mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	added missing file diffusion forcing file
This commit is contained in:
		
							parent
							
								
									1d0d4745d3
								
							
						
					
					
						commit
						93d99aa2bd
					
				
							
								
								
									
										388
									
								
								wan/diffusion_forcing.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										388
									
								
								wan/diffusion_forcing.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,388 @@
 | 
				
			|||||||
 | 
					import math
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					from typing import List
 | 
				
			||||||
 | 
					from typing import Optional
 | 
				
			||||||
 | 
					from typing import Tuple
 | 
				
			||||||
 | 
					from typing import Union
 | 
				
			||||||
 | 
					import logging
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					from diffusers.image_processor import PipelineImageInput
 | 
				
			||||||
 | 
					from diffusers.utils.torch_utils import randn_tensor
 | 
				
			||||||
 | 
					from diffusers.video_processor import VideoProcessor
 | 
				
			||||||
 | 
					from tqdm import tqdm
 | 
				
			||||||
 | 
					from .modules.model import WanModel
 | 
				
			||||||
 | 
					from .modules.t5 import T5EncoderModel
 | 
				
			||||||
 | 
					from .modules.vae import WanVAE
 | 
				
			||||||
 | 
					from wan.modules.posemb_layers import get_rotary_pos_embed
 | 
				
			||||||
 | 
					from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
 | 
				
			||||||
 | 
					                               get_sampling_sigmas, retrieve_timesteps)
 | 
				
			||||||
 | 
					from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class DTT2V:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def __init__(
 | 
				
			||||||
 | 
					        self,
 | 
				
			||||||
 | 
					        config,
 | 
				
			||||||
 | 
					        checkpoint_dir,
 | 
				
			||||||
 | 
					        rank=0,
 | 
				
			||||||
 | 
					        model_filename = None,
 | 
				
			||||||
 | 
					        text_encoder_filename = None,
 | 
				
			||||||
 | 
					        quantizeTransformer = False,
 | 
				
			||||||
 | 
					        dtype = torch.bfloat16,
 | 
				
			||||||
 | 
					    ):
 | 
				
			||||||
 | 
					        self.device = torch.device(f"cuda")
 | 
				
			||||||
 | 
					        self.config = config
 | 
				
			||||||
 | 
					        self.rank = rank
 | 
				
			||||||
 | 
					        self.dtype = dtype
 | 
				
			||||||
 | 
					        self.num_train_timesteps = config.num_train_timesteps
 | 
				
			||||||
 | 
					        self.param_dtype = config.param_dtype
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.text_encoder = T5EncoderModel(
 | 
				
			||||||
 | 
					            text_len=config.text_len,
 | 
				
			||||||
 | 
					            dtype=config.t5_dtype,
 | 
				
			||||||
 | 
					            device=torch.device('cpu'),
 | 
				
			||||||
 | 
					            checkpoint_path=text_encoder_filename,
 | 
				
			||||||
 | 
					            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
 | 
				
			||||||
 | 
					            shard_fn= None)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.vae_stride = config.vae_stride
 | 
				
			||||||
 | 
					        self.patch_size = config.patch_size 
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        self.vae = WanVAE(
 | 
				
			||||||
 | 
					            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
 | 
				
			||||||
 | 
					            device=self.device)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        logging.info(f"Creating WanModel from {model_filename}")
 | 
				
			||||||
 | 
					        from mmgp import offload
 | 
				
			||||||
 | 
					        # model_filename = "model.safetensors"
 | 
				
			||||||
 | 
					        self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False) #, forcedConfigPath="config.json"
 | 
				
			||||||
 | 
					        # offload.load_model_data(self.model, "recam.ckpt")
 | 
				
			||||||
 | 
					        # self.model.cpu()
 | 
				
			||||||
 | 
					        if self.dtype == torch.float16 and not "fp16" in model_filename:
 | 
				
			||||||
 | 
					            self.model.to(self.dtype) 
 | 
				
			||||||
 | 
					        # offload.save_model(self.model, "rt1.3B.safetensors", config_file_path="config.json") 
 | 
				
			||||||
 | 
					        # offload.save_model(self.model, "rtint8.safetensors", do_quantize= "config.json") 
 | 
				
			||||||
 | 
					        # offload.save_model(self.model, "rtfp16_int8.safetensors", do_quantize= "config.json") 
 | 
				
			||||||
 | 
					        if self.dtype == torch.float16:
 | 
				
			||||||
 | 
					            self.vae.model.to(self.dtype)
 | 
				
			||||||
 | 
					        self.model.eval().requires_grad_(False)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.scheduler = FlowUniPCMultistepScheduler()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @property
 | 
				
			||||||
 | 
					    def do_classifier_free_guidance(self) -> bool:
 | 
				
			||||||
 | 
					        return self._guidance_scale > 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def encode_image(
 | 
				
			||||||
 | 
					        self, image: PipelineImageInput, height: int, width: int, num_frames: int, tile_size = 0, causal_block_size = 0
 | 
				
			||||||
 | 
					    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # prefix_video
 | 
				
			||||||
 | 
					        prefix_video = np.array(image.resize((width, height))).transpose(2, 0, 1)
 | 
				
			||||||
 | 
					        prefix_video = torch.tensor(prefix_video).unsqueeze(1)  # .to(image_embeds.dtype).unsqueeze(1)
 | 
				
			||||||
 | 
					        if prefix_video.dtype == torch.uint8:
 | 
				
			||||||
 | 
					            prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0
 | 
				
			||||||
 | 
					        prefix_video = prefix_video.to(self.device)
 | 
				
			||||||
 | 
					        prefix_video = [self.vae.encode(prefix_video.unsqueeze(0), tile_size = tile_size)[0]]  # [(c, f, h, w)]
 | 
				
			||||||
 | 
					        if prefix_video[0].shape[1] % causal_block_size != 0:
 | 
				
			||||||
 | 
					            truncate_len = prefix_video[0].shape[1] % causal_block_size
 | 
				
			||||||
 | 
					            print("the length of prefix video is truncated for the casual block size alignment.")
 | 
				
			||||||
 | 
					            prefix_video[0] = prefix_video[0][:, : prefix_video[0].shape[1] - truncate_len]
 | 
				
			||||||
 | 
					        predix_video_latent_length = prefix_video[0].shape[1]
 | 
				
			||||||
 | 
					        return prefix_video, predix_video_latent_length
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def prepare_latents(
 | 
				
			||||||
 | 
					        self,
 | 
				
			||||||
 | 
					        shape: Tuple[int],
 | 
				
			||||||
 | 
					        dtype: Optional[torch.dtype] = None,
 | 
				
			||||||
 | 
					        device: Optional[torch.device] = None,
 | 
				
			||||||
 | 
					        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
 | 
				
			||||||
 | 
					    ) -> torch.Tensor:
 | 
				
			||||||
 | 
					        return randn_tensor(shape, generator, device=device, dtype=dtype)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def generate_timestep_matrix(
 | 
				
			||||||
 | 
					        self,
 | 
				
			||||||
 | 
					        num_frames,
 | 
				
			||||||
 | 
					        step_template,
 | 
				
			||||||
 | 
					        base_num_frames,
 | 
				
			||||||
 | 
					        ar_step=5,
 | 
				
			||||||
 | 
					        num_pre_ready=0,
 | 
				
			||||||
 | 
					        casual_block_size=1,
 | 
				
			||||||
 | 
					        shrink_interval_with_mask=False,
 | 
				
			||||||
 | 
					    ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, list[tuple]]:
 | 
				
			||||||
 | 
					        step_matrix, step_index = [], []
 | 
				
			||||||
 | 
					        update_mask, valid_interval = [], []
 | 
				
			||||||
 | 
					        num_iterations = len(step_template) + 1
 | 
				
			||||||
 | 
					        num_frames_block = num_frames // casual_block_size
 | 
				
			||||||
 | 
					        base_num_frames_block = base_num_frames // casual_block_size
 | 
				
			||||||
 | 
					        if base_num_frames_block < num_frames_block:
 | 
				
			||||||
 | 
					            infer_step_num = len(step_template)
 | 
				
			||||||
 | 
					            gen_block = base_num_frames_block
 | 
				
			||||||
 | 
					            min_ar_step = infer_step_num / gen_block
 | 
				
			||||||
 | 
					            assert ar_step >= min_ar_step, f"ar_step should be at least {math.ceil(min_ar_step)} in your setting"
 | 
				
			||||||
 | 
					        # print(num_frames, step_template, base_num_frames, ar_step, num_pre_ready, casual_block_size, num_frames_block, base_num_frames_block)
 | 
				
			||||||
 | 
					        step_template = torch.cat(
 | 
				
			||||||
 | 
					            [
 | 
				
			||||||
 | 
					                torch.tensor([999], dtype=torch.int64, device=step_template.device),
 | 
				
			||||||
 | 
					                step_template.long(),
 | 
				
			||||||
 | 
					                torch.tensor([0], dtype=torch.int64, device=step_template.device),
 | 
				
			||||||
 | 
					            ]
 | 
				
			||||||
 | 
					        )  # to handle the counter in row works starting from 1
 | 
				
			||||||
 | 
					        pre_row = torch.zeros(num_frames_block, dtype=torch.long)
 | 
				
			||||||
 | 
					        if num_pre_ready > 0:
 | 
				
			||||||
 | 
					            pre_row[: num_pre_ready // casual_block_size] = num_iterations
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        while torch.all(pre_row >= (num_iterations - 1)) == False:
 | 
				
			||||||
 | 
					            new_row = torch.zeros(num_frames_block, dtype=torch.long)
 | 
				
			||||||
 | 
					            for i in range(num_frames_block):
 | 
				
			||||||
 | 
					                if i == 0 or pre_row[i - 1] >= (
 | 
				
			||||||
 | 
					                    num_iterations - 1
 | 
				
			||||||
 | 
					                ):  # the first frame or the last frame is completely denoised
 | 
				
			||||||
 | 
					                    new_row[i] = pre_row[i] + 1
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    new_row[i] = new_row[i - 1] - ar_step
 | 
				
			||||||
 | 
					            new_row = new_row.clamp(0, num_iterations)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            update_mask.append(
 | 
				
			||||||
 | 
					                (new_row != pre_row) & (new_row != num_iterations)
 | 
				
			||||||
 | 
					            )  # False: no need to update, True: need to update
 | 
				
			||||||
 | 
					            step_index.append(new_row)
 | 
				
			||||||
 | 
					            step_matrix.append(step_template[new_row])
 | 
				
			||||||
 | 
					            pre_row = new_row
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # for long video we split into several sequences, base_num_frames is set to the model max length (for training)
 | 
				
			||||||
 | 
					        terminal_flag = base_num_frames_block
 | 
				
			||||||
 | 
					        if shrink_interval_with_mask:
 | 
				
			||||||
 | 
					            idx_sequence = torch.arange(num_frames_block, dtype=torch.int64)
 | 
				
			||||||
 | 
					            update_mask = update_mask[0]
 | 
				
			||||||
 | 
					            update_mask_idx = idx_sequence[update_mask]
 | 
				
			||||||
 | 
					            last_update_idx = update_mask_idx[-1].item()
 | 
				
			||||||
 | 
					            terminal_flag = last_update_idx + 1
 | 
				
			||||||
 | 
					        # for i in range(0, len(update_mask)):
 | 
				
			||||||
 | 
					        for curr_mask in update_mask:
 | 
				
			||||||
 | 
					            if terminal_flag < num_frames_block and curr_mask[terminal_flag]:
 | 
				
			||||||
 | 
					                terminal_flag += 1
 | 
				
			||||||
 | 
					            valid_interval.append((max(terminal_flag - base_num_frames_block, 0), terminal_flag))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        step_update_mask = torch.stack(update_mask, dim=0)
 | 
				
			||||||
 | 
					        step_index = torch.stack(step_index, dim=0)
 | 
				
			||||||
 | 
					        step_matrix = torch.stack(step_matrix, dim=0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if casual_block_size > 1:
 | 
				
			||||||
 | 
					            step_update_mask = step_update_mask.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
 | 
				
			||||||
 | 
					            step_index = step_index.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
 | 
				
			||||||
 | 
					            step_matrix = step_matrix.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
 | 
				
			||||||
 | 
					            valid_interval = [(s * casual_block_size, e * casual_block_size) for s, e in valid_interval]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        return step_matrix, step_index, step_update_mask, valid_interval
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    @torch.no_grad()
 | 
				
			||||||
 | 
					    def generate(
 | 
				
			||||||
 | 
					        self,
 | 
				
			||||||
 | 
					        prompt: Union[str, List[str]],
 | 
				
			||||||
 | 
					        negative_prompt: Union[str, List[str]] = "",
 | 
				
			||||||
 | 
					        image: PipelineImageInput = None,
 | 
				
			||||||
 | 
					        input_video = None,
 | 
				
			||||||
 | 
					        height: int = 480,
 | 
				
			||||||
 | 
					        width: int = 832,
 | 
				
			||||||
 | 
					        num_frames: int = 97,
 | 
				
			||||||
 | 
					        num_inference_steps: int = 50,
 | 
				
			||||||
 | 
					        shift: float = 1.0,
 | 
				
			||||||
 | 
					        guidance_scale: float = 5.0,
 | 
				
			||||||
 | 
					        seed: float = 0.0,
 | 
				
			||||||
 | 
					        addnoise_condition: int = 0,
 | 
				
			||||||
 | 
					        ar_step: int = 5,
 | 
				
			||||||
 | 
					        causal_block_size: int = 5,
 | 
				
			||||||
 | 
					        causal_attention: bool = True,
 | 
				
			||||||
 | 
					        fps: int = 24,
 | 
				
			||||||
 | 
					        VAE_tile_size = 0,
 | 
				
			||||||
 | 
					        joint_pass = False,
 | 
				
			||||||
 | 
					        callback = None,
 | 
				
			||||||
 | 
					    ):
 | 
				
			||||||
 | 
					        self._interrupt = False
 | 
				
			||||||
 | 
					        generator = torch.Generator(device=self.device)
 | 
				
			||||||
 | 
					        generator.manual_seed(seed)
 | 
				
			||||||
 | 
					        self._guidance_scale = guidance_scale
 | 
				
			||||||
 | 
					        num_frames = max(17, num_frames) # must match causal_block_size for value of 5
 | 
				
			||||||
 | 
					        num_frames = int( round( (num_frames - 17) / 20)* 20 + 17 )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if ar_step == 0: 
 | 
				
			||||||
 | 
					            causal_block_size = 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        i2v_extra_kwrags = {}
 | 
				
			||||||
 | 
					        prefix_video = None
 | 
				
			||||||
 | 
					        predix_video_latent_length = 0
 | 
				
			||||||
 | 
					        if input_video != None:
 | 
				
			||||||
 | 
					            _ , _ , height, width  = input_video.shape
 | 
				
			||||||
 | 
					        elif image != None:
 | 
				
			||||||
 | 
					            image = image[0]
 | 
				
			||||||
 | 
					            frame_width, frame_height  = image.size
 | 
				
			||||||
 | 
					            scale = min(height / frame_height, width /  frame_width)
 | 
				
			||||||
 | 
					            height = (int(frame_height * scale) // 16) * 16
 | 
				
			||||||
 | 
					            width = (int(frame_width * scale) // 16) * 16
 | 
				
			||||||
 | 
					            image = np.array(image.resize((width, height))).transpose(2, 0, 1)
 | 
				
			||||||
 | 
					        latent_length = (num_frames - 1) // 4 + 1
 | 
				
			||||||
 | 
					        latent_height = height // 8
 | 
				
			||||||
 | 
					        latent_width = width // 8
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        prompt_embeds = self.text_encoder([prompt], self.device)
 | 
				
			||||||
 | 
					        prompt_embeds  = [u.to(self.dtype).to(self.device) for u in prompt_embeds]
 | 
				
			||||||
 | 
					        if self.do_classifier_free_guidance:
 | 
				
			||||||
 | 
					            negative_prompt_embeds = self.text_encoder([negative_prompt], self.device)
 | 
				
			||||||
 | 
					            negative_prompt_embeds  = [u.to(self.dtype).to(self.device) for u in negative_prompt_embeds]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        self.scheduler.set_timesteps(num_inference_steps, device=self.device, shift=shift)
 | 
				
			||||||
 | 
					        init_timesteps = self.scheduler.timesteps
 | 
				
			||||||
 | 
					        fps_embeds = [fps] #* prompt_embeds[0].shape[0]
 | 
				
			||||||
 | 
					        fps_embeds = [0 if i == 16 else 1 for i in fps_embeds]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        output_video = input_video
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if image is not None or output_video is not None:  # i !=0
 | 
				
			||||||
 | 
					            if output_video is not None:
 | 
				
			||||||
 | 
					                prefix_video = output_video.to(self.device)
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                causal_block_size = 1
 | 
				
			||||||
 | 
					                ar_step = 0
 | 
				
			||||||
 | 
					                prefix_video = image
 | 
				
			||||||
 | 
					                prefix_video = torch.tensor(prefix_video).unsqueeze(1)  # .to(image_embeds.dtype).unsqueeze(1)
 | 
				
			||||||
 | 
					                if prefix_video.dtype == torch.uint8:
 | 
				
			||||||
 | 
					                    prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0
 | 
				
			||||||
 | 
					                prefix_video = prefix_video.to(self.device)
 | 
				
			||||||
 | 
					            prefix_video = [self.vae.encode(prefix_video.unsqueeze(0))[0]]  # [(c, f, h, w)]
 | 
				
			||||||
 | 
					            predix_video_latent_length = prefix_video[0].shape[1]
 | 
				
			||||||
 | 
					            truncate_len = predix_video_latent_length % causal_block_size
 | 
				
			||||||
 | 
					            if truncate_len != 0:
 | 
				
			||||||
 | 
					                if truncate_len == predix_video_latent_length:
 | 
				
			||||||
 | 
					                    causal_block_size = 1
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    print("the length of prefix video is truncated for the casual block size alignment.")
 | 
				
			||||||
 | 
					                    predix_video_latent_length -= truncate_len
 | 
				
			||||||
 | 
					                    prefix_video[0] = prefix_video[0][:, : predix_video_latent_length]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        base_num_frames_iter = latent_length
 | 
				
			||||||
 | 
					        latent_shape = [16, base_num_frames_iter, latent_height, latent_width]
 | 
				
			||||||
 | 
					        latents = self.prepare_latents(
 | 
				
			||||||
 | 
					            latent_shape, dtype=torch.float32, device=self.device, generator=generator
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        latents = [latents]
 | 
				
			||||||
 | 
					        if prefix_video is not None:
 | 
				
			||||||
 | 
					            latents[0][:, :predix_video_latent_length] = prefix_video[0].to(torch.float32)
 | 
				
			||||||
 | 
					        step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix(
 | 
				
			||||||
 | 
					            base_num_frames_iter,
 | 
				
			||||||
 | 
					            init_timesteps,
 | 
				
			||||||
 | 
					            base_num_frames_iter,
 | 
				
			||||||
 | 
					            ar_step,
 | 
				
			||||||
 | 
					            predix_video_latent_length,
 | 
				
			||||||
 | 
					            causal_block_size,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        sample_schedulers = []
 | 
				
			||||||
 | 
					        for _ in range(base_num_frames_iter):
 | 
				
			||||||
 | 
					            sample_scheduler = FlowUniPCMultistepScheduler(
 | 
				
			||||||
 | 
					                num_train_timesteps=1000, shift=1, use_dynamic_shifting=False
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					            sample_scheduler.set_timesteps(num_inference_steps, device=self.device, shift=shift)
 | 
				
			||||||
 | 
					            sample_schedulers.append(sample_scheduler)
 | 
				
			||||||
 | 
					        sample_schedulers_counter = [0] * base_num_frames_iter
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        updated_num_steps=  len(step_matrix)
 | 
				
			||||||
 | 
					        if callback != None:
 | 
				
			||||||
 | 
					            callback(-1, None, True, override_num_inference_steps = updated_num_steps)
 | 
				
			||||||
 | 
					        if self.model.enable_teacache:
 | 
				
			||||||
 | 
					            time_steps_comb = []
 | 
				
			||||||
 | 
					            self.model.num_steps = updated_num_steps
 | 
				
			||||||
 | 
					            for i, timestep_i in enumerate(step_matrix):
 | 
				
			||||||
 | 
					                valid_interval_start, valid_interval_end = valid_interval[i]
 | 
				
			||||||
 | 
					                timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
 | 
				
			||||||
 | 
					                if addnoise_condition > 0 and valid_interval_start < predix_video_latent_length:
 | 
				
			||||||
 | 
					                    timestep[:, valid_interval_start:predix_video_latent_length] = addnoise_condition
 | 
				
			||||||
 | 
					                time_steps_comb.append(timestep)
 | 
				
			||||||
 | 
					            self.model.compute_teacache_threshold(self.model.teacache_start_step, time_steps_comb, self.model.teacache_multiplier)
 | 
				
			||||||
 | 
					            del time_steps_comb
 | 
				
			||||||
 | 
					        from mmgp import offload
 | 
				
			||||||
 | 
					        freqs = get_rotary_pos_embed(latents[0].shape[1 :], enable_RIFLEx= False) 
 | 
				
			||||||
 | 
					        for i, timestep_i in enumerate(tqdm(step_matrix)):
 | 
				
			||||||
 | 
					            offload.set_step_no_for_lora(self.model, i)
 | 
				
			||||||
 | 
					            update_mask_i = step_update_mask[i]
 | 
				
			||||||
 | 
					            valid_interval_start, valid_interval_end = valid_interval[i]
 | 
				
			||||||
 | 
					            timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
 | 
				
			||||||
 | 
					            latent_model_input = [latents[0][:, valid_interval_start:valid_interval_end, :, :].clone()]
 | 
				
			||||||
 | 
					            if addnoise_condition > 0 and valid_interval_start < predix_video_latent_length:
 | 
				
			||||||
 | 
					                noise_factor = 0.001 * addnoise_condition
 | 
				
			||||||
 | 
					                timestep_for_noised_condition = addnoise_condition
 | 
				
			||||||
 | 
					                latent_model_input[0][:, valid_interval_start:predix_video_latent_length] = (
 | 
				
			||||||
 | 
					                    latent_model_input[0][:, valid_interval_start:predix_video_latent_length]
 | 
				
			||||||
 | 
					                    * (1.0 - noise_factor)
 | 
				
			||||||
 | 
					                    + torch.randn_like(
 | 
				
			||||||
 | 
					                        latent_model_input[0][:, valid_interval_start:predix_video_latent_length]
 | 
				
			||||||
 | 
					                    )
 | 
				
			||||||
 | 
					                    * noise_factor
 | 
				
			||||||
 | 
					                )
 | 
				
			||||||
 | 
					                timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition
 | 
				
			||||||
 | 
					            kwrags = {
 | 
				
			||||||
 | 
					                "x" : torch.stack([latent_model_input[0]]),
 | 
				
			||||||
 | 
					                "t" : timestep,
 | 
				
			||||||
 | 
					                "freqs" :freqs,
 | 
				
			||||||
 | 
					                "fps" : fps_embeds,
 | 
				
			||||||
 | 
					                "causal_block_size" : causal_block_size,
 | 
				
			||||||
 | 
					                "causal_attention" : causal_attention,
 | 
				
			||||||
 | 
					                "callback" : callback,
 | 
				
			||||||
 | 
					                "pipeline" : self,
 | 
				
			||||||
 | 
					                "current_step" : i,                 
 | 
				
			||||||
 | 
					            }   
 | 
				
			||||||
 | 
					            kwrags.update(i2v_extra_kwrags)
 | 
				
			||||||
 | 
					                
 | 
				
			||||||
 | 
					            if not self.do_classifier_free_guidance:
 | 
				
			||||||
 | 
					                noise_pred = self.model(
 | 
				
			||||||
 | 
					                    context=prompt_embeds,
 | 
				
			||||||
 | 
					                    **kwrags,
 | 
				
			||||||
 | 
					                )[0]
 | 
				
			||||||
 | 
					                if self._interrupt:
 | 
				
			||||||
 | 
					                    return None
 | 
				
			||||||
 | 
					                noise_pred= noise_pred.to(torch.float32)                                                                  
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                if joint_pass:
 | 
				
			||||||
 | 
					                    noise_pred_cond, noise_pred_uncond = self.model(
 | 
				
			||||||
 | 
					                        context=prompt_embeds,
 | 
				
			||||||
 | 
					                        context2=negative_prompt_embeds,
 | 
				
			||||||
 | 
					                        **kwrags,
 | 
				
			||||||
 | 
					                    )
 | 
				
			||||||
 | 
					                    if self._interrupt:
 | 
				
			||||||
 | 
					                        return None                
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    noise_pred_cond = self.model(
 | 
				
			||||||
 | 
					                        context=prompt_embeds,
 | 
				
			||||||
 | 
					                        **kwrags,
 | 
				
			||||||
 | 
					                    )[0]
 | 
				
			||||||
 | 
					                    if self._interrupt:
 | 
				
			||||||
 | 
					                        return None                
 | 
				
			||||||
 | 
					                    noise_pred_uncond = self.model(
 | 
				
			||||||
 | 
					                        context=negative_prompt_embeds,
 | 
				
			||||||
 | 
					                    )[0]
 | 
				
			||||||
 | 
					                    if self._interrupt:
 | 
				
			||||||
 | 
					                        return None
 | 
				
			||||||
 | 
					                noise_pred_cond= noise_pred_cond.to(torch.float32)                                          
 | 
				
			||||||
 | 
					                noise_pred_uncond= noise_pred_uncond.to(torch.float32)                                          
 | 
				
			||||||
 | 
					                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
 | 
				
			||||||
 | 
					                del noise_pred_cond, noise_pred_uncond
 | 
				
			||||||
 | 
					            for idx in range(valid_interval_start, valid_interval_end):
 | 
				
			||||||
 | 
					                if update_mask_i[idx].item():
 | 
				
			||||||
 | 
					                    latents[0][:, idx] = sample_schedulers[idx].step(
 | 
				
			||||||
 | 
					                        noise_pred[:, idx - valid_interval_start],
 | 
				
			||||||
 | 
					                        timestep_i[idx],
 | 
				
			||||||
 | 
					                        latents[0][:, idx],
 | 
				
			||||||
 | 
					                        return_dict=False,
 | 
				
			||||||
 | 
					                        generator=generator,
 | 
				
			||||||
 | 
					                    )[0]
 | 
				
			||||||
 | 
					                    sample_schedulers_counter[idx] += 1
 | 
				
			||||||
 | 
					            if callback is not None:
 | 
				
			||||||
 | 
					                callback(i, latents[0].squeeze(0), False)         
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        x0 = latents[0].unsqueeze(0)
 | 
				
			||||||
 | 
					        videos = [self.vae.decode(x0, tile_size= VAE_tile_size)[0]]
 | 
				
			||||||
 | 
					        output_video = videos[0].clamp(-1, 1).cpu()  # c, f, h, w
 | 
				
			||||||
 | 
					        return output_video
 | 
				
			||||||
@ -368,8 +368,8 @@ class WanT2V:
 | 
				
			|||||||
                shift=1,
 | 
					                shift=1,
 | 
				
			||||||
                use_dynamic_shifting=False)
 | 
					                use_dynamic_shifting=False)
 | 
				
			||||||
            sample_scheduler.set_timesteps(
 | 
					            sample_scheduler.set_timesteps(
 | 
				
			||||||
                sampling_steps, device=self.device, shift=shift)
 | 
					                sampling_steps + 4, device=self.device, shift=shift)
 | 
				
			||||||
            timesteps = sample_scheduler.timesteps
 | 
					            timesteps = sample_scheduler.timesteps[:-4]
 | 
				
			||||||
        elif sample_solver == 'dpm++':
 | 
					        elif sample_solver == 'dpm++':
 | 
				
			||||||
            sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
					            sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
				
			||||||
                num_train_timesteps=self.num_train_timesteps,
 | 
					                num_train_timesteps=self.num_train_timesteps,
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
		Reference in New Issue
	
	Block a user