
             seed=-1,
 | 
			
		||||
             offload_model=True):
 | 
			
		||||
    r"""
 | 
			
		||||
    Generates video frames from text prompt using diffusion process.
 | 
			
		||||
    Args:
 | 
			
		||||
        input_prompt (`str`):
 | 
			
		||||
            Text prompt for content generation
 | 
			
		||||
        size (tupele[`int`], *optional*, defaults to (1280,720)):
 | 
			
		||||
            Controls video resolution, (width,height).
 | 
			
		||||
        frame_num (`int`, *optional*, defaults to 81):
 | 
			
		||||
            How many frames to sample from a video. The number should be 4n+1
 | 
			
		||||
        shift (`float`, *optional*, defaults to 5.0):
 | 
			
		||||
            Noise schedule shift parameter. Affects temporal dynamics
 | 
			
		||||
        sample_solver (`str`, *optional*, defaults to 'unipc'):
 | 
			
		||||
            Solver used to sample the video.
 | 
			
		||||
        sampling_steps (`int`, *optional*, defaults to 40):
 | 
			
		||||
            Number of diffusion sampling steps. Higher values improve quality but slow generation
 | 
			
		||||
        guide_scale (`float`, *optional*, defaults 5.0):
 | 
			
		||||
            Classifier-free guidance scale. Controls prompt adherence vs. creativity
 | 
			
		||||
        n_prompt (`str`, *optional*, defaults to ""):
 | 
			
		||||
            Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
 | 
			
		||||
        seed (`int`, *optional*, defaults to -1):
 | 
			
		||||
            Random seed for noise generation. If -1, use random seed.
 | 
			
		||||
        offload_model (`bool`, *optional*, defaults to True):
 | 
			
		||||
            If True, offloads models to CPU during generation to save VRAM
 | 
			
		||||
    Returns:
 | 
			
		||||
        torch.Tensor:
 | 
			
		||||
            Generated video frames tensor. Dimensions: (C, N H, W) where:
 | 
			
		||||
            - C: Color channels (3 for RGB)
 | 
			
		||||
            - N: Number of frames (81)
 | 
			
		||||
            - H: Frame height (from size)
 | 
			
		||||
            - W: Frame width from size)
 | 
			
		||||
    """
 | 
			
		||||
    # preprocess
 | 
			
		||||
    F = frame_num
 | 
			
		||||
    
 | 
			
		||||
    target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
 | 
			
		||||
                    size[1] // self.vae_stride[1],
 | 
			
		||||
                    size[0] // self.vae_stride[2])
 | 
			
		||||
    
 | 
			
		||||
    seq_len = math.ceil((target_shape[2] * target_shape[3]) /
 | 
			
		||||
                        (self.patch_size[1] * self.patch_size[2]) *
 | 
			
		||||
                        target_shape[1] / self.sp_size) * self.sp_size
 | 
			
		||||
    if n_prompt == "":
 | 
			
		||||
        n_prompt = self.sample_neg_prompt
 | 
			
		||||
    seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
 | 
			
		||||
    seed_g = torch.Generator(device=self.device)
 | 
			
		||||
    seed_g.manual_seed(seed)
 | 
			
		||||
    
 | 
			
		||||
    if not self.t5_cpu:
 | 
			
		||||
        self.text_encoder.model.to(self.device)
 | 
			
		||||
        context = self.text_encoder([input_prompt], self.device)
 | 
			
		||||
        context_null = self.text_encoder([n_prompt], self.device)
 | 
			
		||||
        if offload_model:
 | 
			
		||||
            self.text_encoder.model.cpu()
 | 
			
		||||
    else:
 | 
			
		||||
        context = self.text_encoder([input_prompt], torch.device('cpu'))
 | 
			
		||||
        context_null = self.text_encoder([n_prompt], torch.device('cpu'))
 | 
			
		||||
        context = [t.to(self.device) for t in context]
 | 
			
		||||
        context_null = [t.to(self.device) for t in context_null]
 | 
			
		||||
    
 | 
			
		||||
    noise = [
 | 
			
		||||
        torch.randn(
 | 
			
		||||
            target_shape[0],
 | 
			
		||||
            target_shape[1],
 | 
			
		||||
            target_shape[2],
 | 
			
		||||
            target_shape[3],
 | 
			
		||||
            dtype=torch.float32,
 | 
			
		||||
            device=self.device,
 | 
			
		||||
            generator=seed_g)
 | 
			
		||||
    ]
 | 
			
		||||
    
 | 
			
		||||
    @contextmanager
 | 
			
		||||
    
 | 
			
		||||
    def noop_no_sync():
 | 
			
		||||
        yield
 | 
			
		||||
    no_sync = getattr(self.model, 'no_sync', noop_no_sync)
 | 
			
		||||
    
 | 
			
		||||
    # evaluation mode
 | 
			
		||||
    with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
 | 
			
		||||
        
 | 
			
		||||
        if sample_solver == 'unipc':
 | 
			
		||||
            
 | 
			
		||||
            sample_scheduler = FlowUniPCMultistepScheduler(
 | 
			
		||||
                num_train_timesteps=self.num_train_timesteps,
 | 
			
		||||
                shift=1,
 | 
			
		||||
                use_dynamic_shifting=False)
 | 
			
		||||
            
 | 
			
		||||
            sample_scheduler.set_timesteps(
 | 
			
		||||
                sampling_steps, device=self.device, shift=shift)
 | 
			
		||||
            
 | 
			
		||||
            timesteps = sample_scheduler.timesteps
 | 
			
		||||
        
 | 
			
		||||
        elif sample_solver == 'dpm++':
 | 
			
		||||
            
 | 
			
		||||
            sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
			
		||||
                num_train_timesteps=self.num_train_timesteps,
 | 
			
		||||
                shift=1,
 | 
			
		||||
                use_dynamic_shifting=False)
 | 
			
		||||
            
 | 
			
		||||
            sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
 | 
			
		||||
            
 | 
			
		||||
            timesteps, _ = retrieve_timesteps(
 | 
			
		||||
                sample_scheduler,
 | 
			
		||||
                device=self.device,
 | 
			
		||||
                sigmas=sampling_sigmas)
 | 
			
		||||
        else:
 | 
			
		||||
            raise NotImplementedError("Unsupported solver.")
 | 
			
		||||
        
 | 
			
		||||
        # sample videos
 | 
			
		||||
        latents = noise
 | 
			
		||||
 | 
			
		||||
        arg_c = {'context': context, 'seq_len': seq_len}
 | 
			
		||||
        arg_null = {'context': context_null, 'seq_len': seq_len}
 | 
			
		||||
 | 
			
		||||
        self.model.to(self.device)
 | 
			
		||||
 | 
			
		||||
        for i, t in enumerate(tqdm(timesteps)):
 | 
			
		||||
            torch.compiler.cudagraph_mark_step_begin()
 | 
			
		||||
            current_step = i
 | 
			
		||||
 | 
			
		||||
            latent_model_input = latents
 | 
			
		||||
            timestep = [t]
 | 
			
		||||
            timestep = torch.stack(timestep)
 | 
			
		||||
        
 | 
			
		||||
            current_stream = 'cond_stream'
 | 
			
		||||
 | 
			
		||||
            noise_pred_cond = self.model(
 | 
			
		||||
                latent_model_input, t=timestep,
 | 
			
		||||
                current_step = current_step,
 | 
			
		||||
                current_stream = current_stream,
 | 
			
		||||
                **arg_c)[0]
 | 
			
		||||
            
 | 
			
		||||
            current_stream =  'uncond_stream'
 | 
			
		||||
 | 
			
		||||
            noise_pred_uncond = self.model(
 | 
			
		||||
                latent_model_input, t=timestep,
 | 
			
		||||
                current_step = current_step,
 | 
			
		||||
                current_stream = current_stream,
 | 
			
		||||
                **arg_null)[0]
 | 
			
		||||
            
 | 
			
		||||
            noise_pred = noise_pred_uncond + guide_scale * (
 | 
			
		||||
                noise_pred_cond - noise_pred_uncond)
 | 
			
		||||
            
 | 
			
		||||
            temp_x0 = sample_scheduler.step(
 | 
			
		||||
                noise_pred.unsqueeze(0),
 | 
			
		||||
                t,
 | 
			
		||||
                latents[0].unsqueeze(0),
 | 
			
		||||
                return_dict=False,
 | 
			
		||||
                generator=seed_g)[0]
 | 
			
		||||
            latents = [temp_x0.squeeze(0)]
 | 
			
		||||
 | 
			
		||||
        x0 = latents
 | 
			
		||||
 | 
			
		||||
        if offload_model:
 | 
			
		||||
            self.model.cpu()
 | 
			
		||||
            torch.cuda.empty_cache()
 | 
			
		||||
        
 | 
			
		||||
        if self.rank == 0:
 | 
			
		||||
            videos = self.vae.decode(x0)
 | 
			
		||||
    
 | 
			
		||||
    del noise, latents
 | 
			
		||||
    del sample_scheduler
 | 
			
		||||
    
 | 
			
		||||
    if offload_model:
 | 
			
		||||
        gc.collect()
 | 
			
		||||
        torch.cuda.synchronize()
 | 
			
		||||
    
 | 
			
		||||
    if dist.is_initialized():
 | 
			
		||||
        dist.barrier()
 | 
			
		||||
    
 | 
			
		||||
    return videos[0] if self.rank == 0 else None
 | 
			
		||||
							
								
								
									
										47
									
								
								wan/taylorseer/taylorseer_utils/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										47
									
								
								wan/taylorseer/taylorseer_utils/__init__.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,47 @@
 | 
			
		||||
from typing import Dict 
 | 
			
		||||
import torch
 | 
			
		||||
import math
 | 
			
		||||
 | 
			
		||||
def derivative_approximation(cache_dic: Dict, current: Dict, feature: torch.Tensor):
 | 
			
		||||
    """
 | 
			
		||||
    Compute derivative approximation.
 | 
			
		||||
    
 | 
			
		||||
    :param cache_dic: Cache dictionary
 | 
			
		||||
    :param current: Information of the current step
 | 
			
		||||
    """
 | 
			
		||||
    difference_distance = current['activated_steps'][-1] - current['activated_steps'][-2]
 | 
			
		||||
    #difference_distance = current['activated_times'][-1] - current['activated_times'][-2]
 | 
			
		||||
 | 
			
		||||
    updated_taylor_factors = {}
 | 
			
		||||
    updated_taylor_factors[0] = feature
 | 
			
		||||
 | 
			
		||||
    for i in range(cache_dic['max_order']):
 | 
			
		||||
        if (cache_dic['cache'][-1][current['stream']][current['layer']][current['module']].get(i, None) is not None) and (current['step'] > cache_dic['first_enhance'] - 2):
 | 
			
		||||
            updated_taylor_factors[i + 1] = (updated_taylor_factors[i] - cache_dic['cache'][-1][current['stream']][current['layer']][current['module']][i]) / difference_distance
 | 
			
		||||
        else:
 | 
			
		||||
            break
 | 
			
		||||
    
 | 
			
		||||
    cache_dic['cache'][-1][current['stream']][current['layer']][current['module']] = updated_taylor_factors
 | 
			
		||||
 | 
			
		||||
def taylor_formula(derivative_dict: Dict, distance: int) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    Compute Taylor expansion error.
 | 
			
		||||
    
 | 
			
		||||
    :param derivative_dict: Derivative dictionary
 | 
			
		||||
    :param x: Current step
 | 
			
		||||
    """
 | 
			
		||||
    output=0
 | 
			
		||||
    for i in range(len(derivative_dict)):
 | 
			
		||||
        output += (1 / math.factorial(i)) * derivative_dict[i] * (distance ** i)
 | 
			
		||||
 | 
			
		||||
    return output
 | 
			
		||||
 | 
			
		||||
def taylor_cache_init(cache_dic: Dict, current: Dict):
 | 
			
		||||
    """
 | 
			
		||||
    Initialize Taylor cache and allocate storage for different-order derivatives in the Taylor cache.
 | 
			
		||||
    
 | 
			
		||||
    :param cache_dic: Cache dictionary
 | 
			
		||||
    :param current: Information of the current step
 | 
			
		||||
    """
 | 
			
		||||
    if (current['step'] == 0) and (cache_dic['taylor_cache']):
 | 
			
		||||
        cache_dic['cache'][-1][current['stream']][current['layer']][current['module']] = {}
 | 
			
		||||
@ -38,6 +38,7 @@ class WanT2V:
 | 
			
		||||
        dit_fsdp=False,
 | 
			
		||||
        use_usp=False,
 | 
			
		||||
        t5_cpu=False,
 | 
			
		||||
        use_taylor_cache = False
 | 
			
		||||
    ):
 | 
			
		||||
        r"""
 | 
			
		||||
        Initializes the Wan text-to-video generation model components.
 | 
			
		||||
@ -86,21 +87,49 @@ class WanT2V:
 | 
			
		||||
        logging.info(f"Creating WanModel from {checkpoint_dir}")
 | 
			
		||||
        self.model = WanModel.from_pretrained(checkpoint_dir)
 | 
			
		||||
        self.model.eval().requires_grad_(False)
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
        from wan.taylorseer.forwards import wan_attention_forward, xfusers_wan_forward, wan_forward#, wan_attention_forward_cache_step
 | 
			
		||||
        if use_usp:
 | 
			
		||||
            from xfuser.core.distributed import get_sequence_parallel_world_size
 | 
			
		||||
            from xfuser.core.distributed import \
 | 
			
		||||
                get_sequence_parallel_world_size
 | 
			
		||||
 | 
			
		||||
            from .distributed.xdit_context_parallel import (
 | 
			
		||||
                usp_attn_forward,
 | 
			
		||||
                usp_dit_forward,
 | 
			
		||||
            )
 | 
			
		||||
            from .distributed.xdit_context_parallel import (usp_attn_forward,
 | 
			
		||||
                                                            usp_dit_forward)
 | 
			
		||||
            
 | 
			
		||||
            for block in self.model.blocks:
 | 
			
		||||
                block.self_attn.forward = types.MethodType(
 | 
			
		||||
                    usp_attn_forward, block.self_attn)
 | 
			
		||||
            self.model.forward = types.MethodType(usp_dit_forward, self.model)
 | 
			
		||||
                
 | 
			
		||||
                if use_taylor_cache:
 | 
			
		||||
                    block.forward = types.MethodType(wan_attention_forward, block)
 | 
			
		||||
                    #block.cache_step_forward = types.MethodType(wan_attention_forward_cache_step, block)
 | 
			
		||||
                else :
 | 
			
		||||
                    self.model.forward = types.MethodType(usp_dit_forward, self.model)
 | 
			
		||||
            if use_taylor_cache:
 | 
			
		||||
              self.model.forward = types.MethodType(xfusers_wan_forward, self.model)
 | 
			
		||||
            self.sp_size = get_sequence_parallel_world_size()
 | 
			
		||||
        else:
 | 
			
		||||
            if use_taylor_cache:
 | 
			
		||||
                for block in self.model.blocks:
 | 
			
		||||
                    block.forward = types.MethodType(wan_attention_forward, block)
 | 
			
		||||
                    #block.cache_step_forward = types.MethodType(wan_attention_forward_cache_step, block)
 | 
			
		||||
 | 
			
		||||
                self.model.forward = types.MethodType(wan_forward, self.model)
 | 
			
		||||
            self.sp_size = 1
 | 
			
		||||
            
 | 
			
		||||
        #if use_usp:
 | 
			
		||||
        #    from xfuser.core.distributed import \
 | 
			
		||||
        #        get_sequence_parallel_world_size
 | 
			
		||||
#
 | 
			
		||||
        #    from .distributed.xdit_context_parallel import (usp_attn_forward,
 | 
			
		||||
        #                                                    usp_dit_forward)
 | 
			
		||||
        #    for block in self.model.blocks:
 | 
			
		||||
        #        block.self_attn.forward = types.MethodType(
 | 
			
		||||
        #            usp_attn_forward, block.self_attn)
 | 
			
		||||
        #    self.model.forward = types.MethodType(usp_dit_forward, self.model)
 | 
			
		||||
        #    self.sp_size = get_sequence_parallel_world_size()
 | 
			
		||||
        #else:
 | 
			
		||||
        #    self.sp_size = 1
 | 
			
		||||
 | 
			
		||||
        if dist.is_initialized():
 | 
			
		||||
            dist.barrier()
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user