mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-12-15 11:43:21 +00:00
Merge 6d7fc288d8 into 854bd88e7f
This commit is contained in:
commit
7b9c447038
4
.gitignore
vendored
4
.gitignore
vendored
@ -21,7 +21,7 @@
|
||||
*.html
|
||||
*.pdf
|
||||
*.whl
|
||||
cache
|
||||
*cache/
|
||||
__pycache__/
|
||||
storage/
|
||||
samples/
|
||||
@ -29,9 +29,11 @@ samples/
|
||||
!requirements.txt
|
||||
.DS_Store
|
||||
*DS_Store
|
||||
.vscode
|
||||
google/
|
||||
Wan2.1-T2V-14B/
|
||||
Wan2.1-T2V-1.3B/
|
||||
Wan2.1-I2V-14B-480P/
|
||||
Wan2.1-I2V-14B-720P/
|
||||
poetry.lock
|
||||
logs/
|
||||
|
||||
118
generate.py
118
generate.py
@ -12,12 +12,25 @@ import random
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.cuda import set_device
|
||||
from PIL import Image
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
from torch_musa.core.device import set_device
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
import wan
|
||||
from wan.configs import MAX_AREA_CONFIGS, SIZE_CONFIGS, SUPPORTED_SIZES, WAN_CONFIGS
|
||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
||||
from wan.utils.utils import cache_image, cache_video, str2bool
|
||||
from wan.utils.platform import (
|
||||
get_device_type,
|
||||
get_torch_distributed_backend,
|
||||
get_torch_profiler_activities,
|
||||
)
|
||||
|
||||
|
||||
|
||||
EXAMPLE_PROMPT = {
|
||||
@ -243,6 +256,11 @@ def _parse_args():
|
||||
type=float,
|
||||
default=5.0,
|
||||
help="Classifier free guidance scale.")
|
||||
parser.add_argument(
|
||||
"--profile",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help="profile the generating procedure.")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@ -263,6 +281,30 @@ def _init_logging(rank):
|
||||
logging.basicConfig(level=logging.ERROR)
|
||||
|
||||
|
||||
def _init_profiler():
|
||||
profiler = torch.profiler.profile(
|
||||
activities=get_torch_profiler_activities(),
|
||||
on_trace_ready=torch.profiler.tensorboard_trace_handler('./logs'),
|
||||
record_shapes=True,
|
||||
profile_memory=True,
|
||||
with_stack=True,
|
||||
)
|
||||
profiler.start()
|
||||
return profiler
|
||||
|
||||
|
||||
def _finalize_profiler(profiler):
|
||||
profiler.stop()
|
||||
table = profiler.key_averages().table(
|
||||
sort_by=f"{get_device_type()}_time_total",
|
||||
row_limit=20,
|
||||
)
|
||||
file_name = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
||||
with open(f"logs/profiling-{file_name}.txt", "w") as f:
|
||||
f.write(table)
|
||||
del file_name
|
||||
|
||||
|
||||
def generate(args):
|
||||
rank = int(os.getenv("RANK", 0))
|
||||
world_size = int(os.getenv("WORLD_SIZE", 1))
|
||||
@ -275,9 +317,9 @@ def generate(args):
|
||||
logging.info(
|
||||
f"offload_model is not specified, set to {args.offload_model}.")
|
||||
if world_size > 1:
|
||||
torch.cuda.set_device(local_rank)
|
||||
set_device(local_rank)
|
||||
dist.init_process_group(
|
||||
backend="nccl",
|
||||
backend=get_torch_distributed_backend(),
|
||||
init_method="env://",
|
||||
rank=rank,
|
||||
world_size=world_size)
|
||||
@ -330,6 +372,10 @@ def generate(args):
|
||||
dist.broadcast_object_list(base_seed, src=0)
|
||||
args.base_seed = base_seed[0]
|
||||
|
||||
profiler = None
|
||||
if args.profile and rank == 0:
|
||||
profiler = _init_profiler()
|
||||
|
||||
if "t2v" in args.task or "t2i" in args.task:
|
||||
if args.prompt is None:
|
||||
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
||||
@ -366,10 +412,23 @@ def generate(args):
|
||||
dit_fsdp=args.dit_fsdp,
|
||||
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
||||
t5_cpu=args.t5_cpu,
|
||||
profiler=profiler,
|
||||
)
|
||||
|
||||
logging.info(
|
||||
f"Generating {'image' if 't2i' in args.task else 'video'} ...")
|
||||
logging.info("Warming up WanT2V pipeline ...")
|
||||
with torch.no_grad():
|
||||
_ = wan_t2v.generate(
|
||||
args.prompt,
|
||||
size=SIZE_CONFIGS[args.size],
|
||||
frame_num=args.frame_num,
|
||||
shift=args.sample_shift,
|
||||
sample_solver=args.sample_solver,
|
||||
sampling_steps=3,
|
||||
guide_scale=args.sample_guide_scale,
|
||||
seed=args.base_seed,
|
||||
offload_model=args.offload_model)
|
||||
|
||||
logging.info(f"Generating {'image' if 't2i' in args.task else 'video'} ...")
|
||||
video = wan_t2v.generate(
|
||||
args.prompt,
|
||||
size=SIZE_CONFIGS[args.size],
|
||||
@ -423,8 +482,23 @@ def generate(args):
|
||||
dit_fsdp=args.dit_fsdp,
|
||||
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
||||
t5_cpu=args.t5_cpu,
|
||||
profiler=profiler,
|
||||
)
|
||||
|
||||
logging.info("Warming up WanI2V pipeline ...")
|
||||
with torch.no_grad():
|
||||
_ = wan_i2v.generate(
|
||||
args.prompt,
|
||||
img,
|
||||
max_area=MAX_AREA_CONFIGS[args.size],
|
||||
frame_num=args.frame_num,
|
||||
shift=args.sample_shift,
|
||||
sample_solver=args.sample_solver,
|
||||
sampling_steps=3,
|
||||
guide_scale=args.sample_guide_scale,
|
||||
seed=args.base_seed,
|
||||
offload_model=args.offload_model)
|
||||
|
||||
logging.info("Generating video ...")
|
||||
video = wan_i2v.generate(
|
||||
args.prompt,
|
||||
@ -481,8 +555,24 @@ def generate(args):
|
||||
dit_fsdp=args.dit_fsdp,
|
||||
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
||||
t5_cpu=args.t5_cpu,
|
||||
profiler=profiler
|
||||
)
|
||||
|
||||
logging.info("Warming up WanFLF2V pipeline ...")
|
||||
with torch.no_grad():
|
||||
_ = wan_flf2v.generate(
|
||||
args.prompt,
|
||||
first_frame,
|
||||
last_frame,
|
||||
max_area=MAX_AREA_CONFIGS[args.size],
|
||||
frame_num=args.frame_num,
|
||||
shift=args.sample_shift,
|
||||
sample_solver=args.sample_solver,
|
||||
sampling_steps=3,
|
||||
guide_scale=args.sample_guide_scale,
|
||||
seed=args.base_seed,
|
||||
offload_model=args.offload_model)
|
||||
|
||||
logging.info("Generating video ...")
|
||||
video = wan_flf2v.generate(
|
||||
args.prompt,
|
||||
@ -529,6 +619,7 @@ def generate(args):
|
||||
dit_fsdp=args.dit_fsdp,
|
||||
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
||||
t5_cpu=args.t5_cpu,
|
||||
profiler=profiler
|
||||
)
|
||||
|
||||
src_video, src_mask, src_ref_images = wan_vace.prepare_source(
|
||||
@ -537,6 +628,22 @@ def generate(args):
|
||||
args.src_ref_images.split(',')
|
||||
], args.frame_num, SIZE_CONFIGS[args.size], device)
|
||||
|
||||
logging.info("Warming up VACE pipeline ...")
|
||||
with torch.no_grad():
|
||||
_ = wan_vace.generate(
|
||||
args.prompt,
|
||||
src_video,
|
||||
src_mask,
|
||||
src_ref_images,
|
||||
size=SIZE_CONFIGS[args.size],
|
||||
frame_num=args.frame_num,
|
||||
shift=args.sample_shift,
|
||||
sample_solver=args.sample_solver,
|
||||
sampling_steps=3,
|
||||
guide_scale=args.sample_guide_scale,
|
||||
seed=args.base_seed,
|
||||
offload_model=args.offload_model)
|
||||
|
||||
logging.info(f"Generating video...")
|
||||
video = wan_vace.generate(
|
||||
args.prompt,
|
||||
@ -554,6 +661,9 @@ def generate(args):
|
||||
else:
|
||||
raise ValueError(f"Unkown task type: {args.task}")
|
||||
|
||||
if args.profile and rank == 0:
|
||||
_finalize_profiler(profiler)
|
||||
|
||||
if rank == 0:
|
||||
if args.save_file is None:
|
||||
formatted_time = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
|
||||
@ -3,11 +3,17 @@ import gc
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
from torch.cuda import empty_cache
|
||||
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
||||
from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
|
||||
from torch.distributed.fsdp.wrap import lambda_auto_wrap_policy
|
||||
from torch.distributed.utils import _free_storage
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
from torch_musa.core.memory import empty_cache
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
def shard_model(
|
||||
model,
|
||||
@ -40,4 +46,4 @@ def free_model(model):
|
||||
_free_storage(m._handle.flat_param.data)
|
||||
del model
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
|
||||
@ -6,7 +6,18 @@ from xfuser.core.distributed import (
|
||||
get_sequence_parallel_world_size,
|
||||
get_sp_group,
|
||||
)
|
||||
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
|
||||
from xfuser.core.long_ctx_attention import xFuserLongContextAttention, AttnType
|
||||
attn_type:AttnType = AttnType.FA
|
||||
|
||||
from wan.modules.rope import rope_apply_pytorch, rope_apply_triton
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
attn_type = AttnType.TORCH
|
||||
torch.backends.mudnn.allow_tf32 = True
|
||||
except ImportError:
|
||||
torch_musa = None
|
||||
|
||||
from ..modules.model import sinusoidal_embedding_1d
|
||||
|
||||
@ -25,7 +36,7 @@ def pad_freqs(original_tensor, target_len):
|
||||
|
||||
|
||||
@amp.autocast(enabled=False)
|
||||
def rope_apply(x, grid_sizes, freqs):
|
||||
def rope_apply(x, grid_sizes, freqs, sp_size, sp_rank):
|
||||
"""
|
||||
x: [B, L, N, C].
|
||||
grid_sizes: [B, 3].
|
||||
@ -51,8 +62,6 @@ def rope_apply(x, grid_sizes, freqs):
|
||||
dim=-1).reshape(seq_len, 1, -1)
|
||||
|
||||
# apply rotary embedding
|
||||
sp_size = get_sequence_parallel_world_size()
|
||||
sp_rank = get_sequence_parallel_rank()
|
||||
freqs_i = pad_freqs(freqs_i, s * sp_size)
|
||||
s_per_rank = s
|
||||
freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) *
|
||||
@ -109,9 +118,13 @@ def usp_dit_forward(
|
||||
if self.model_type == 'i2v':
|
||||
assert clip_fea is not None and y is not None
|
||||
# params
|
||||
dtype = self.patch_embedding.weight.dtype
|
||||
device = self.patch_embedding.weight.device
|
||||
if self.freqs.device != device:
|
||||
self.freqs = self.freqs.to(device)
|
||||
if self.freqs[0].dtype != dtype or self.freqs[0].device != device:
|
||||
self.freqs = (
|
||||
self.freqs[0].to(dtype=dtype, device=device),
|
||||
self.freqs[-1].to(dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
if self.model_type != 'vace' and y is not None:
|
||||
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
||||
@ -129,11 +142,9 @@ def usp_dit_forward(
|
||||
])
|
||||
|
||||
# time embeddings
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t).float())
|
||||
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
||||
assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t))
|
||||
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
||||
|
||||
# context
|
||||
context_lens = None
|
||||
@ -177,7 +188,7 @@ def usp_dit_forward(
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return [u.float() for u in x]
|
||||
return x
|
||||
|
||||
|
||||
def usp_attn_forward(self,
|
||||
@ -200,8 +211,12 @@ def usp_attn_forward(self,
|
||||
return q, k, v
|
||||
|
||||
q, k, v = qkv_fn(x)
|
||||
q = rope_apply(q, grid_sizes, freqs)
|
||||
k = rope_apply(k, grid_sizes, freqs)
|
||||
if torch_musa is None:
|
||||
q = rope_apply(q, grid_sizes, freqs, get_sequence_parallel_world_size(), get_sequence_parallel_rank())
|
||||
k = rope_apply(k, grid_sizes, freqs, get_sequence_parallel_world_size(), get_sequence_parallel_rank())
|
||||
else:
|
||||
q = rope_apply_pytorch(q, grid_sizes, freqs, get_sequence_parallel_world_size(), get_sequence_parallel_rank())
|
||||
k = rope_apply_pytorch(k, grid_sizes, freqs, get_sequence_parallel_world_size(), get_sequence_parallel_rank())
|
||||
|
||||
# TODO: We should use unpaded q,k,v for attention.
|
||||
# k_lens = seq_lens // get_sequence_parallel_world_size()
|
||||
@ -210,7 +225,7 @@ def usp_attn_forward(self,
|
||||
# k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0)
|
||||
# v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0)
|
||||
|
||||
x = xFuserLongContextAttention()(
|
||||
x = xFuserLongContextAttention(attn_type=attn_type)(
|
||||
None,
|
||||
query=half(q),
|
||||
key=half(k),
|
||||
|
||||
@ -6,27 +6,40 @@ import os
|
||||
import random
|
||||
import sys
|
||||
import types
|
||||
from time import perf_counter
|
||||
from contextlib import contextmanager
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
from torch.cuda import empty_cache, synchronize
|
||||
import torch.distributed as dist
|
||||
import torchvision.transforms.functional as TF
|
||||
from tqdm import tqdm
|
||||
|
||||
from .distributed.fsdp import shard_model
|
||||
from .modules.clip import CLIPModel
|
||||
from .modules.model import WanModel
|
||||
from .modules.t5 import T5EncoderModel
|
||||
from .modules.vae import WanVAE
|
||||
from .utils.fm_solvers import (
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
from torch_musa.core.memory import empty_cache
|
||||
from torch_musa.core.device import synchronize
|
||||
torch.backends.mudnn.allow_tf32 = True
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
from wan.distributed.fsdp import shard_model
|
||||
from wan.modules.clip import CLIPModel
|
||||
from wan.modules.model import WanModel
|
||||
from wan.modules.t5 import T5EncoderModel
|
||||
from wan.modules.vae import WanVAE
|
||||
from wan.utils.fm_solvers import (
|
||||
FlowDPMSolverMultistepScheduler,
|
||||
get_sampling_sigmas,
|
||||
retrieve_timesteps,
|
||||
)
|
||||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
from wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
from wan.utils.platform import get_device
|
||||
from wan.utils.memory_format import convert_conv3d_weight_memory_format
|
||||
|
||||
|
||||
class WanFLF2V:
|
||||
@ -42,6 +55,7 @@ class WanFLF2V:
|
||||
use_usp=False,
|
||||
t5_cpu=False,
|
||||
init_on_cpu=True,
|
||||
profiler=None,
|
||||
):
|
||||
r"""
|
||||
Initializes the image-to-video generation model components.
|
||||
@ -66,7 +80,7 @@ class WanFLF2V:
|
||||
init_on_cpu (`bool`, *optional*, defaults to True):
|
||||
Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
|
||||
"""
|
||||
self.device = torch.device(f"cuda:{device_id}")
|
||||
self.device = get_device(device_id)
|
||||
self.config = config
|
||||
self.rank = rank
|
||||
self.use_usp = use_usp
|
||||
@ -90,6 +104,7 @@ class WanFLF2V:
|
||||
self.vae = WanVAE(
|
||||
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
|
||||
device=self.device)
|
||||
convert_conv3d_weight_memory_format(self.vae.model, memory_format=torch.channels_last_3d)
|
||||
|
||||
self.clip = CLIPModel(
|
||||
dtype=config.clip_dtype,
|
||||
@ -121,7 +136,8 @@ class WanFLF2V:
|
||||
self.sp_size = 1
|
||||
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
# dist.barrier()
|
||||
pass
|
||||
if dit_fsdp:
|
||||
self.model = shard_fn(self.model)
|
||||
else:
|
||||
@ -129,6 +145,7 @@ class WanFLF2V:
|
||||
self.model.to(self.device)
|
||||
|
||||
self.sample_neg_prompt = config.sample_neg_prompt
|
||||
self.profiler = profiler
|
||||
|
||||
def generate(self,
|
||||
input_prompt,
|
||||
@ -183,6 +200,11 @@ class WanFLF2V:
|
||||
- H: Frame height (from max_area)
|
||||
- W: Frame width from max_area)
|
||||
"""
|
||||
start_time = 0.0
|
||||
end_time = 0.0
|
||||
if self.rank == 0:
|
||||
start_time = perf_counter()
|
||||
|
||||
first_frame_size = first_frame.size
|
||||
last_frame_size = last_frame.size
|
||||
first_frame = TF.to_tensor(first_frame).sub_(0.5).div_(0.5).to(
|
||||
@ -275,6 +297,10 @@ class WanFLF2V:
|
||||
])[0]
|
||||
y = torch.concat([msk, y])
|
||||
|
||||
if self.rank == 0:
|
||||
end_time = perf_counter()
|
||||
logging.info(f"[preprocess and VAE encode] Elapsed time: {end_time - start_time:.2f} seconds")
|
||||
|
||||
@contextmanager
|
||||
def noop_no_sync():
|
||||
yield
|
||||
@ -323,10 +349,16 @@ class WanFLF2V:
|
||||
}
|
||||
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
|
||||
if self.rank == 0:
|
||||
start_time = perf_counter()
|
||||
|
||||
self.model.to(self.device)
|
||||
for _, t in enumerate(tqdm(timesteps)):
|
||||
if self.profiler and self.rank == 0:
|
||||
self.profiler.step()
|
||||
|
||||
latent_model_input = [latent.to(self.device)]
|
||||
timestep = [t]
|
||||
|
||||
@ -336,12 +368,12 @@ class WanFLF2V:
|
||||
latent_model_input, t=timestep, **arg_c)[0].to(
|
||||
torch.device('cpu') if offload_model else self.device)
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
noise_pred_uncond = self.model(
|
||||
latent_model_input, t=timestep, **arg_null)[0].to(
|
||||
torch.device('cpu') if offload_model else self.device)
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
noise_pred = noise_pred_uncond + guide_scale * (
|
||||
noise_pred_cond - noise_pred_uncond)
|
||||
|
||||
@ -356,22 +388,30 @@ class WanFLF2V:
|
||||
generator=seed_g)[0]
|
||||
latent = temp_x0.squeeze(0)
|
||||
|
||||
x0 = [latent.to(self.device)]
|
||||
del latent_model_input, timestep
|
||||
if self.rank == 0:
|
||||
end_time = perf_counter()
|
||||
logging.info(f"[sampling time steps] Elapsed time: {end_time - start_time:.2f} seconds")
|
||||
|
||||
x0 = [latent.to(self.device)]
|
||||
del latent_model_input, timestep
|
||||
|
||||
if offload_model:
|
||||
self.model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
|
||||
if self.rank == 0:
|
||||
start_time = perf_counter()
|
||||
videos = self.vae.decode(x0)
|
||||
end_time = perf_counter()
|
||||
logging.info(f"[VAE decoding] Elapsed time: {end_time - start_time:.2f} seconds")
|
||||
|
||||
del noise, latent
|
||||
del sample_scheduler
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
synchronize()
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
# dist.barrier()
|
||||
pass
|
||||
|
||||
return videos[0] if self.rank == 0 else None
|
||||
|
||||
@ -6,27 +6,40 @@ import os
|
||||
import random
|
||||
import sys
|
||||
import types
|
||||
from time import perf_counter
|
||||
from contextlib import contextmanager
|
||||
from functools import partial
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
from torch.cuda import empty_cache, synchronize
|
||||
import torch.distributed as dist
|
||||
import torchvision.transforms.functional as TF
|
||||
from tqdm import tqdm
|
||||
|
||||
from .distributed.fsdp import shard_model
|
||||
from .modules.clip import CLIPModel
|
||||
from .modules.model import WanModel
|
||||
from .modules.t5 import T5EncoderModel
|
||||
from .modules.vae import WanVAE
|
||||
from .utils.fm_solvers import (
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
from torch_musa.core.memory import empty_cache
|
||||
from torch_musa.core.device import synchronize
|
||||
torch.backends.mudnn.allow_tf32 = True
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
from wan.distributed.fsdp import shard_model
|
||||
from wan.modules.clip import CLIPModel
|
||||
from wan.modules.model import WanModel
|
||||
from wan.modules.t5 import T5EncoderModel
|
||||
from wan.modules.vae import WanVAE
|
||||
from wan.utils.fm_solvers import (
|
||||
FlowDPMSolverMultistepScheduler,
|
||||
get_sampling_sigmas,
|
||||
retrieve_timesteps,
|
||||
)
|
||||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
from wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
from wan.utils.platform import get_device
|
||||
from wan.utils.memory_format import convert_conv3d_weight_memory_format
|
||||
|
||||
|
||||
class WanI2V:
|
||||
@ -42,6 +55,7 @@ class WanI2V:
|
||||
use_usp=False,
|
||||
t5_cpu=False,
|
||||
init_on_cpu=True,
|
||||
profiler=None,
|
||||
):
|
||||
r"""
|
||||
Initializes the image-to-video generation model components.
|
||||
@ -66,7 +80,7 @@ class WanI2V:
|
||||
init_on_cpu (`bool`, *optional*, defaults to True):
|
||||
Enable initializing Transformer Model on CPU. Only works without FSDP or USP.
|
||||
"""
|
||||
self.device = torch.device(f"cuda:{device_id}")
|
||||
self.device = get_device(device_id)
|
||||
self.config = config
|
||||
self.rank = rank
|
||||
self.use_usp = use_usp
|
||||
@ -90,6 +104,7 @@ class WanI2V:
|
||||
self.vae = WanVAE(
|
||||
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
|
||||
device=self.device)
|
||||
convert_conv3d_weight_memory_format(self.vae.model, memory_format=torch.channels_last_3d)
|
||||
|
||||
self.clip = CLIPModel(
|
||||
dtype=config.clip_dtype,
|
||||
@ -121,7 +136,8 @@ class WanI2V:
|
||||
self.sp_size = 1
|
||||
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
# dist.barrier()
|
||||
pass
|
||||
if dit_fsdp:
|
||||
self.model = shard_fn(self.model)
|
||||
else:
|
||||
@ -129,6 +145,7 @@ class WanI2V:
|
||||
self.model.to(self.device)
|
||||
|
||||
self.sample_neg_prompt = config.sample_neg_prompt
|
||||
self.profiler = profiler
|
||||
|
||||
def generate(self,
|
||||
input_prompt,
|
||||
@ -178,6 +195,11 @@ class WanI2V:
|
||||
- H: Frame height (from max_area)
|
||||
- W: Frame width from max_area)
|
||||
"""
|
||||
start_time = 0.0
|
||||
end_time = 0.0
|
||||
if self.rank == 0:
|
||||
start_time = perf_counter()
|
||||
|
||||
img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device)
|
||||
|
||||
F = frame_num
|
||||
@ -248,6 +270,10 @@ class WanI2V:
|
||||
])[0]
|
||||
y = torch.concat([msk, y])
|
||||
|
||||
if self.rank == 0:
|
||||
end_time = perf_counter()
|
||||
logging.info(f"[preprocess and VAE encode] Elapsed time: {end_time - start_time:.2f} seconds")
|
||||
|
||||
@contextmanager
|
||||
def noop_no_sync():
|
||||
yield
|
||||
@ -296,10 +322,16 @@ class WanI2V:
|
||||
}
|
||||
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
|
||||
if self.rank == 0:
|
||||
start_time = perf_counter()
|
||||
|
||||
self.model.to(self.device)
|
||||
for _, t in enumerate(tqdm(timesteps)):
|
||||
if self.profiler and self.rank == 0:
|
||||
self.profiler.step()
|
||||
|
||||
latent_model_input = [latent.to(self.device)]
|
||||
timestep = [t]
|
||||
|
||||
@ -309,12 +341,12 @@ class WanI2V:
|
||||
latent_model_input, t=timestep, **arg_c)[0].to(
|
||||
torch.device('cpu') if offload_model else self.device)
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
noise_pred_uncond = self.model(
|
||||
latent_model_input, t=timestep, **arg_null)[0].to(
|
||||
torch.device('cpu') if offload_model else self.device)
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
noise_pred = noise_pred_uncond + guide_scale * (
|
||||
noise_pred_cond - noise_pred_uncond)
|
||||
|
||||
@ -329,22 +361,30 @@ class WanI2V:
|
||||
generator=seed_g)[0]
|
||||
latent = temp_x0.squeeze(0)
|
||||
|
||||
x0 = [latent.to(self.device)]
|
||||
del latent_model_input, timestep
|
||||
if self.rank == 0:
|
||||
end_time = perf_counter()
|
||||
logging.info(f"[sampling time steps] Elapsed time: {end_time - start_time:.2f} seconds")
|
||||
|
||||
x0 = [latent.to(self.device)]
|
||||
del latent_model_input, timestep
|
||||
|
||||
if offload_model:
|
||||
self.model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
|
||||
if self.rank == 0:
|
||||
start_time = perf_counter()
|
||||
videos = self.vae.decode(x0)
|
||||
end_time = perf_counter()
|
||||
logging.info(f"[VAE decoding] Elapsed time: {end_time - start_time:.2f} seconds")
|
||||
|
||||
del noise, latent
|
||||
del sample_scheduler
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
synchronize()
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
# dist.barrier()
|
||||
pass
|
||||
|
||||
return videos[0] if self.rank == 0 else None
|
||||
|
||||
@ -1,4 +1,6 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
|
||||
try:
|
||||
@ -13,7 +15,14 @@ try:
|
||||
except ModuleNotFoundError:
|
||||
FLASH_ATTN_2_AVAILABLE = False
|
||||
|
||||
import warnings
|
||||
try:
|
||||
import torch_musa
|
||||
FLASH_ATTN_3_AVAILABLE = False
|
||||
FLASH_ATTN_2_AVAILABLE = False
|
||||
torch.backends.mudnn.allow_tf32 = True
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
|
||||
__all__ = [
|
||||
'flash_attention',
|
||||
@ -51,7 +60,7 @@ def flash_attention(
|
||||
"""
|
||||
half_dtypes = (torch.float16, torch.bfloat16)
|
||||
assert dtype in half_dtypes
|
||||
assert q.device.type == 'cuda' and q.size(-1) <= 256
|
||||
assert q.device.type in ("cuda", "musa") and q.size(-1) <= 256
|
||||
|
||||
# params
|
||||
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
|
||||
@ -172,8 +181,9 @@ def attention(
|
||||
k = k.transpose(1, 2).to(dtype)
|
||||
v = v.transpose(1, 2).to(dtype)
|
||||
|
||||
out = torch.nn.functional.scaled_dot_product_attention(
|
||||
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
|
||||
with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False):
|
||||
out = torch.nn.functional.scaled_dot_product_attention(
|
||||
q, k, v, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=causal, scale=softmax_scale)
|
||||
|
||||
out = out.transpose(1, 2).contiguous()
|
||||
return out
|
||||
|
||||
@ -6,12 +6,20 @@ import math
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.cuda.amp as amp
|
||||
import torchvision.transforms as T
|
||||
|
||||
from .attention import flash_attention
|
||||
from .tokenizers import HuggingfaceTokenizer
|
||||
from .xlm_roberta import XLMRoberta
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
from .attention import attention as flash_attention
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
__all__ = [
|
||||
'XLMRobertaCLIP',
|
||||
'clip_xlm_roberta_vit_h_14',
|
||||
@ -29,7 +37,7 @@ def pos_interpolate(pos, seq_len):
|
||||
return torch.cat([
|
||||
pos[:, :n],
|
||||
F.interpolate(
|
||||
pos[:, n:].float().reshape(1, src_grid, src_grid, -1).permute(
|
||||
pos[:, n:].reshape(1, src_grid, src_grid, -1).permute(
|
||||
0, 3, 1, 2),
|
||||
size=(tar_grid, tar_grid),
|
||||
mode='bicubic',
|
||||
@ -44,12 +52,6 @@ class QuickGELU(nn.Module):
|
||||
return x * torch.sigmoid(1.702 * x)
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
|
||||
def forward(self, x):
|
||||
return super().forward(x.float()).type_as(x)
|
||||
|
||||
|
||||
class SelfAttention(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
@ -82,7 +84,7 @@ class SelfAttention(nn.Module):
|
||||
|
||||
# compute attention
|
||||
p = self.attn_dropout if self.training else 0.0
|
||||
x = flash_attention(q, k, v, dropout_p=p, causal=self.causal, version=2)
|
||||
x = flash_attention(q, k, v, dropout_p=p, causal=self.causal)
|
||||
x = x.reshape(b, s, c)
|
||||
|
||||
# output
|
||||
@ -131,10 +133,10 @@ class AttentionBlock(nn.Module):
|
||||
self.norm_eps = norm_eps
|
||||
|
||||
# layers
|
||||
self.norm1 = LayerNorm(dim, eps=norm_eps)
|
||||
self.norm1 = nn.LayerNorm(dim, eps=norm_eps)
|
||||
self.attn = SelfAttention(dim, num_heads, causal, attn_dropout,
|
||||
proj_dropout)
|
||||
self.norm2 = LayerNorm(dim, eps=norm_eps)
|
||||
self.norm2 = nn.LayerNorm(dim, eps=norm_eps)
|
||||
if activation == 'swi_glu':
|
||||
self.mlp = SwiGLU(dim, int(dim * mlp_ratio))
|
||||
else:
|
||||
@ -177,7 +179,7 @@ class AttentionPool(nn.Module):
|
||||
self.to_q = nn.Linear(dim, dim)
|
||||
self.to_kv = nn.Linear(dim, dim * 2)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.norm = LayerNorm(dim, eps=norm_eps)
|
||||
self.norm = nn.LayerNorm(dim, eps=norm_eps)
|
||||
self.mlp = nn.Sequential(
|
||||
nn.Linear(dim, int(dim * mlp_ratio)),
|
||||
QuickGELU() if activation == 'quick_gelu' else nn.GELU(),
|
||||
@ -259,13 +261,13 @@ class VisionTransformer(nn.Module):
|
||||
self.dropout = nn.Dropout(embedding_dropout)
|
||||
|
||||
# transformer
|
||||
self.pre_norm = LayerNorm(dim, eps=norm_eps) if pre_norm else None
|
||||
self.pre_norm = nn.LayerNorm(dim, eps=norm_eps) if pre_norm else None
|
||||
self.transformer = nn.Sequential(*[
|
||||
AttentionBlock(dim, mlp_ratio, num_heads, post_norm, False,
|
||||
activation, attn_dropout, proj_dropout, norm_eps)
|
||||
for _ in range(num_layers)
|
||||
])
|
||||
self.post_norm = LayerNorm(dim, eps=norm_eps)
|
||||
self.post_norm = nn.LayerNorm(dim, eps=norm_eps)
|
||||
|
||||
# head
|
||||
if pool_type == 'token':
|
||||
@ -537,6 +539,6 @@ class CLIPModel:
|
||||
videos = self.transforms.transforms[-1](videos.mul_(0.5).add_(0.5))
|
||||
|
||||
# forward
|
||||
with torch.cuda.amp.autocast(dtype=self.dtype):
|
||||
with amp.autocast(dtype=self.dtype):
|
||||
out = self.model.visual(videos, use_31_block=True)
|
||||
return out
|
||||
|
||||
@ -7,7 +7,16 @@ import torch.nn as nn
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.models.modeling_utils import ModelMixin
|
||||
|
||||
from .attention import flash_attention
|
||||
from wan.modules.attention import flash_attention
|
||||
from wan.modules.rope import rope_apply_pytorch
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
from wan.modules.attention import attention as flash_attention
|
||||
torch.backends.mudnn.allow_tf32 = True
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
__all__ = ['WanModel']
|
||||
|
||||
@ -19,7 +28,7 @@ def sinusoidal_embedding_1d(dim, position):
|
||||
# preprocess
|
||||
assert dim % 2 == 0
|
||||
half = dim // 2
|
||||
position = position.type(torch.float64)
|
||||
position = position.type(torch.bfloat16)
|
||||
|
||||
# calculation
|
||||
sinusoid = torch.outer(
|
||||
@ -29,14 +38,33 @@ def sinusoidal_embedding_1d(dim, position):
|
||||
|
||||
|
||||
@amp.autocast(enabled=False)
|
||||
def rope_params(max_seq_len, dim, theta=10000):
|
||||
def rope_params_real(
|
||||
max_seq_len, dim, theta=10000, dtype=torch.float32, device=torch.device("cpu")
|
||||
):
|
||||
assert dim % 2 == 0
|
||||
freqs = torch.outer(
|
||||
torch.arange(max_seq_len),
|
||||
1.0 / torch.pow(theta,
|
||||
torch.arange(0, dim, 2).to(torch.float64).div(dim)))
|
||||
freqs = torch.polar(torch.ones_like(freqs), freqs)
|
||||
return freqs
|
||||
freqs_real = torch.outer(
|
||||
torch.arange(max_seq_len, dtype=dtype, device=device),
|
||||
1.0
|
||||
/ torch.pow(
|
||||
theta, torch.arange(0, dim, 2, dtype=dtype, device=device).div(dim)
|
||||
),
|
||||
)
|
||||
return torch.cos(freqs_real)
|
||||
|
||||
|
||||
@amp.autocast(enabled=False)
|
||||
def rope_params_imag(
|
||||
max_seq_len, dim, theta=10000, dtype=torch.float32, device=torch.device("cpu")
|
||||
):
|
||||
assert dim % 2 == 0
|
||||
freqs_imag = torch.outer(
|
||||
torch.arange(max_seq_len, dtype=dtype, device=device),
|
||||
1.0
|
||||
/ torch.pow(
|
||||
theta, torch.arange(0, dim, 2, dtype=dtype, device=device).div(dim)
|
||||
),
|
||||
)
|
||||
return torch.sin(freqs_imag)
|
||||
|
||||
|
||||
@amp.autocast(enabled=False)
|
||||
@ -89,19 +117,6 @@ class WanRMSNorm(nn.Module):
|
||||
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
|
||||
|
||||
|
||||
class WanLayerNorm(nn.LayerNorm):
|
||||
|
||||
def __init__(self, dim, eps=1e-6, elementwise_affine=False):
|
||||
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)
|
||||
|
||||
def forward(self, x):
|
||||
r"""
|
||||
Args:
|
||||
x(Tensor): Shape [B, L, C]
|
||||
"""
|
||||
return super().forward(x.float()).type_as(x)
|
||||
|
||||
|
||||
class WanSelfAttention(nn.Module):
|
||||
|
||||
def __init__(self,
|
||||
@ -145,10 +160,16 @@ class WanSelfAttention(nn.Module):
|
||||
return q, k, v
|
||||
|
||||
q, k, v = qkv_fn(x)
|
||||
if torch_musa is None:
|
||||
q = rope_apply(q, grid_sizes, freqs)
|
||||
k = rope_apply(k, grid_sizes, freqs)
|
||||
else:
|
||||
q = rope_apply_pytorch(q, grid_sizes, freqs)
|
||||
k = rope_apply_pytorch(k, grid_sizes, freqs)
|
||||
|
||||
x = flash_attention(
|
||||
q=rope_apply(q, grid_sizes, freqs),
|
||||
k=rope_apply(k, grid_sizes, freqs),
|
||||
q=q,
|
||||
k=k,
|
||||
v=v,
|
||||
k_lens=seq_lens,
|
||||
window_size=self.window_size)
|
||||
@ -256,10 +277,10 @@ class WanAttentionBlock(nn.Module):
|
||||
self.eps = eps
|
||||
|
||||
# layers
|
||||
self.norm1 = WanLayerNorm(dim, eps)
|
||||
self.norm1 = nn.LayerNorm(dim, eps, elementwise_affine=False)
|
||||
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
|
||||
eps)
|
||||
self.norm3 = WanLayerNorm(
|
||||
self.norm3 = nn.LayerNorm(
|
||||
dim, eps,
|
||||
elementwise_affine=True) if cross_attn_norm else nn.Identity()
|
||||
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
|
||||
@ -267,7 +288,7 @@ class WanAttentionBlock(nn.Module):
|
||||
(-1, -1),
|
||||
qk_norm,
|
||||
eps)
|
||||
self.norm2 = WanLayerNorm(dim, eps)
|
||||
self.norm2 = nn.LayerNorm(dim, eps, elementwise_affine=False)
|
||||
self.ffn = nn.Sequential(
|
||||
nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'),
|
||||
nn.Linear(ffn_dim, dim))
|
||||
@ -293,24 +314,19 @@ class WanAttentionBlock(nn.Module):
|
||||
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
|
||||
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
||||
"""
|
||||
assert e.dtype == torch.float32
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
e = (self.modulation + e).chunk(6, dim=1)
|
||||
assert e[0].dtype == torch.float32
|
||||
e = (self.modulation + e).chunk(6, dim=1)
|
||||
|
||||
# self-attention
|
||||
y = self.self_attn(
|
||||
self.norm1(x).float() * (1 + e[1]) + e[0], seq_lens, grid_sizes,
|
||||
self.norm1(x) * (1 + e[1]) + e[0], seq_lens, grid_sizes,
|
||||
freqs)
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
x = x + y * e[2]
|
||||
x = x + y * e[2]
|
||||
|
||||
# cross-attention & ffn function
|
||||
def cross_attn_ffn(x, context, context_lens, e):
|
||||
x = x + self.cross_attn(self.norm3(x), context, context_lens)
|
||||
y = self.ffn(self.norm2(x).float() * (1 + e[4]) + e[3])
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
x = x + y * e[5]
|
||||
y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3])
|
||||
x = x + y * e[5]
|
||||
return x
|
||||
|
||||
x = cross_attn_ffn(x, context, context_lens, e)
|
||||
@ -328,7 +344,7 @@ class Head(nn.Module):
|
||||
|
||||
# layers
|
||||
out_dim = math.prod(patch_size) * out_dim
|
||||
self.norm = WanLayerNorm(dim, eps)
|
||||
self.norm = nn.LayerNorm(dim, eps, elementwise_affine=False)
|
||||
self.head = nn.Linear(dim, out_dim)
|
||||
|
||||
# modulation
|
||||
@ -340,10 +356,8 @@ class Head(nn.Module):
|
||||
x(Tensor): Shape [B, L1, C]
|
||||
e(Tensor): Shape [B, C]
|
||||
"""
|
||||
assert e.dtype == torch.float32
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
|
||||
x = (self.head(self.norm(x) * (1 + e[1]) + e[0]))
|
||||
e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
|
||||
x = self.head(self.norm(x) * (1 + e[1]) + e[0])
|
||||
return x
|
||||
|
||||
|
||||
@ -477,12 +491,33 @@ class WanModel(ModelMixin, ConfigMixin):
|
||||
# buffers (don't use register_buffer otherwise dtype will be changed in to())
|
||||
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
|
||||
d = dim // num_heads
|
||||
self.freqs = torch.cat([
|
||||
rope_params(1024, d - 4 * (d // 6)),
|
||||
rope_params(1024, 2 * (d // 6)),
|
||||
rope_params(1024, 2 * (d // 6))
|
||||
],
|
||||
dim=1)
|
||||
if torch_musa is None:
|
||||
self.freqs = torch.cat(
|
||||
[
|
||||
rope_params(1024, d - 4 * (d // 6)),
|
||||
rope_params(1024, 2 * (d // 6)),
|
||||
rope_params(1024, 2 * (d // 6)),
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
else:
|
||||
freqs_real = torch.cat(
|
||||
[
|
||||
rope_params_real(1024, d - 4 * (d // 6)),
|
||||
rope_params_real(1024, 2 * (d // 6)),
|
||||
rope_params_real(1024, 2 * (d // 6)),
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
freqs_imag = torch.cat(
|
||||
[
|
||||
rope_params_imag(1024, d - 4 * (d // 6)),
|
||||
rope_params_imag(1024, 2 * (d // 6)),
|
||||
rope_params_imag(1024, 2 * (d // 6)),
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
self.freqs = (freqs_real, freqs_imag)
|
||||
|
||||
if model_type == 'i2v' or model_type == 'flf2v':
|
||||
self.img_emb = MLPProj(1280, dim, flf_pos_emb=model_type == 'flf2v')
|
||||
@ -523,9 +558,17 @@ class WanModel(ModelMixin, ConfigMixin):
|
||||
if self.model_type == 'i2v' or self.model_type == 'flf2v':
|
||||
assert clip_fea is not None and y is not None
|
||||
# params
|
||||
dtype = self.patch_embedding.weight.dtype
|
||||
device = self.patch_embedding.weight.device
|
||||
if self.freqs.device != device:
|
||||
self.freqs = self.freqs.to(device)
|
||||
if torch_musa is None:
|
||||
if self.freqs.dtype != dtype or self.freqs.device != device:
|
||||
self.freqs = self.freqs.to(dtype=dtype, device=device)
|
||||
else:
|
||||
if self.freqs[0].dtype != dtype or self.freqs[0].device != device:
|
||||
self.freqs = (
|
||||
self.freqs[0].to(dtype=dtype, device=device),
|
||||
self.freqs[-1].to(dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
if y is not None:
|
||||
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
||||
@ -543,11 +586,9 @@ class WanModel(ModelMixin, ConfigMixin):
|
||||
])
|
||||
|
||||
# time embeddings
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t).float())
|
||||
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
||||
assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t))
|
||||
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
||||
|
||||
# context
|
||||
context_lens = None
|
||||
@ -579,7 +620,7 @@ class WanModel(ModelMixin, ConfigMixin):
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return [u.float() for u in x]
|
||||
return x
|
||||
|
||||
def unpatchify(self, x, grid_sizes):
|
||||
r"""
|
||||
|
||||
317
wan/modules/rope.py
Normal file
317
wan/modules/rope.py
Normal file
@ -0,0 +1,317 @@
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import triton
|
||||
import triton.language as tl
|
||||
import torch
|
||||
|
||||
|
||||
def pad_tensor(
|
||||
original_tensor: torch.tensor, target_len: int, pad_value: float = 0.0
|
||||
) -> torch.tensor:
|
||||
seq_len, s1, s2 = original_tensor.shape
|
||||
pad_size = target_len - seq_len
|
||||
padding_tensor = torch.full(
|
||||
(pad_size, s1, s2),
|
||||
pad_value,
|
||||
dtype=original_tensor.dtype,
|
||||
device=original_tensor.device,
|
||||
)
|
||||
padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
|
||||
return padded_tensor
|
||||
|
||||
|
||||
def rope_apply_pytorch(
|
||||
x: torch.tensor,
|
||||
grid_sizes: torch.tensor,
|
||||
freqs: Tuple[torch.tensor],
|
||||
sp_size: Optional[int] = None,
|
||||
sp_rank: Optional[int] = None,
|
||||
) -> torch.tensor:
|
||||
"""
|
||||
x: [B, L, N, C].
|
||||
grid_sizes: [B, 3].
|
||||
freqs: [M, C // 2].
|
||||
"""
|
||||
s, n, c = x.size(1), x.size(2), x.size(3) // 2
|
||||
c0 = c - 2 * (c // 3)
|
||||
c1 = c // 3
|
||||
c2 = c // 3
|
||||
|
||||
# split freqs
|
||||
freqs_real = freqs[0].split([c0, c1, c2], dim=1)
|
||||
freqs_imag = freqs[-1].split([c0, c1, c2], dim=1)
|
||||
|
||||
# loop over samples
|
||||
output = []
|
||||
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
||||
seq_len = f * h * w
|
||||
|
||||
# precompute multipliers
|
||||
x_i = x[i, :seq_len].reshape(s, n, -1, 2)
|
||||
x_real = x_i[..., 0]
|
||||
x_imag = x_i[..., 1]
|
||||
freqs_real = torch.cat(
|
||||
[
|
||||
freqs_real[0][:f].view(f, 1, 1, c0).expand(f, h, w, c0),
|
||||
freqs_real[1][:h].view(1, h, 1, c1).expand(f, h, w, c1),
|
||||
freqs_real[2][:w].view(1, 1, w, c2).expand(f, h, w, c2),
|
||||
],
|
||||
dim=-1,
|
||||
).reshape(seq_len, 1, -1)
|
||||
freqs_imag = torch.cat(
|
||||
[
|
||||
freqs_imag[0][:f].view(f, 1, 1, c0).expand(f, h, w, c0),
|
||||
freqs_imag[1][:h].view(1, h, 1, c1).expand(f, h, w, c1),
|
||||
freqs_imag[2][:w].view(1, 1, w, c2).expand(f, h, w, c2),
|
||||
],
|
||||
dim=-1,
|
||||
).reshape(seq_len, 1, -1)
|
||||
|
||||
if sp_rank is None:
|
||||
freqs_real_rank = freqs_real
|
||||
freqs_imag_rank = freqs_imag
|
||||
else:
|
||||
freqs_real = pad_tensor(freqs_real, s * sp_size, 1.0)
|
||||
freqs_imag = pad_tensor(freqs_imag, s * sp_size, 0.0)
|
||||
freqs_real_rank = freqs_real[(sp_rank * s) : ((sp_rank + 1) * s), :, :]
|
||||
freqs_imag_rank = freqs_imag[(sp_rank * s) : ((sp_rank + 1) * s), :, :]
|
||||
|
||||
out_real = x_real * freqs_real_rank - x_imag * freqs_imag_rank
|
||||
out_imag = x_real * freqs_imag_rank + x_imag * freqs_real_rank
|
||||
|
||||
x_out = torch.stack([out_real, out_imag], dim=-1).flatten(2)
|
||||
x_out = torch.cat([x_out, x[i, seq_len:]], dim=0)
|
||||
|
||||
# append to collection
|
||||
output.append(x_out)
|
||||
|
||||
return torch.stack(output)
|
||||
|
||||
|
||||
@triton.jit
|
||||
def rope_kernel(
|
||||
x_ptr, # [B, S, N, 2C]
|
||||
grid_sizes_ptr, # [B, 3]
|
||||
freqs_real_ptr, # [M, C]
|
||||
freqs_imag_ptr, # [M, C]
|
||||
output_ptr, # [B, S, N, 2C]
|
||||
sp_size, # SP world size
|
||||
sp_rank, # SP rank
|
||||
B,
|
||||
S,
|
||||
N: tl.constexpr,
|
||||
C: tl.constexpr,
|
||||
M: tl.constexpr,
|
||||
CfM: tl.constexpr,
|
||||
ChM: tl.constexpr,
|
||||
CwM: tl.constexpr,
|
||||
SEQ_BLOCK: tl.constexpr,
|
||||
HEADS_BLOCK: tl.constexpr,
|
||||
):
|
||||
Cf = C - 2 * (C // 3)
|
||||
Ch = C // 3
|
||||
Cw = C // 3
|
||||
|
||||
batch_idx = tl.program_id(0)
|
||||
seqlen_group_idx = tl.program_id(1)
|
||||
head_group_idx = tl.program_id(2)
|
||||
|
||||
base = batch_idx * 3
|
||||
F = tl.load(grid_sizes_ptr + base + 0)
|
||||
H = tl.load(grid_sizes_ptr + base + 1)
|
||||
W = tl.load(grid_sizes_ptr + base + 2)
|
||||
seq_len = F * H * W
|
||||
|
||||
global_offset = sp_rank * S + seqlen_group_idx * SEQ_BLOCK
|
||||
seq_indices = global_offset + tl.arange(0, SEQ_BLOCK)
|
||||
|
||||
limit = tl.minimum(seq_len, S * sp_size)
|
||||
seq_mask = seq_indices < limit
|
||||
seq_indices = tl.where(seq_mask, seq_indices, 0)
|
||||
|
||||
HW = H * W
|
||||
f_idx = seq_indices // HW
|
||||
rem = seq_indices - f_idx * HW
|
||||
h_idx = rem // W
|
||||
w_idx = rem - h_idx * W
|
||||
|
||||
freq_offset_cf = tl.arange(0, CfM) # 第1段列偏移 [0, Cf)
|
||||
freq_offset_ch = Cf + tl.arange(0, ChM) # 第2段列偏移 [Cf, Cf+Ch)
|
||||
freq_offset_cw = Cf + Ch + tl.arange(0, CwM) # 第3段列偏移 [Cf+Ch, C)
|
||||
# 按照每个序列位置取对应频率值 (利用广播计算每个位置不同行的值)
|
||||
# 频率表取值地址 = idx * C + col_offset
|
||||
freq_addr_cf = f_idx[:, None] * C + freq_offset_cf[None, :]
|
||||
freq_addr_ch = h_idx[:, None] * C + freq_offset_ch[None, :]
|
||||
freq_addr_cw = w_idx[:, None] * C + freq_offset_cw[None, :]
|
||||
|
||||
freqs_real_cf = tl.load(
|
||||
freqs_real_ptr + freq_addr_cf,
|
||||
mask=(seq_mask[:, None] & (freq_offset_cf[None, :] < Cf)),
|
||||
other=1.0,
|
||||
).to(tl.float32)
|
||||
freqs_imag_cf = tl.load(
|
||||
freqs_imag_ptr + freq_addr_cf,
|
||||
mask=(seq_mask[:, None] & (freq_offset_cf[None, :] < Cf)),
|
||||
other=1.0,
|
||||
).to(tl.float32)
|
||||
freqs_real_ch = tl.load(
|
||||
freqs_real_ptr + freq_addr_ch,
|
||||
mask=(seq_mask[:, None] & (freq_offset_ch[None, :] < Cf + Ch)),
|
||||
other=1.0,
|
||||
).to(tl.float32)
|
||||
freqs_imag_ch = tl.load(
|
||||
freqs_imag_ptr + freq_addr_ch,
|
||||
mask=(seq_mask[:, None] & (freq_offset_ch[None, :] < Cf + Ch)),
|
||||
other=1.0,
|
||||
).to(tl.float32)
|
||||
freqs_real_cw = tl.load(
|
||||
freqs_real_ptr + freq_addr_cw,
|
||||
mask=(seq_mask[:, None] & (freq_offset_cw[None, :] < C)),
|
||||
other=1.0,
|
||||
).to(tl.float32)
|
||||
freqs_imag_cw = tl.load(
|
||||
freqs_imag_ptr + freq_addr_cw,
|
||||
mask=(seq_mask[:, None] & (freq_offset_cw[None, :] < C)),
|
||||
other=1.0,
|
||||
).to(tl.float32)
|
||||
|
||||
# 将频率值扩展维度以便与x相乘 (在head维度上广播)
|
||||
freqs_real_cf = freqs_real_cf[:, None, :] # [SEQ_BLOCK, 1, Cf]
|
||||
freqs_imag_cf = freqs_imag_cf[:, None, :]
|
||||
freqs_real_ch = freqs_real_ch[:, None, :]
|
||||
freqs_imag_ch = freqs_imag_ch[:, None, :]
|
||||
freqs_real_cw = freqs_real_cw[:, None, :]
|
||||
freqs_imag_cw = freqs_imag_cw[:, None, :]
|
||||
|
||||
# 加载输入x对应块的实部和虚部 (形状: [SEQ_BLOCK, HEADS_BLOCK, C])
|
||||
seq_offset = seqlen_group_idx * SEQ_BLOCK + tl.arange(0, SEQ_BLOCK)
|
||||
head_offset = head_group_idx * HEADS_BLOCK + tl.arange(0, HEADS_BLOCK)
|
||||
# 计算x_ptr偏移地址
|
||||
base_offset = batch_idx * S * N * 2 * C
|
||||
seq_head_offset = (
|
||||
base_offset
|
||||
+ seq_offset[:, None, None] * (N * 2 * C)
|
||||
+ head_offset[None, :, None] * (2 * C)
|
||||
)
|
||||
x_mask = (seq_offset < S)[:, None, None] & (head_offset < N)[None, :, None]
|
||||
|
||||
# 加载输入 x 的对应通道段数据,超出实际长度部分掩码为0
|
||||
# 段1:通道 [0, Cf-1]
|
||||
chan_cf = tl.arange(0, CfM * 2)
|
||||
mask_2cf_chan = chan_cf < Cf * 2
|
||||
x_cf = tl.load(
|
||||
x_ptr + seq_head_offset + chan_cf[None, None, :],
|
||||
mask=(x_mask & mask_2cf_chan[None, None, :]),
|
||||
other=0.0,
|
||||
).to(tl.float32)
|
||||
x_cf = x_cf.reshape(
|
||||
SEQ_BLOCK, HEADS_BLOCK, CfM, 2
|
||||
) # [SEQ_BLOCK, HEADS_BLOCK, CfM, 2]
|
||||
x_real_cf, x_imag_cf = x_cf.split()
|
||||
|
||||
# 计算 RoPE 旋转(段1)
|
||||
out_real_cf = x_real_cf * freqs_real_cf - x_imag_cf * freqs_imag_cf
|
||||
out_imag_cf = x_real_cf * freqs_imag_cf + x_imag_cf * freqs_real_cf
|
||||
|
||||
out_cf = tl.interleave(out_real_cf, out_imag_cf) # [SEQ_BLOCK, HEADS_BLOCK, CfM, 2]
|
||||
tl.store(
|
||||
output_ptr + seq_head_offset + chan_cf[None, None, :],
|
||||
out_cf,
|
||||
mask=(x_mask & mask_2cf_chan[None, None, :]),
|
||||
)
|
||||
|
||||
# 段2:通道 [Cf, Cf+Ch-1]
|
||||
chan_ch = tl.arange(0, ChM * 2) + Cf * 2
|
||||
mask_2ch_chan = chan_ch < 2 * (Cf + Ch)
|
||||
x_ch = tl.load(
|
||||
x_ptr + seq_head_offset + chan_ch[None, None, :],
|
||||
mask=(x_mask & mask_2ch_chan[None, None, :]),
|
||||
other=0.0,
|
||||
).to(tl.float32)
|
||||
x_ch = x_ch.reshape(SEQ_BLOCK, HEADS_BLOCK, ChM, 2)
|
||||
x_real_ch, x_imag_ch = x_ch.split()
|
||||
out_real_ch = x_real_ch * freqs_real_ch - x_imag_ch * freqs_imag_ch
|
||||
out_imag_ch = x_real_ch * freqs_imag_ch + x_imag_ch * freqs_real_ch
|
||||
|
||||
out_ch = tl.interleave(out_real_ch, out_imag_ch) # [SEQ_BLOCK, HEADS_BLOCK, ChM, 2]
|
||||
tl.store(
|
||||
output_ptr + seq_head_offset + chan_ch[None, None, :],
|
||||
out_ch,
|
||||
mask=(x_mask & mask_2ch_chan[None, None, :]),
|
||||
)
|
||||
|
||||
# 段3:通道 [Cf+Ch, C-1]
|
||||
chan_cw = tl.arange(0, CwM * 2) + (Cf + Ch) * 2
|
||||
mask_2cw_chan = chan_cw < 2 * C
|
||||
x_cw = tl.load(
|
||||
x_ptr + seq_head_offset + chan_cw[None, None, :],
|
||||
mask=(x_mask & mask_2cw_chan[None, None, :]),
|
||||
other=0.0,
|
||||
).to(tl.float32)
|
||||
x_cw = x_cw.reshape(SEQ_BLOCK, HEADS_BLOCK, CwM, 2)
|
||||
x_real_cw, x_imag_cw = x_cw.split()
|
||||
out_real_cw = x_real_cw * freqs_real_cw - x_imag_cw * freqs_imag_cw
|
||||
out_imag_cw = x_real_cw * freqs_imag_cw + x_imag_cw * freqs_real_cw
|
||||
|
||||
out_cw = tl.interleave(out_real_cw, out_imag_cw)
|
||||
tl.store(
|
||||
output_ptr + seq_head_offset + chan_cw[None, None, :],
|
||||
out_cw,
|
||||
mask=(x_mask & mask_2cw_chan[None, None, :]),
|
||||
)
|
||||
|
||||
|
||||
@torch._dynamo.disable
|
||||
def rope_apply_triton(
|
||||
x: torch.tensor,
|
||||
grid_sizes: torch.tensor,
|
||||
freqs: Tuple[torch.tensor],
|
||||
sp_size: Optional[int] = None,
|
||||
sp_rank: Optional[int] = None,
|
||||
) -> torch.tensor:
|
||||
"""
|
||||
x: [1, 9450, 40, 128]
|
||||
grid_sizes: [[21, 45, 80]]
|
||||
freqs_real: [1024, 64]
|
||||
freqs_imag: [1024, 64]
|
||||
"""
|
||||
B, S, N, C = x.shape
|
||||
C = C // 2
|
||||
Cf = C - 2 * (C // 3) # 第一维度频率长度
|
||||
Ch = C // 3 # 第二维度频率长度
|
||||
Cw = C // 3 # 第三维度频率长度
|
||||
M = freqs[0].shape[0]
|
||||
|
||||
SEQ_BLOCK = 64 # 每个线程块处理的序列长度
|
||||
HEADS_BLOCK = 8 # 每个线程块处理的头数
|
||||
|
||||
if sp_rank is None:
|
||||
sp_size = 1
|
||||
sp_rank = 0
|
||||
|
||||
grid_sizes = grid_sizes.to(device=x.device)
|
||||
output = torch.empty_like(x)
|
||||
|
||||
rope_kernel[(B, triton.cdiv(S, SEQ_BLOCK), triton.cdiv(N, HEADS_BLOCK))](
|
||||
x,
|
||||
grid_sizes,
|
||||
freqs[0],
|
||||
freqs[-1],
|
||||
output,
|
||||
sp_size,
|
||||
sp_rank,
|
||||
B,
|
||||
S,
|
||||
N=N,
|
||||
C=C,
|
||||
M=M,
|
||||
CfM=triton.next_power_of_2(Cf),
|
||||
ChM=triton.next_power_of_2(Ch),
|
||||
CwM=triton.next_power_of_2(Cw),
|
||||
SEQ_BLOCK=SEQ_BLOCK,
|
||||
HEADS_BLOCK=HEADS_BLOCK,
|
||||
num_warps=32,
|
||||
num_stages=3,
|
||||
)
|
||||
|
||||
return output.float()
|
||||
@ -7,7 +7,13 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .tokenizers import HuggingfaceTokenizer
|
||||
try:
|
||||
import torch_musa
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
from wan.modules.tokenizers import HuggingfaceTokenizer
|
||||
from wan.utils.platform import get_device
|
||||
|
||||
__all__ = [
|
||||
'T5Model',
|
||||
@ -59,10 +65,8 @@ class T5LayerNorm(nn.Module):
|
||||
self.weight = nn.Parameter(torch.ones(dim))
|
||||
|
||||
def forward(self, x):
|
||||
x = x * torch.rsqrt(x.float().pow(2).mean(dim=-1, keepdim=True) +
|
||||
x = x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) +
|
||||
self.eps)
|
||||
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
||||
x = x.type_as(self.weight)
|
||||
return self.weight * x
|
||||
|
||||
|
||||
@ -110,7 +114,7 @@ class T5Attention(nn.Module):
|
||||
|
||||
# compute attention (T5 does not use scaling)
|
||||
attn = torch.einsum('binc,bjnc->bnij', q, k) + attn_bias
|
||||
attn = F.softmax(attn.float(), dim=-1).type_as(attn)
|
||||
attn = F.softmax(attn, dim=-1)
|
||||
x = torch.einsum('bnij,bjnc->binc', attn, v)
|
||||
|
||||
# output
|
||||
@ -255,7 +259,7 @@ class T5RelativeEmbedding(nn.Module):
|
||||
|
||||
# embeddings for small and large positions
|
||||
max_exact = num_buckets // 2
|
||||
rel_pos_large = max_exact + (torch.log(rel_pos.float() / max_exact) /
|
||||
rel_pos_large = max_exact + (torch.log(rel_pos / max_exact) /
|
||||
math.log(self.max_dist / max_exact) *
|
||||
(num_buckets - max_exact)).long()
|
||||
rel_pos_large = torch.min(
|
||||
@ -475,7 +479,7 @@ class T5EncoderModel:
|
||||
self,
|
||||
text_len,
|
||||
dtype=torch.bfloat16,
|
||||
device=torch.cuda.current_device(),
|
||||
device=get_device(),
|
||||
checkpoint_path=None,
|
||||
tokenizer_path=None,
|
||||
shard_fn=None,
|
||||
|
||||
@ -4,6 +4,12 @@ import torch.cuda.amp as amp
|
||||
import torch.nn as nn
|
||||
from diffusers.configuration_utils import register_to_config
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
from .model import WanAttentionBlock, WanModel, sinusoidal_embedding_1d
|
||||
|
||||
|
||||
|
||||
@ -1,12 +1,21 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import logging
|
||||
from math import sqrt
|
||||
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn import Upsample
|
||||
from einops import rearrange
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
torch.backends.mudnn.allow_tf32 = True
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
from wan.utils.platform import get_device_type
|
||||
|
||||
__all__ = [
|
||||
'WanVAE',
|
||||
]
|
||||
@ -44,23 +53,17 @@ class RMS_norm(nn.Module):
|
||||
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
|
||||
|
||||
self.channel_first = channel_first
|
||||
self.scale = dim**0.5
|
||||
self.scale = sqrt(dim)
|
||||
self.gamma = nn.Parameter(torch.ones(shape))
|
||||
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.
|
||||
|
||||
def forward(self, x):
|
||||
return F.normalize(
|
||||
x, dim=(1 if self.channel_first else
|
||||
-1)) * self.scale * self.gamma + self.bias
|
||||
|
||||
|
||||
class Upsample(nn.Upsample):
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Fix bfloat16 support for nearest neighbor interpolation.
|
||||
"""
|
||||
return super().forward(x.float()).type_as(x)
|
||||
return (
|
||||
F.normalize(x.float(), dim=(1 if self.channel_first else -1)).type_as(x)
|
||||
* self.scale
|
||||
* self.gamma
|
||||
+ self.bias
|
||||
)
|
||||
|
||||
|
||||
class Resample(nn.Module):
|
||||
@ -253,6 +256,10 @@ class AttentionBlock(nn.Module):
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
attn_mask=None,
|
||||
dropout_p=0.0,
|
||||
is_causal=False,
|
||||
scale=None,
|
||||
)
|
||||
x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w)
|
||||
|
||||
@ -621,8 +628,8 @@ class WanVAE:
|
||||
def __init__(self,
|
||||
z_dim=16,
|
||||
vae_pth='cache/vae_step_411000.pth',
|
||||
dtype=torch.float,
|
||||
device="cuda"):
|
||||
dtype=torch.bfloat16,
|
||||
device=get_device_type()):
|
||||
self.dtype = dtype
|
||||
self.device = device
|
||||
|
||||
@ -648,16 +655,12 @@ class WanVAE:
|
||||
"""
|
||||
videos: A list of videos each with shape [C, T, H, W].
|
||||
"""
|
||||
with amp.autocast(dtype=self.dtype):
|
||||
return [
|
||||
self.model.encode(u.unsqueeze(0), self.scale).float().squeeze(0)
|
||||
for u in videos
|
||||
]
|
||||
return [
|
||||
self.model.encode(u.unsqueeze(0), self.scale).squeeze(0) for u in videos
|
||||
]
|
||||
|
||||
def decode(self, zs):
|
||||
with amp.autocast(dtype=self.dtype):
|
||||
return [
|
||||
self.model.decode(u.unsqueeze(0),
|
||||
self.scale).float().clamp_(-1, 1).squeeze(0)
|
||||
for u in zs
|
||||
]
|
||||
return [
|
||||
self.model.decode(u.unsqueeze(0), self.scale).clamp_(-1, 1).squeeze(0)
|
||||
for u in zs
|
||||
]
|
||||
|
||||
@ -6,24 +6,37 @@ import os
|
||||
import random
|
||||
import sys
|
||||
import types
|
||||
from time import perf_counter
|
||||
from contextlib import contextmanager
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
from torch.cuda import empty_cache, synchronize
|
||||
import torch.distributed as dist
|
||||
from tqdm import tqdm
|
||||
|
||||
from .distributed.fsdp import shard_model
|
||||
from .modules.model import WanModel
|
||||
from .modules.t5 import T5EncoderModel
|
||||
from .modules.vae import WanVAE
|
||||
from .utils.fm_solvers import (
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
from torch_musa.core.memory import empty_cache
|
||||
from torch_musa.core.device import synchronize
|
||||
torch.backends.mudnn.allow_tf32 = True
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
from wan.distributed.fsdp import shard_model
|
||||
from wan.modules.model import WanModel
|
||||
from wan.modules.t5 import T5EncoderModel
|
||||
from wan.modules.vae import WanVAE
|
||||
from wan.utils.fm_solvers import (
|
||||
FlowDPMSolverMultistepScheduler,
|
||||
get_sampling_sigmas,
|
||||
retrieve_timesteps,
|
||||
)
|
||||
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
from wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
from wan.utils.platform import get_device
|
||||
from wan.utils.memory_format import convert_conv3d_weight_memory_format
|
||||
|
||||
|
||||
class WanT2V:
|
||||
@ -38,6 +51,7 @@ class WanT2V:
|
||||
dit_fsdp=False,
|
||||
use_usp=False,
|
||||
t5_cpu=False,
|
||||
profiler=None,
|
||||
):
|
||||
r"""
|
||||
Initializes the Wan text-to-video generation model components.
|
||||
@ -60,7 +74,7 @@ class WanT2V:
|
||||
t5_cpu (`bool`, *optional*, defaults to False):
|
||||
Whether to place T5 model on CPU. Only works without t5_fsdp.
|
||||
"""
|
||||
self.device = torch.device(f"cuda:{device_id}")
|
||||
self.device = get_device(device_id)
|
||||
self.config = config
|
||||
self.rank = rank
|
||||
self.t5_cpu = t5_cpu
|
||||
@ -82,6 +96,7 @@ class WanT2V:
|
||||
self.vae = WanVAE(
|
||||
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
|
||||
device=self.device)
|
||||
convert_conv3d_weight_memory_format(self.vae.model, memory_format=torch.channels_last_3d)
|
||||
|
||||
logging.info(f"Creating WanModel from {checkpoint_dir}")
|
||||
self.model = WanModel.from_pretrained(checkpoint_dir)
|
||||
@ -103,13 +118,15 @@ class WanT2V:
|
||||
self.sp_size = 1
|
||||
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
# dist.barrier()
|
||||
pass
|
||||
if dit_fsdp:
|
||||
self.model = shard_fn(self.model)
|
||||
else:
|
||||
self.model.to(self.device)
|
||||
|
||||
self.sample_neg_prompt = config.sample_neg_prompt
|
||||
self.profiler = profiler
|
||||
|
||||
def generate(self,
|
||||
input_prompt,
|
||||
@ -155,6 +172,11 @@ class WanT2V:
|
||||
- H: Frame height (from size)
|
||||
- W: Frame width from size)
|
||||
"""
|
||||
start_time = 0.0
|
||||
end_time = 0.0
|
||||
if self.rank == 0:
|
||||
start_time = perf_counter()
|
||||
|
||||
# preprocess
|
||||
F = frame_num
|
||||
target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
|
||||
@ -194,6 +216,10 @@ class WanT2V:
|
||||
generator=seed_g)
|
||||
]
|
||||
|
||||
if self.rank == 0:
|
||||
end_time = perf_counter()
|
||||
logging.info(f"[preprocess] Elapsed time: {end_time - start_time:.2f} seconds")
|
||||
|
||||
@contextmanager
|
||||
def noop_no_sync():
|
||||
yield
|
||||
@ -230,13 +256,19 @@ class WanT2V:
|
||||
arg_c = {'context': context, 'seq_len': seq_len}
|
||||
arg_null = {'context': context_null, 'seq_len': seq_len}
|
||||
|
||||
if self.rank == 0:
|
||||
start_time = perf_counter()
|
||||
|
||||
self.model.to(self.device)
|
||||
for _, t in enumerate(tqdm(timesteps)):
|
||||
if self.profiler and self.rank == 0:
|
||||
self.profiler.step()
|
||||
|
||||
latent_model_input = latents
|
||||
timestep = [t]
|
||||
|
||||
timestep = torch.stack(timestep)
|
||||
|
||||
self.model.to(self.device)
|
||||
noise_pred_cond = self.model(
|
||||
latent_model_input, t=timestep, **arg_c)[0]
|
||||
noise_pred_uncond = self.model(
|
||||
@ -253,19 +285,27 @@ class WanT2V:
|
||||
generator=seed_g)[0]
|
||||
latents = [temp_x0.squeeze(0)]
|
||||
|
||||
if self.rank == 0:
|
||||
end_time = perf_counter()
|
||||
logging.info(f"[sampling time steps] Elapsed time: {end_time - start_time:.2f} seconds")
|
||||
|
||||
x0 = latents
|
||||
if offload_model:
|
||||
self.model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
if self.rank == 0:
|
||||
start_time = perf_counter()
|
||||
videos = self.vae.decode(x0)
|
||||
end_time = perf_counter()
|
||||
logging.info(f"[VAE decoding] Elapsed time: {end_time - start_time:.2f} seconds")
|
||||
|
||||
del noise, latents
|
||||
del sample_scheduler
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
synchronize()
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
# dist.barrier()
|
||||
pass
|
||||
|
||||
return videos[0] if self.rank == 0 else None
|
||||
|
||||
@ -5,9 +5,13 @@ from .fm_solvers import (
|
||||
)
|
||||
from .fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
from .vace_processor import VaceVideoProcessor
|
||||
from .platform import get_device, get_device_type, get_torch_distributed_backend
|
||||
from .memory_format import convert_conv3d_weight_memory_format
|
||||
from .chrono_inspector import ChronoInspector
|
||||
|
||||
__all__ = [
|
||||
'HuggingfaceTokenizer', 'get_sampling_sigmas', 'retrieve_timesteps',
|
||||
'FlowDPMSolverMultistepScheduler', 'FlowUniPCMultistepScheduler',
|
||||
'VaceVideoProcessor'
|
||||
'VaceVideoProcessor', 'get_device', 'get_device_type', 'get_torch_distributed_backend',
|
||||
'convert_conv3d_weight_memory_format', 'ChronoInspector'
|
||||
]
|
||||
|
||||
15
wan/utils/chrono_inspector.py
Normal file
15
wan/utils/chrono_inspector.py
Normal file
@ -0,0 +1,15 @@
|
||||
from time import perf_counter
|
||||
from logging import info
|
||||
|
||||
|
||||
class ChronoInspector(object):
|
||||
def __init__(self, name:str="Block"):
|
||||
self.name = name
|
||||
|
||||
def __enter__(self):
|
||||
self.start_time:float = perf_counter()
|
||||
return self # 可选:返回 self 以获取更多信息
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
end_time:float = perf_counter()
|
||||
info(f"[{self.name}] Elapsed time: {end_time - self.start_time:.2f} seconds")
|
||||
76
wan/utils/memory_format.py
Normal file
76
wan/utils/memory_format.py
Normal file
@ -0,0 +1,76 @@
|
||||
import torch
|
||||
|
||||
|
||||
def convert_conv3d_weight_memory_format(module:torch.nn.Module, memory_format:torch.memory_format):
|
||||
r"""Convert ``memory_format`` of ``nn.Conv3d.weight`` to ``memory_format``
|
||||
The conversion recursively applies to nested ``nn.Module``, including ``module``.
|
||||
Note that it only changes the memory_format, but not the semantics of each dimensions.
|
||||
This function is used to facilitate the computation to adopt NHWC kernels, which
|
||||
provides considerable speed up for fp16 data on CUDA devices with compute capability >= 7.0
|
||||
|
||||
.. note::
|
||||
Calling ``model.to(memory_format=torch.channels_last_3d)`` is more aggressive
|
||||
than the utility function ``convert_conv3d_weight_memory_format``. Any
|
||||
layer with 4d weight will be affected by ``model.to``, which does not
|
||||
necessarily benefit from conversion to specified ``memory_format``.
|
||||
One place we are confident in is that NDHWC(channels_last_3d) conversion for
|
||||
convolution in cuDNN, as it is beneficial to run convolution in NDHWC,
|
||||
even in cases where we have to apply permutation to input tensors.
|
||||
|
||||
Hence our strategy here is to convert only the weight of convolution to
|
||||
channels_last_3d. This ensures that;
|
||||
1. Fast convolution kernels will be used, the benefit of which could
|
||||
outweigh overhead of permutation (if input is not in the same format).
|
||||
2. No unnecessary permutations are applied on layers that do not benefit
|
||||
from memory_format conversion.
|
||||
|
||||
The optimal case is that, layers between convolution layers are channels
|
||||
last compatible. Input tensor would be permuted to channels last when it
|
||||
encounters the first convolution layer and stay in that memory format.
|
||||
Hence following convolutions will not need to permute its input tensor.
|
||||
|
||||
In case where a channels last incompatible layer is between convolution
|
||||
layers, we need to permute the input tensor back to contiguous format
|
||||
for that layer. The input tensor will go through the remaining layers in
|
||||
contiguous format and be permuted to channels last when it encounters
|
||||
another convolution layer. There's no point in propagating that
|
||||
permutation to an earlier layer, as most layers are quite agnostic to
|
||||
``memory_format``.
|
||||
|
||||
This claim might change when PyTorch supports fusion of permutation, as
|
||||
there might have been a better spot to fuse the permutation other than
|
||||
immediately before a convolution.
|
||||
|
||||
Args:
|
||||
module (nn.Module): ``nn.Conv3d`` & ``nn.ConvTranspose3d`` or container
|
||||
``nn.Module``
|
||||
memory_format: user specified ``memory_format``,
|
||||
e.g. ``torch.channels_last`` or ``torch.contiguous_format``
|
||||
|
||||
Returns:
|
||||
The original module with updated ``nn.Conv3d``
|
||||
|
||||
Example:
|
||||
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
|
||||
>>> # xdoctest: +REQUIRES(env:CUBLAS_WORKSPACE_CONFIG)
|
||||
>>> input = torch.randint(1, 10, (2, 8, 4, 4, 4), dtype=torch.float16, device="cuda")
|
||||
>>> model = nn.Sequential(
|
||||
>>> nn.Conv3d(8, 4, 3)).cuda().half()
|
||||
>>> # This is identical to:
|
||||
>>> # nn.utils.convert_conv3d_weight_memory_format(model, torch.channels_last_3d)
|
||||
>>> model = nn.utils.convert_conv3d_weight_memory_format(model, torch.channels_last_3d)
|
||||
>>> out = model(input)
|
||||
"""
|
||||
|
||||
# TODO: expand this to `_ConvNd` when channels_last support is extended
|
||||
# beyond only 4d tensors.
|
||||
if isinstance(module, (torch.nn.Conv3d, torch.nn.ConvTranspose3d)):
|
||||
weight_data = (
|
||||
module.weight.detach().clone().contiguous(memory_format=memory_format)
|
||||
)
|
||||
module.weight.data = weight_data.resize_(
|
||||
weight_data.size(), memory_format=memory_format
|
||||
)
|
||||
for child in module.children():
|
||||
convert_conv3d_weight_memory_format(child, memory_format)
|
||||
return module
|
||||
61
wan/utils/platform.py
Normal file
61
wan/utils/platform.py
Normal file
@ -0,0 +1,61 @@
|
||||
from typing import Optional, List
|
||||
|
||||
import torch
|
||||
|
||||
try:
|
||||
import torch_musa
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
|
||||
def _is_musa() -> bool:
|
||||
if torch_musa is None:
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
|
||||
def get_device(local_rank: Optional[int] = None) -> torch.device:
|
||||
if torch.cuda.is_available():
|
||||
return (
|
||||
torch.cuda.current_device()
|
||||
if local_rank is None
|
||||
else torch.device("cuda", local_rank)
|
||||
)
|
||||
elif _is_musa():
|
||||
return (
|
||||
torch.musa.current_device()
|
||||
if local_rank is None
|
||||
else torch.device("musa", local_rank)
|
||||
)
|
||||
else:
|
||||
return torch.device("cpu")
|
||||
|
||||
|
||||
def get_device_type() -> str:
|
||||
if torch.cuda.is_available():
|
||||
return "cuda"
|
||||
elif _is_musa():
|
||||
return "musa"
|
||||
else:
|
||||
return "cpu"
|
||||
|
||||
|
||||
def get_torch_distributed_backend() -> str:
|
||||
if torch.cuda.is_available():
|
||||
return "nccl"
|
||||
elif _is_musa():
|
||||
return "mccl"
|
||||
else:
|
||||
raise NotImplementedError("No Accelerators(NV/MTT GPU) available")
|
||||
|
||||
|
||||
def get_torch_profiler_activities() -> List[torch.profiler.ProfilerActivity]:
|
||||
activities: List[torch.profiler.ProfilerActivity] = [
|
||||
torch.profiler.ProfilerActivity.CPU
|
||||
]
|
||||
if torch.cuda.is_available():
|
||||
activities.append(torch.profiler.ProfilerActivity.CUDA)
|
||||
elif _is_musa():
|
||||
activities.append(torch.profiler.ProfilerActivity.MUSA)
|
||||
return activities
|
||||
72
wan/vace.py
72
wan/vace.py
@ -8,11 +8,13 @@ import sys
|
||||
import time
|
||||
import traceback
|
||||
import types
|
||||
from time import perf_counter
|
||||
from contextlib import contextmanager
|
||||
from functools import partial
|
||||
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
from torch.cuda import empty_cache, synchronize
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
import torch.nn.functional as F
|
||||
@ -20,8 +22,17 @@ import torchvision.transforms.functional as TF
|
||||
from PIL import Image
|
||||
from tqdm import tqdm
|
||||
|
||||
from .modules.vace_model import VaceWanModel
|
||||
from .text2video import (
|
||||
try:
|
||||
import torch_musa
|
||||
import torch_musa.core.amp as amp
|
||||
from torch_musa.core.memory import empty_cache
|
||||
from torch_musa.core.device import synchronize
|
||||
torch.backends.mudnn.allow_tf32 = True
|
||||
except ModuleNotFoundError:
|
||||
torch_musa = None
|
||||
|
||||
from wan.modules.vace_model import VaceWanModel
|
||||
from wan.text2video import (
|
||||
FlowDPMSolverMultistepScheduler,
|
||||
FlowUniPCMultistepScheduler,
|
||||
T5EncoderModel,
|
||||
@ -31,7 +42,9 @@ from .text2video import (
|
||||
retrieve_timesteps,
|
||||
shard_model,
|
||||
)
|
||||
from .utils.vace_processor import VaceVideoProcessor
|
||||
from wan.utils.vace_processor import VaceVideoProcessor
|
||||
from wan.utils.platform import get_device, get_torch_distributed_backend
|
||||
from wan.utils.memory_format import convert_conv3d_weight_memory_format
|
||||
|
||||
|
||||
class WanVace(WanT2V):
|
||||
@ -46,6 +59,7 @@ class WanVace(WanT2V):
|
||||
dit_fsdp=False,
|
||||
use_usp=False,
|
||||
t5_cpu=False,
|
||||
profiler=None,
|
||||
):
|
||||
r"""
|
||||
Initializes the Wan text-to-video generation model components.
|
||||
@ -68,7 +82,7 @@ class WanVace(WanT2V):
|
||||
t5_cpu (`bool`, *optional*, defaults to False):
|
||||
Whether to place T5 model on CPU. Only works without t5_fsdp.
|
||||
"""
|
||||
self.device = torch.device(f"cuda:{device_id}")
|
||||
self.device = get_device(device_id)
|
||||
self.config = config
|
||||
self.rank = rank
|
||||
self.t5_cpu = t5_cpu
|
||||
@ -90,6 +104,7 @@ class WanVace(WanT2V):
|
||||
self.vae = WanVAE(
|
||||
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
|
||||
device=self.device)
|
||||
convert_conv3d_weight_memory_format(self.vae.model, memory_format=torch.channels_last_3d)
|
||||
|
||||
logging.info(f"Creating VaceWanModel from {checkpoint_dir}")
|
||||
self.model = VaceWanModel.from_pretrained(checkpoint_dir)
|
||||
@ -117,7 +132,8 @@ class WanVace(WanT2V):
|
||||
self.sp_size = 1
|
||||
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
# dist.barrier()
|
||||
pass
|
||||
if dit_fsdp:
|
||||
self.model = shard_fn(self.model)
|
||||
else:
|
||||
@ -136,6 +152,8 @@ class WanVace(WanT2V):
|
||||
seq_len=75600,
|
||||
keep_last=True)
|
||||
|
||||
self.profiler = profiler
|
||||
|
||||
def vace_encode_frames(self, frames, ref_images, masks=None, vae=None):
|
||||
vae = self.vae if vae is None else vae
|
||||
if ref_images is None:
|
||||
@ -340,6 +358,11 @@ class WanVace(WanT2V):
|
||||
- H: Frame height (from size)
|
||||
- W: Frame width from size)
|
||||
"""
|
||||
start_time = 0.0
|
||||
end_time = 0.0
|
||||
if self.rank == 0:
|
||||
start_time = perf_counter()
|
||||
|
||||
# preprocess
|
||||
# F = frame_num
|
||||
# target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
|
||||
@ -390,6 +413,10 @@ class WanVace(WanT2V):
|
||||
(self.patch_size[1] * self.patch_size[2]) *
|
||||
target_shape[1] / self.sp_size) * self.sp_size
|
||||
|
||||
if self.rank == 0:
|
||||
end_time = perf_counter()
|
||||
logging.info(f"[preprocess] Elapsed time: {end_time - start_time:.2f} seconds")
|
||||
|
||||
@contextmanager
|
||||
def noop_no_sync():
|
||||
yield
|
||||
@ -426,13 +453,19 @@ class WanVace(WanT2V):
|
||||
arg_c = {'context': context, 'seq_len': seq_len}
|
||||
arg_null = {'context': context_null, 'seq_len': seq_len}
|
||||
|
||||
if self.rank == 0:
|
||||
start_time = perf_counter()
|
||||
|
||||
self.model.to(self.device)
|
||||
for _, t in enumerate(tqdm(timesteps)):
|
||||
if self.profiler and self.rank == 0:
|
||||
self.profiler.step()
|
||||
|
||||
latent_model_input = latents
|
||||
timestep = [t]
|
||||
|
||||
timestep = torch.stack(timestep)
|
||||
|
||||
self.model.to(self.device)
|
||||
noise_pred_cond = self.model(
|
||||
latent_model_input,
|
||||
t=timestep,
|
||||
@ -457,20 +490,28 @@ class WanVace(WanT2V):
|
||||
generator=seed_g)[0]
|
||||
latents = [temp_x0.squeeze(0)]
|
||||
|
||||
if self.rank == 0:
|
||||
end_time = perf_counter()
|
||||
logging.info(f"[sampling time steps] Elapsed time: {end_time - start_time:.2f} seconds")
|
||||
|
||||
x0 = latents
|
||||
if offload_model:
|
||||
self.model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
if self.rank == 0:
|
||||
start_time = perf_counter()
|
||||
videos = self.decode_latent(x0, input_ref_images)
|
||||
end_time = perf_counter()
|
||||
logging.info(f"[VAE decoding] Elapsed time: {end_time - start_time:.2f} seconds")
|
||||
|
||||
del noise, latents
|
||||
del sample_scheduler
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
synchronize()
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
# dist.barrier()
|
||||
pass
|
||||
|
||||
return videos[0] if self.rank == 0 else None
|
||||
|
||||
@ -568,7 +609,7 @@ class WanVaceMP(WanVace):
|
||||
|
||||
torch.cuda.set_device(gpu)
|
||||
dist.init_process_group(
|
||||
backend='nccl',
|
||||
backend=get_torch_distributed_backend(),
|
||||
init_method='env://',
|
||||
rank=rank,
|
||||
world_size=world_size)
|
||||
@ -629,11 +670,11 @@ class WanVaceMP(WanVace):
|
||||
else:
|
||||
sp_size = 1
|
||||
|
||||
dist.barrier()
|
||||
# dist.barrier()
|
||||
model = shard_fn(model)
|
||||
sample_neg_prompt = self.config.sample_neg_prompt
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
event = initialized_events[gpu]
|
||||
in_q = in_q_list[gpu]
|
||||
event.set()
|
||||
@ -748,7 +789,7 @@ class WanVaceMP(WanVace):
|
||||
generator=seed_g)[0]
|
||||
latents = [temp_x0.squeeze(0)]
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
empty_cache()
|
||||
x0 = latents
|
||||
if rank == 0:
|
||||
videos = self.decode_latent(
|
||||
@ -758,9 +799,10 @@ class WanVaceMP(WanVace):
|
||||
del sample_scheduler
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
synchronize()
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
# dist.barrier()
|
||||
pass
|
||||
|
||||
if rank == 0:
|
||||
out_q.put(videos[0].cpu())
|
||||
|
||||
Loading…
Reference in New Issue
Block a user