added missing file diffusion forcing file

This commit is contained in:
deepbeepmeep 2025-04-26 15:42:06 +02:00
parent 1d0d4745d3
commit 93d99aa2bd
2 changed files with 390 additions and 2 deletions

388
wan/diffusion_forcing.py Normal file
View File

@ -0,0 +1,388 @@
import math
import os
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import logging
import numpy as np
import torch
from diffusers.image_processor import PipelineImageInput
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from tqdm import tqdm
from .modules.model import WanModel
from .modules.t5 import T5EncoderModel
from .modules.vae import WanVAE
from wan.modules.posemb_layers import get_rotary_pos_embed
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
get_sampling_sigmas, retrieve_timesteps)
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
class DTT2V:
def __init__(
self,
config,
checkpoint_dir,
rank=0,
model_filename = None,
text_encoder_filename = None,
quantizeTransformer = False,
dtype = torch.bfloat16,
):
self.device = torch.device(f"cuda")
self.config = config
self.rank = rank
self.dtype = dtype
self.num_train_timesteps = config.num_train_timesteps
self.param_dtype = config.param_dtype
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=text_encoder_filename,
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
shard_fn= None)
self.vae_stride = config.vae_stride
self.patch_size = config.patch_size
self.vae = WanVAE(
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
device=self.device)
logging.info(f"Creating WanModel from {model_filename}")
from mmgp import offload
# model_filename = "model.safetensors"
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False) #, forcedConfigPath="config.json"
# offload.load_model_data(self.model, "recam.ckpt")
# self.model.cpu()
if self.dtype == torch.float16 and not "fp16" in model_filename:
self.model.to(self.dtype)
# offload.save_model(self.model, "rt1.3B.safetensors", config_file_path="config.json")
# offload.save_model(self.model, "rtint8.safetensors", do_quantize= "config.json")
# offload.save_model(self.model, "rtfp16_int8.safetensors", do_quantize= "config.json")
if self.dtype == torch.float16:
self.vae.model.to(self.dtype)
self.model.eval().requires_grad_(False)
self.scheduler = FlowUniPCMultistepScheduler()
@property
def do_classifier_free_guidance(self) -> bool:
return self._guidance_scale > 1
def encode_image(
self, image: PipelineImageInput, height: int, width: int, num_frames: int, tile_size = 0, causal_block_size = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# prefix_video
prefix_video = np.array(image.resize((width, height))).transpose(2, 0, 1)
prefix_video = torch.tensor(prefix_video).unsqueeze(1) # .to(image_embeds.dtype).unsqueeze(1)
if prefix_video.dtype == torch.uint8:
prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0
prefix_video = prefix_video.to(self.device)
prefix_video = [self.vae.encode(prefix_video.unsqueeze(0), tile_size = tile_size)[0]] # [(c, f, h, w)]
if prefix_video[0].shape[1] % causal_block_size != 0:
truncate_len = prefix_video[0].shape[1] % causal_block_size
print("the length of prefix video is truncated for the casual block size alignment.")
prefix_video[0] = prefix_video[0][:, : prefix_video[0].shape[1] - truncate_len]
predix_video_latent_length = prefix_video[0].shape[1]
return prefix_video, predix_video_latent_length
def prepare_latents(
self,
shape: Tuple[int],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
) -> torch.Tensor:
return randn_tensor(shape, generator, device=device, dtype=dtype)
def generate_timestep_matrix(
self,
num_frames,
step_template,
base_num_frames,
ar_step=5,
num_pre_ready=0,
casual_block_size=1,
shrink_interval_with_mask=False,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, list[tuple]]:
step_matrix, step_index = [], []
update_mask, valid_interval = [], []
num_iterations = len(step_template) + 1
num_frames_block = num_frames // casual_block_size
base_num_frames_block = base_num_frames // casual_block_size
if base_num_frames_block < num_frames_block:
infer_step_num = len(step_template)
gen_block = base_num_frames_block
min_ar_step = infer_step_num / gen_block
assert ar_step >= min_ar_step, f"ar_step should be at least {math.ceil(min_ar_step)} in your setting"
# print(num_frames, step_template, base_num_frames, ar_step, num_pre_ready, casual_block_size, num_frames_block, base_num_frames_block)
step_template = torch.cat(
[
torch.tensor([999], dtype=torch.int64, device=step_template.device),
step_template.long(),
torch.tensor([0], dtype=torch.int64, device=step_template.device),
]
) # to handle the counter in row works starting from 1
pre_row = torch.zeros(num_frames_block, dtype=torch.long)
if num_pre_ready > 0:
pre_row[: num_pre_ready // casual_block_size] = num_iterations
while torch.all(pre_row >= (num_iterations - 1)) == False:
new_row = torch.zeros(num_frames_block, dtype=torch.long)
for i in range(num_frames_block):
if i == 0 or pre_row[i - 1] >= (
num_iterations - 1
): # the first frame or the last frame is completely denoised
new_row[i] = pre_row[i] + 1
else:
new_row[i] = new_row[i - 1] - ar_step
new_row = new_row.clamp(0, num_iterations)
update_mask.append(
(new_row != pre_row) & (new_row != num_iterations)
) # False: no need to update True: need to update
step_index.append(new_row)
step_matrix.append(step_template[new_row])
pre_row = new_row
# for long video we split into several sequences, base_num_frames is set to the model max length (for training)
terminal_flag = base_num_frames_block
if shrink_interval_with_mask:
idx_sequence = torch.arange(num_frames_block, dtype=torch.int64)
update_mask = update_mask[0]
update_mask_idx = idx_sequence[update_mask]
last_update_idx = update_mask_idx[-1].item()
terminal_flag = last_update_idx + 1
# for i in range(0, len(update_mask)):
for curr_mask in update_mask:
if terminal_flag < num_frames_block and curr_mask[terminal_flag]:
terminal_flag += 1
valid_interval.append((max(terminal_flag - base_num_frames_block, 0), terminal_flag))
step_update_mask = torch.stack(update_mask, dim=0)
step_index = torch.stack(step_index, dim=0)
step_matrix = torch.stack(step_matrix, dim=0)
if casual_block_size > 1:
step_update_mask = step_update_mask.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
step_index = step_index.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
step_matrix = step_matrix.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
valid_interval = [(s * casual_block_size, e * casual_block_size) for s, e in valid_interval]
return step_matrix, step_index, step_update_mask, valid_interval
@torch.no_grad()
def generate(
self,
prompt: Union[str, List[str]],
negative_prompt: Union[str, List[str]] = "",
image: PipelineImageInput = None,
input_video = None,
height: int = 480,
width: int = 832,
num_frames: int = 97,
num_inference_steps: int = 50,
shift: float = 1.0,
guidance_scale: float = 5.0,
seed: float = 0.0,
addnoise_condition: int = 0,
ar_step: int = 5,
causal_block_size: int = 5,
causal_attention: bool = True,
fps: int = 24,
VAE_tile_size = 0,
joint_pass = False,
callback = None,
):
self._interrupt = False
generator = torch.Generator(device=self.device)
generator.manual_seed(seed)
self._guidance_scale = guidance_scale
num_frames = max(17, num_frames) # must match causal_block_size for value of 5
num_frames = int( round( (num_frames - 17) / 20)* 20 + 17 )
if ar_step == 0:
causal_block_size = 1
i2v_extra_kwrags = {}
prefix_video = None
predix_video_latent_length = 0
if input_video != None:
_ , _ , height, width = input_video.shape
elif image != None:
image = image[0]
frame_width, frame_height = image.size
scale = min(height / frame_height, width / frame_width)
height = (int(frame_height * scale) // 16) * 16
width = (int(frame_width * scale) // 16) * 16
image = np.array(image.resize((width, height))).transpose(2, 0, 1)
latent_length = (num_frames - 1) // 4 + 1
latent_height = height // 8
latent_width = width // 8
prompt_embeds = self.text_encoder([prompt], self.device)
prompt_embeds = [u.to(self.dtype).to(self.device) for u in prompt_embeds]
if self.do_classifier_free_guidance:
negative_prompt_embeds = self.text_encoder([negative_prompt], self.device)
negative_prompt_embeds = [u.to(self.dtype).to(self.device) for u in negative_prompt_embeds]
self.scheduler.set_timesteps(num_inference_steps, device=self.device, shift=shift)
init_timesteps = self.scheduler.timesteps
fps_embeds = [fps] #* prompt_embeds[0].shape[0]
fps_embeds = [0 if i == 16 else 1 for i in fps_embeds]
output_video = input_video
if image is not None or output_video is not None: # i !=0
if output_video is not None:
prefix_video = output_video.to(self.device)
else:
causal_block_size = 1
ar_step = 0
prefix_video = image
prefix_video = torch.tensor(prefix_video).unsqueeze(1) # .to(image_embeds.dtype).unsqueeze(1)
if prefix_video.dtype == torch.uint8:
prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0
prefix_video = prefix_video.to(self.device)
prefix_video = [self.vae.encode(prefix_video.unsqueeze(0))[0]] # [(c, f, h, w)]
predix_video_latent_length = prefix_video[0].shape[1]
truncate_len = predix_video_latent_length % causal_block_size
if truncate_len != 0:
if truncate_len == predix_video_latent_length:
causal_block_size = 1
else:
print("the length of prefix video is truncated for the casual block size alignment.")
predix_video_latent_length -= truncate_len
prefix_video[0] = prefix_video[0][:, : predix_video_latent_length]
base_num_frames_iter = latent_length
latent_shape = [16, base_num_frames_iter, latent_height, latent_width]
latents = self.prepare_latents(
latent_shape, dtype=torch.float32, device=self.device, generator=generator
)
latents = [latents]
if prefix_video is not None:
latents[0][:, :predix_video_latent_length] = prefix_video[0].to(torch.float32)
step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix(
base_num_frames_iter,
init_timesteps,
base_num_frames_iter,
ar_step,
predix_video_latent_length,
causal_block_size,
)
sample_schedulers = []
for _ in range(base_num_frames_iter):
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=1000, shift=1, use_dynamic_shifting=False
)
sample_scheduler.set_timesteps(num_inference_steps, device=self.device, shift=shift)
sample_schedulers.append(sample_scheduler)
sample_schedulers_counter = [0] * base_num_frames_iter
updated_num_steps= len(step_matrix)
if callback != None:
callback(-1, None, True, override_num_inference_steps = updated_num_steps)
if self.model.enable_teacache:
time_steps_comb = []
self.model.num_steps = updated_num_steps
for i, timestep_i in enumerate(step_matrix):
valid_interval_start, valid_interval_end = valid_interval[i]
timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
if addnoise_condition > 0 and valid_interval_start < predix_video_latent_length:
timestep[:, valid_interval_start:predix_video_latent_length] = addnoise_condition
time_steps_comb.append(timestep)
self.model.compute_teacache_threshold(self.model.teacache_start_step, time_steps_comb, self.model.teacache_multiplier)
del time_steps_comb
from mmgp import offload
freqs = get_rotary_pos_embed(latents[0].shape[1 :], enable_RIFLEx= False)
for i, timestep_i in enumerate(tqdm(step_matrix)):
offload.set_step_no_for_lora(self.model, i)
update_mask_i = step_update_mask[i]
valid_interval_start, valid_interval_end = valid_interval[i]
timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
latent_model_input = [latents[0][:, valid_interval_start:valid_interval_end, :, :].clone()]
if addnoise_condition > 0 and valid_interval_start < predix_video_latent_length:
noise_factor = 0.001 * addnoise_condition
timestep_for_noised_condition = addnoise_condition
latent_model_input[0][:, valid_interval_start:predix_video_latent_length] = (
latent_model_input[0][:, valid_interval_start:predix_video_latent_length]
* (1.0 - noise_factor)
+ torch.randn_like(
latent_model_input[0][:, valid_interval_start:predix_video_latent_length]
)
* noise_factor
)
timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition
kwrags = {
"x" : torch.stack([latent_model_input[0]]),
"t" : timestep,
"freqs" :freqs,
"fps" : fps_embeds,
"causal_block_size" : causal_block_size,
"causal_attention" : causal_attention,
"callback" : callback,
"pipeline" : self,
"current_step" : i,
}
kwrags.update(i2v_extra_kwrags)
if not self.do_classifier_free_guidance:
noise_pred = self.model(
context=prompt_embeds,
**kwrags,
)[0]
if self._interrupt:
return None
noise_pred= noise_pred.to(torch.float32)
else:
if joint_pass:
noise_pred_cond, noise_pred_uncond = self.model(
context=prompt_embeds,
context2=negative_prompt_embeds,
**kwrags,
)
if self._interrupt:
return None
else:
noise_pred_cond = self.model(
context=prompt_embeds,
**kwrags,
)[0]
if self._interrupt:
return None
noise_pred_uncond = self.model(
context=negative_prompt_embeds,
)[0]
if self._interrupt:
return None
noise_pred_cond= noise_pred_cond.to(torch.float32)
noise_pred_uncond= noise_pred_uncond.to(torch.float32)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
del noise_pred_cond, noise_pred_uncond
for idx in range(valid_interval_start, valid_interval_end):
if update_mask_i[idx].item():
latents[0][:, idx] = sample_schedulers[idx].step(
noise_pred[:, idx - valid_interval_start],
timestep_i[idx],
latents[0][:, idx],
return_dict=False,
generator=generator,
)[0]
sample_schedulers_counter[idx] += 1
if callback is not None:
callback(i, latents[0].squeeze(0), False)
x0 = latents[0].unsqueeze(0)
videos = [self.vae.decode(x0, tile_size= VAE_tile_size)[0]]
output_video = videos[0].clamp(-1, 1).cpu() # c, f, h, w
return output_video

View File

@ -368,8 +368,8 @@ class WanT2V:
shift=1,
use_dynamic_shifting=False)
sample_scheduler.set_timesteps(
sampling_steps, device=self.device, shift=shift)
timesteps = sample_scheduler.timesteps
sampling_steps + 4, device=self.device, shift=shift)
timesteps = sample_scheduler.timesteps[:-4]
elif sample_solver == 'dpm++':
sample_scheduler = FlowDPMSolverMultistepScheduler(
num_train_timesteps=self.num_train_timesteps,