mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-03 22:04:21 +00:00 
			
		
		
		
	Merge c6c5675a06 into 7c81b2f27d
				
					
				
			This commit is contained in:
		
						commit
						9614f70259
					
				
							
								
								
									
										151
									
								
								I2V-FastAPI文档.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										151
									
								
								I2V-FastAPI文档.md
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,151 @@
 | 
			
		||||
 | 
			
		||||
# 图像到视频生成服务API文档
 | 
			
		||||
 | 
			
		||||
## 一、功能概述
 | 
			
		||||
基于Wan2.1-I2V-14B-480P模型实现图像到视频生成,核心功能包括:
 | 
			
		||||
1. **异步任务队列**:支持多任务排队和并发控制(最大2个并行任务)
 | 
			
		||||
2. **智能分辨率适配**:
 | 
			
		||||
   - 支持自动计算最佳分辨率(保持原图比例)
 | 
			
		||||
   - 支持手动指定分辨率(480x832/832x480)
 | 
			
		||||
3. **资源管理**:
 | 
			
		||||
   - 显存优化(bfloat16精度)
 | 
			
		||||
   - 生成文件自动清理(默认1小时)
 | 
			
		||||
4. **安全认证**:基于API Key的Bearer Token验证
 | 
			
		||||
5. **任务控制**:支持任务提交/状态查询/取消操作
 | 
			
		||||
 | 
			
		||||
技术栈:
 | 
			
		||||
- FastAPI框架
 | 
			
		||||
- CUDA加速
 | 
			
		||||
- 异步任务处理
 | 
			
		||||
- Diffusers推理库
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 二、接口说明
 | 
			
		||||
 | 
			
		||||
### 1. 提交生成任务
 | 
			
		||||
**POST /video/submit**
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "model": "Wan2.1-I2V-14B-480P",
 | 
			
		||||
  "prompt": "A dancing cat in the style of Van Gogh",
 | 
			
		||||
  "image_url": "https://example.com/input.jpg",
 | 
			
		||||
  "image_size": "auto",
 | 
			
		||||
  "num_frames": 81,
 | 
			
		||||
  "guidance_scale": 3.0,
 | 
			
		||||
  "infer_steps": 30
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
**响应示例**:
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "requestId": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6"
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. 查询任务状态
 | 
			
		||||
**POST /video/status**
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "requestId": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6"
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
**响应示例**:
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "status": "Succeed",
 | 
			
		||||
  "results": {
 | 
			
		||||
    "videos": [{"url": "http://localhost:8088/videos/abcd1234.mp4"}],
 | 
			
		||||
    "timings": {"inference": 90},
 | 
			
		||||
    "seed": 123456
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 3. 取消任务
 | 
			
		||||
**POST /video/cancel**
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "requestId": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6"
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
**响应示例**:
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "status": "Succeed"
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 三、Postman使用指南
 | 
			
		||||
 | 
			
		||||
### 1. 基础配置
 | 
			
		||||
- 服务器地址:`http://ip地址:8088`
 | 
			
		||||
- 认证方式:Bearer Token
 | 
			
		||||
- Token值:需替换为有效API Key
 | 
			
		||||
 | 
			
		||||
### 2. 提交任务
 | 
			
		||||
1. 选择POST方法,URL填写`/video/submit`
 | 
			
		||||
2. Headers添加:
 | 
			
		||||
   ```text
 | 
			
		||||
   Authorization: Bearer YOUR_API_KEY
 | 
			
		||||
   Content-Type: application/json
 | 
			
		||||
   ```
 | 
			
		||||
3. Body示例(图像生成视频):
 | 
			
		||||
   ```json
 | 
			
		||||
   {
 | 
			
		||||
     "prompt": "Sunset scene with mountains",
 | 
			
		||||
     "image_url": "https://example.com/mountain.jpg",
 | 
			
		||||
     "image_size": "auto",
 | 
			
		||||
     "num_frames": 50
 | 
			
		||||
   }
 | 
			
		||||
   ```
 | 
			
		||||
 | 
			
		||||
### 3. 特殊处理
 | 
			
		||||
- **图像下载失败**:返回400错误,包含具体原因(如URL无效/超时)
 | 
			
		||||
- **显存不足**:返回500错误并提示降低分辨率
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 四、参数规范
 | 
			
		||||
| 参数名           | 允许值范围                     | 必填 | 说明                                      |
 | 
			
		||||
|------------------|-------------------------------|------|------------------------------------------|
 | 
			
		||||
| image_url        | 有效HTTP/HTTPS URL            | 是   | 输入图像地址                              |
 | 
			
		||||
| prompt           | 10-500字符                    | 是   | 视频内容描述                              |
 | 
			
		||||
| image_size       | "480x832", "832x480", "auto"  | 是   | auto模式自动适配原图比例                  |
 | 
			
		||||
| num_frames       | 24-120                        | 是   | 视频总帧数                                |
 | 
			
		||||
| guidance_scale   | 1.0-20.0                      | 是   | 文本引导强度                              |
 | 
			
		||||
| infer_steps      | 20-100                        | 是   | 推理步数                                  |
 | 
			
		||||
| seed             | 0-2147483647                  | 否   | 随机种子                                  |
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 五、状态码说明
 | 
			
		||||
| 状态码 | 含义                               |
 | 
			
		||||
|--------|-----------------------------------|
 | 
			
		||||
| 202    | 任务已接受                         |
 | 
			
		||||
| 400    | 图像下载失败/参数错误              |
 | 
			
		||||
| 401    | 认证失败                           |
 | 
			
		||||
| 404    | 任务不存在                         |
 | 
			
		||||
| 422    | 参数校验失败                       |
 | 
			
		||||
| 500    | 服务端错误(显存不足/模型异常等)  |
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 六、特殊功能说明
 | 
			
		||||
1. **智能分辨率适配**:
 | 
			
		||||
   - 当`image_size="auto"`时,自动计算符合模型要求的最优分辨率
 | 
			
		||||
   - 保持原始图像宽高比,最大像素面积不超过399,360(约640x624)
 | 
			
		||||
 | 
			
		||||
2. **图像预处理**:
 | 
			
		||||
   - 自动转换为RGB模式
 | 
			
		||||
   - 根据目标分辨率进行等比缩放
 | 
			
		||||
   
 | 
			
		||||
 | 
			
		||||
**重要提示**:输入图像URL需保证公开可访问,私有资源需提供有效鉴权
 | 
			
		||||
 | 
			
		||||
**提示** :访问`http://服务器地址:8088/docs`可查看交互式API文档,支持在线测试所有接口
 | 
			
		||||
							
								
								
									
										133
									
								
								T2V-FastAPI文档.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										133
									
								
								T2V-FastAPI文档.md
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,133 @@
 | 
			
		||||
 | 
			
		||||
# 视频生成服务API文档
 | 
			
		||||
 | 
			
		||||
## 一、功能概述
 | 
			
		||||
本服务基于Wan2.1-T2V-1.3B模型实现文本到视频生成,包含以下核心功能:
 | 
			
		||||
1. **异步任务队列**:支持多任务排队和并发控制(最大2个并行任务)
 | 
			
		||||
2. **资源管理**:
 | 
			
		||||
   - 显存优化(使用bfloat16精度)
 | 
			
		||||
   - 生成视频自动清理(默认1小时后删除)
 | 
			
		||||
3. **安全认证**:基于API Key的Bearer Token验证
 | 
			
		||||
4. **任务控制**:支持任务提交/状态查询/取消操作
 | 
			
		||||
 | 
			
		||||
技术栈:
 | 
			
		||||
- FastAPI框架
 | 
			
		||||
- CUDA加速
 | 
			
		||||
- 异步任务处理
 | 
			
		||||
- Diffusers推理库
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 二、接口说明
 | 
			
		||||
 | 
			
		||||
### 1. 提交生成任务
 | 
			
		||||
**POST /video/submit**
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "model": "Wan2.1-T2V-1.3B",
 | 
			
		||||
  "prompt": "A beautiful sunset over the mountains",
 | 
			
		||||
  "image_size": "480x832",
 | 
			
		||||
  "num_frames": 81,
 | 
			
		||||
  "guidance_scale": 5.0,
 | 
			
		||||
  "infer_steps": 50
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
**响应示例**:
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "requestId": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6"
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. 查询任务状态
 | 
			
		||||
**POST /video/status**
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "requestId": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6"
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
**响应示例**:
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "status": "Succeed",
 | 
			
		||||
  "results": {
 | 
			
		||||
    "videos": [{"url": "http://localhost:8088/videos/abcd1234.mp4"}],
 | 
			
		||||
    "timings": {"inference": 120}
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 3. 取消任务
 | 
			
		||||
**POST /video/cancel**
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "requestId": "a1b2c3d4e5f6g7h8i9j0k1l2m3n4o5p6"
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
**响应示例**:
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "status": "Succeed"
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 三、Postman使用指南
 | 
			
		||||
 | 
			
		||||
### 1. 基础配置
 | 
			
		||||
- 服务器地址:`http://ip地址:8088`
 | 
			
		||||
- 认证方式:Bearer Token
 | 
			
		||||
- Token值:需替换为有效API Key
 | 
			
		||||
 | 
			
		||||
### 2. 提交任务
 | 
			
		||||
1. 选择POST方法,输入URL:`/video/submit`
 | 
			
		||||
2. Headers添加:
 | 
			
		||||
   ```text
 | 
			
		||||
   Authorization: Bearer YOUR_API_KEY
 | 
			
		||||
   Content-Type: application/json
 | 
			
		||||
   ```
 | 
			
		||||
3. Body选择raw/JSON格式,输入请求参数
 | 
			
		||||
 | 
			
		||||
### 3. 查询状态
 | 
			
		||||
1. 新建请求,URL填写`/video/status`
 | 
			
		||||
2. 使用相同认证头
 | 
			
		||||
3. Body中携带requestId
 | 
			
		||||
 | 
			
		||||
### 4. 取消任务
 | 
			
		||||
1. 新建DELETE请求,URL填写`/video/cancel`
 | 
			
		||||
2. Body携带需要取消的requestId
 | 
			
		||||
 | 
			
		||||
### 注意事项
 | 
			
		||||
1. 所有接口必须携带有效API Key
 | 
			
		||||
2. 视频生成耗时约2-5分钟(根据参数配置)
 | 
			
		||||
3. 生成视频默认保留1小时
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 四、参数规范
 | 
			
		||||
| 参数名           | 允许值范围                     | 必填 | 说明                     |
 | 
			
		||||
|------------------|-------------------------------|------|--------------------------|
 | 
			
		||||
| prompt           | 10-500字符                    | 是   | 视频内容描述             |
 | 
			
		||||
| image_size       | "480x832" 或 "832x480"        | 是   | 分辨率                   |
 | 
			
		||||
| num_frames       | 24-120                        | 是   | 视频总帧数               |
 | 
			
		||||
| guidance_scale   | 1.0-20.0                      | 是   | 文本引导强度             |
 | 
			
		||||
| infer_steps      | 20-100                        | 是   | 推理步数                 |
 | 
			
		||||
| seed             | 0-2147483647                  | 否   | 随机种子                 |
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
## 五、状态码说明
 | 
			
		||||
| 状态码 | 含义                     |
 | 
			
		||||
|--------|--------------------------|
 | 
			
		||||
| 202    | 任务已接受               |
 | 
			
		||||
| 401    | 认证失败                 |
 | 
			
		||||
| 404    | 任务不存在               |
 | 
			
		||||
| 422    | 参数校验失败             |
 | 
			
		||||
| 500    | 服务端错误(显存不足等) |
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
**提示**:建议使用Swagger文档进行接口测试,访问`http://服务器地址:8088/docs`可查看自动生成的API文档界面
 | 
			
		||||
							
								
								
									
										526
									
								
								i2v_api.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										526
									
								
								i2v_api.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,526 @@
 | 
			
		||||
import os
 | 
			
		||||
import torch
 | 
			
		||||
import uuid
 | 
			
		||||
import time
 | 
			
		||||
import asyncio
 | 
			
		||||
import numpy as np
 | 
			
		||||
from threading import Lock
 | 
			
		||||
from typing import Optional, Dict, List
 | 
			
		||||
from fastapi import FastAPI, HTTPException, status, Depends
 | 
			
		||||
from fastapi.staticfiles import StaticFiles
 | 
			
		||||
from pydantic import BaseModel, Field, field_validator, ValidationError
 | 
			
		||||
from diffusers.utils import export_to_video, load_image
 | 
			
		||||
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline
 | 
			
		||||
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
 | 
			
		||||
from transformers import CLIPVisionModel
 | 
			
		||||
from PIL import Image
 | 
			
		||||
import requests
 | 
			
		||||
from io import BytesIO
 | 
			
		||||
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
 | 
			
		||||
from contextlib import asynccontextmanager
 | 
			
		||||
from requests.exceptions import RequestException
 | 
			
		||||
 | 
			
		||||
# 创建存储目录
 | 
			
		||||
os.makedirs("generated_videos", exist_ok=True)
 | 
			
		||||
os.makedirs("temp_images", exist_ok=True)
 | 
			
		||||
 | 
			
		||||
# ======================
 | 
			
		||||
# 生命周期管理
 | 
			
		||||
# ======================
 | 
			
		||||
@asynccontextmanager
 | 
			
		||||
async def lifespan(app: FastAPI):
 | 
			
		||||
    """资源管理器"""
 | 
			
		||||
    try:
 | 
			
		||||
        # 初始化认证系统
 | 
			
		||||
        app.state.valid_api_keys = {
 | 
			
		||||
            "密钥"
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        # 初始化模型
 | 
			
		||||
        model_id = "./Wan2.1-I2V-14B-480P-Diffusers"
 | 
			
		||||
      
 | 
			
		||||
        # 加载图像编码器
 | 
			
		||||
        image_encoder = CLIPVisionModel.from_pretrained(
 | 
			
		||||
            model_id,
 | 
			
		||||
            subfolder="image_encoder",
 | 
			
		||||
            torch_dtype=torch.float32
 | 
			
		||||
        )
 | 
			
		||||
      
 | 
			
		||||
        # 加载VAE
 | 
			
		||||
        vae = AutoencoderKLWan.from_pretrained(
 | 
			
		||||
            model_id,
 | 
			
		||||
            subfolder="vae",
 | 
			
		||||
            torch_dtype=torch.float32
 | 
			
		||||
        )
 | 
			
		||||
      
 | 
			
		||||
        # 配置调度器
 | 
			
		||||
        scheduler = UniPCMultistepScheduler(
 | 
			
		||||
            prediction_type='flow_prediction',
 | 
			
		||||
            use_flow_sigmas=True,
 | 
			
		||||
            num_train_timesteps=1000,
 | 
			
		||||
            flow_shift=3.0
 | 
			
		||||
        )
 | 
			
		||||
      
 | 
			
		||||
        # 创建管道
 | 
			
		||||
        app.state.pipe = WanImageToVideoPipeline.from_pretrained(
 | 
			
		||||
            model_id,
 | 
			
		||||
            vae=vae,
 | 
			
		||||
            image_encoder=image_encoder,
 | 
			
		||||
            torch_dtype=torch.bfloat16
 | 
			
		||||
        ).to("cuda")
 | 
			
		||||
        app.state.pipe.scheduler = scheduler
 | 
			
		||||
 | 
			
		||||
        # 初始化任务系统
 | 
			
		||||
        app.state.tasks: Dict[str, dict] = {}
 | 
			
		||||
        app.state.pending_queue: List[str] = []
 | 
			
		||||
        app.state.model_lock = Lock()
 | 
			
		||||
        app.state.task_lock = Lock()
 | 
			
		||||
        app.state.base_url = "ip地址+端口"
 | 
			
		||||
        app.state.semaphore = asyncio.Semaphore(2)  # 并发限制
 | 
			
		||||
 | 
			
		||||
        # 启动后台处理器
 | 
			
		||||
        asyncio.create_task(task_processor())
 | 
			
		||||
 | 
			
		||||
        print("✅ 系统初始化完成")
 | 
			
		||||
        yield
 | 
			
		||||
 | 
			
		||||
    finally:
 | 
			
		||||
        # 资源清理
 | 
			
		||||
        if hasattr(app.state, 'pipe'):
 | 
			
		||||
            del app.state.pipe
 | 
			
		||||
            torch.cuda.empty_cache()
 | 
			
		||||
            print("♻️ 资源已释放")
 | 
			
		||||
 | 
			
		||||
# ======================
 | 
			
		||||
# FastAPI应用
 | 
			
		||||
# ======================
 | 
			
		||||
app = FastAPI(lifespan=lifespan)
 | 
			
		||||
app.mount("/videos", StaticFiles(directory="generated_videos"), name="videos")
 | 
			
		||||
# 认证模块
 | 
			
		||||
security = HTTPBearer(auto_error=False)
 | 
			
		||||
 | 
			
		||||
# ======================
 | 
			
		||||
# 数据模型--查询参数模型
 | 
			
		||||
# ======================
 | 
			
		||||
class VideoSubmitRequest(BaseModel):
 | 
			
		||||
    model: str = Field(
 | 
			
		||||
        default="Wan2.1-I2V-14B-480P",
 | 
			
		||||
        description="模型版本"
 | 
			
		||||
    )
 | 
			
		||||
    prompt: str = Field(
 | 
			
		||||
        ...,
 | 
			
		||||
        min_length=10,
 | 
			
		||||
        max_length=500,
 | 
			
		||||
        description="视频描述提示词,10-500个字符"
 | 
			
		||||
    )
 | 
			
		||||
    image_url: str = Field(
 | 
			
		||||
        ...,
 | 
			
		||||
        description="输入图像URL,需支持HTTP/HTTPS协议"
 | 
			
		||||
    )
 | 
			
		||||
    image_size: str = Field(
 | 
			
		||||
        default="auto",
 | 
			
		||||
        description="输出分辨率,格式:宽x高 或 auto(自动计算)"
 | 
			
		||||
    )
 | 
			
		||||
    negative_prompt: Optional[str] = Field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        max_length=500,
 | 
			
		||||
        description="排除不需要的内容"
 | 
			
		||||
    )
 | 
			
		||||
    seed: Optional[int] = Field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        ge=0,
 | 
			
		||||
        le=2147483647,
 | 
			
		||||
        description="随机数种子,范围0-2147483647"
 | 
			
		||||
    )
 | 
			
		||||
    num_frames: int = Field(
 | 
			
		||||
        default=81,
 | 
			
		||||
        ge=24,
 | 
			
		||||
        le=120,
 | 
			
		||||
        description="视频帧数,24-89帧"
 | 
			
		||||
    )
 | 
			
		||||
    guidance_scale: float = Field(
 | 
			
		||||
        default=3.0,
 | 
			
		||||
        ge=1.0,
 | 
			
		||||
        le=20.0,
 | 
			
		||||
        description="引导系数,1.0-20.0"
 | 
			
		||||
    )
 | 
			
		||||
    infer_steps: int = Field(
 | 
			
		||||
        default=30,
 | 
			
		||||
        ge=20,
 | 
			
		||||
        le=100,
 | 
			
		||||
        description="推理步数,20-100步"
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    @field_validator('image_size')
 | 
			
		||||
    def validate_image_size(cls, v):
 | 
			
		||||
        allowed_sizes = {"480x832", "832x480", "auto"}
 | 
			
		||||
        if v not in allowed_sizes:
 | 
			
		||||
            raise ValueError(f"支持的分辨率: {', '.join(allowed_sizes)}")
 | 
			
		||||
        return v
 | 
			
		||||
 | 
			
		||||
class VideoStatusRequest(BaseModel):
 | 
			
		||||
    requestId: str = Field(
 | 
			
		||||
        ...,
 | 
			
		||||
        min_length=32,
 | 
			
		||||
        max_length=32,
 | 
			
		||||
        description="32位任务ID"
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
class VideoStatusResponse(BaseModel):
 | 
			
		||||
    status: str = Field(..., description="任务状态: Succeed, InQueue, InProgress, Failed,Cancelled")
 | 
			
		||||
    reason: Optional[str] = Field(None, description="失败原因")
 | 
			
		||||
    results: Optional[dict] = Field(None, description="生成结果")
 | 
			
		||||
    queue_position: Optional[int] = Field(None, description="队列位置")
 | 
			
		||||
 | 
			
		||||
class VideoCancelRequest(BaseModel):
 | 
			
		||||
    requestId: str = Field(
 | 
			
		||||
        ...,
 | 
			
		||||
        min_length=32,
 | 
			
		||||
        max_length=32,
 | 
			
		||||
        description="32位任务ID"
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
# ======================
 | 
			
		||||
# 核心逻辑
 | 
			
		||||
# ======================
 | 
			
		||||
async def verify_auth(credentials: HTTPAuthorizationCredentials = Depends(security)):
 | 
			
		||||
    """统一认证验证"""
 | 
			
		||||
    if not credentials:
 | 
			
		||||
        raise HTTPException(
 | 
			
		||||
            status_code=401,
 | 
			
		||||
            detail={"status": "Failed", "reason": "缺少认证头"},
 | 
			
		||||
            headers={"WWW-Authenticate": "Bearer"}
 | 
			
		||||
        )
 | 
			
		||||
    if credentials.scheme != "Bearer":
 | 
			
		||||
        raise HTTPException(
 | 
			
		||||
            status_code=401,
 | 
			
		||||
            detail={"status": "Failed", "reason": "无效的认证方案"},
 | 
			
		||||
            headers={"WWW-Authenticate": "Bearer"}
 | 
			
		||||
        )
 | 
			
		||||
    if credentials.credentials not in app.state.valid_api_keys:
 | 
			
		||||
        raise HTTPException(
 | 
			
		||||
            status_code=401,
 | 
			
		||||
            detail={"status": "Failed", "reason": "无效的API密钥"},
 | 
			
		||||
            headers={"WWW-Authenticate": "Bearer"}
 | 
			
		||||
        )
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
async def task_processor():
 | 
			
		||||
    """任务处理器"""
 | 
			
		||||
    while True:
 | 
			
		||||
        async with app.state.semaphore:
 | 
			
		||||
            task_id = await get_next_task()
 | 
			
		||||
            if task_id:
 | 
			
		||||
                await process_task(task_id)
 | 
			
		||||
            else:
 | 
			
		||||
                await asyncio.sleep(0.5)
 | 
			
		||||
 | 
			
		||||
async def get_next_task():
 | 
			
		||||
    """获取下一个任务"""
 | 
			
		||||
    with app.state.task_lock:
 | 
			
		||||
        return app.state.pending_queue.pop(0) if app.state.pending_queue else None
 | 
			
		||||
 | 
			
		||||
async def process_task(task_id: str):
 | 
			
		||||
    """处理单个任务"""
 | 
			
		||||
    task = app.state.tasks.get(task_id)
 | 
			
		||||
    if not task:
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        # 更新任务状态
 | 
			
		||||
        task['status'] = 'InProgress'
 | 
			
		||||
        task['started_at'] = int(time.time())
 | 
			
		||||
        print(task['request'].image_url)
 | 
			
		||||
        # 下载输入图像
 | 
			
		||||
        image = await download_image(task['request'].image_url)
 | 
			
		||||
        image_path = f"temp_images/{task_id}.jpg"
 | 
			
		||||
        image.save(image_path)
 | 
			
		||||
 | 
			
		||||
        # 生成视频
 | 
			
		||||
        video_path = await generate_video(task['request'], task_id, image)
 | 
			
		||||
      
 | 
			
		||||
        # 生成下载链接
 | 
			
		||||
        download_url = f"{app.state.base_url}/videos/{os.path.basename(video_path)}"
 | 
			
		||||
      
 | 
			
		||||
        # 更新任务状态
 | 
			
		||||
        task.update({
 | 
			
		||||
            'status': 'Succeed',
 | 
			
		||||
            'download_url': download_url,
 | 
			
		||||
            'completed_at': int(time.time())
 | 
			
		||||
        })
 | 
			
		||||
      
 | 
			
		||||
        # 安排清理
 | 
			
		||||
        asyncio.create_task(cleanup_files([image_path, video_path]))
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        handle_task_error(task, e)
 | 
			
		||||
 | 
			
		||||
def handle_task_error(task: dict, error: Exception):
 | 
			
		||||
    """错误处理(包含详细错误信息)"""
 | 
			
		||||
    error_msg = str(error)
 | 
			
		||||
  
 | 
			
		||||
    # 1. 显存不足错误
 | 
			
		||||
    if isinstance(error, torch.cuda.OutOfMemoryError):
 | 
			
		||||
        error_msg = "显存不足,请降低分辨率"
 | 
			
		||||
      
 | 
			
		||||
    # 2. 网络请求相关错误
 | 
			
		||||
    elif isinstance(error, (RequestException, HTTPException)):
 | 
			
		||||
        # 从异常中提取具体信息
 | 
			
		||||
        if isinstance(error, HTTPException):
 | 
			
		||||
            # 如果是 HTTPException,获取其 detail 字段
 | 
			
		||||
            error_detail = getattr(error, "detail", "")
 | 
			
		||||
            error_msg = f"图像下载失败: {error_detail}"
 | 
			
		||||
          
 | 
			
		||||
        elif isinstance(error, Timeout):
 | 
			
		||||
            error_msg = "图像下载超时,请检查网络"
 | 
			
		||||
          
 | 
			
		||||
        elif isinstance(error, ConnectionError):
 | 
			
		||||
            error_msg = "无法连接到服务器,请检查 URL"
 | 
			
		||||
          
 | 
			
		||||
        elif isinstance(error, HTTPError):
 | 
			
		||||
            # requests 的 HTTPError(例如 4xx/5xx 状态码)
 | 
			
		||||
            status_code = error.response.status_code
 | 
			
		||||
            error_msg = f"服务器返回错误状态码: {status_code}"
 | 
			
		||||
          
 | 
			
		||||
        else:
 | 
			
		||||
            # 其他 RequestException 错误
 | 
			
		||||
            error_msg = f"图像下载失败: {str(error)}"
 | 
			
		||||
  
 | 
			
		||||
    # 3. 其他未知错误
 | 
			
		||||
    else:
 | 
			
		||||
        error_msg = f"未知错误: {str(error)}"
 | 
			
		||||
  
 | 
			
		||||
    # 更新任务状态
 | 
			
		||||
    task.update({
 | 
			
		||||
        'status': 'Failed',
 | 
			
		||||
        'reason': error_msg,
 | 
			
		||||
        'completed_at': int(time.time())
 | 
			
		||||
    })
 | 
			
		||||
# ======================
 | 
			
		||||
# 视频生成逻辑
 | 
			
		||||
# ======================
 | 
			
		||||
async def download_image(url: str) -> Image.Image:
 | 
			
		||||
    """异步下载图像(包含详细错误信息)"""
 | 
			
		||||
    loop = asyncio.get_event_loop()
 | 
			
		||||
    try:
 | 
			
		||||
        response = await loop.run_in_executor(
 | 
			
		||||
            None, 
 | 
			
		||||
            lambda: requests.get(url)  # 将 timeout 传递给 requests.get
 | 
			
		||||
        )
 | 
			
		||||
      
 | 
			
		||||
        # 如果状态码非 200,主动抛出 HTTPException
 | 
			
		||||
        if response.status_code != 200:
 | 
			
		||||
            raise HTTPException(
 | 
			
		||||
                status_code=response.status_code,
 | 
			
		||||
                detail=f"服务器返回状态码 {response.status_code}"
 | 
			
		||||
            )
 | 
			
		||||
          
 | 
			
		||||
        return Image.open(BytesIO(response.content)).convert("RGB")
 | 
			
		||||
      
 | 
			
		||||
    except RequestException as e:
 | 
			
		||||
        # 将原始 requests 错误信息抛出
 | 
			
		||||
        raise HTTPException(
 | 
			
		||||
            status_code=500,
 | 
			
		||||
            detail=f"请求失败: {str(e)}"
 | 
			
		||||
        )
 | 
			
		||||
async def generate_video(request: VideoSubmitRequest, task_id: str, image: Image.Image):
 | 
			
		||||
    """异步生成入口"""
 | 
			
		||||
    loop = asyncio.get_event_loop()
 | 
			
		||||
    return await loop.run_in_executor(
 | 
			
		||||
        None,
 | 
			
		||||
        sync_generate_video,
 | 
			
		||||
        request,
 | 
			
		||||
        task_id,
 | 
			
		||||
        image
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
def sync_generate_video(request: VideoSubmitRequest, task_id: str, image: Image.Image):
 | 
			
		||||
    """同步生成核心"""
 | 
			
		||||
    with app.state.model_lock:
 | 
			
		||||
        try:
 | 
			
		||||
            # 解析分辨率
 | 
			
		||||
            mod_value = 16  # 模型要求的模数
 | 
			
		||||
            print(request.image_size)
 | 
			
		||||
            print('--------------------------------')
 | 
			
		||||
            if request.image_size == "auto":
 | 
			
		||||
                # 原版自动计算逻辑
 | 
			
		||||
                aspect_ratio = image.height / image.width
 | 
			
		||||
                print(image.height,image.width)
 | 
			
		||||
                max_area = 399360  # 模型基础分辨率
 | 
			
		||||
              
 | 
			
		||||
                # 计算理想尺寸
 | 
			
		||||
                height = round(np.sqrt(max_area * aspect_ratio)) 
 | 
			
		||||
                width = round(np.sqrt(max_area / aspect_ratio))
 | 
			
		||||
              
 | 
			
		||||
                # 应用模数调整
 | 
			
		||||
                height = height // mod_value * mod_value
 | 
			
		||||
                width = width // mod_value * mod_value
 | 
			
		||||
                resized_image = image.resize((width, height))
 | 
			
		||||
            else:
 | 
			
		||||
                width_str, height_str = request.image_size.split('x')
 | 
			
		||||
                width = int(width_str)
 | 
			
		||||
                height = int(height_str)
 | 
			
		||||
                mod_value = 16          
 | 
			
		||||
                # 调整图像尺寸
 | 
			
		||||
                resized_image = image.resize((width, height))
 | 
			
		||||
            
 | 
			
		||||
              
 | 
			
		||||
            # 设置随机种子
 | 
			
		||||
            generator = None
 | 
			
		||||
            # 修改点1: 使用属性访问seed
 | 
			
		||||
            if request.seed is not None:
 | 
			
		||||
                generator = torch.Generator(device="cuda")
 | 
			
		||||
                generator.manual_seed(request.seed)  # 修改点2
 | 
			
		||||
                print(f"🔮 使用随机种子: {request.seed}")
 | 
			
		||||
            print(resized_image)
 | 
			
		||||
            print(height,width)
 | 
			
		||||
 | 
			
		||||
            # 执行推理
 | 
			
		||||
            output = app.state.pipe(
 | 
			
		||||
                image=resized_image,
 | 
			
		||||
                prompt=request.prompt,
 | 
			
		||||
                negative_prompt=request.negative_prompt,
 | 
			
		||||
                height=height,
 | 
			
		||||
                width=width,
 | 
			
		||||
                num_frames=request.num_frames,
 | 
			
		||||
                guidance_scale=request.guidance_scale,
 | 
			
		||||
                num_inference_steps=request.infer_steps,
 | 
			
		||||
                generator=generator
 | 
			
		||||
            ).frames[0]
 | 
			
		||||
 | 
			
		||||
            # 导出视频
 | 
			
		||||
            video_id = uuid.uuid4().hex
 | 
			
		||||
            output_path = f"generated_videos/{video_id}.mp4"
 | 
			
		||||
            export_to_video(output, output_path, fps=16)
 | 
			
		||||
            return output_path
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            raise RuntimeError(f"视频生成失败: {str(e)}") from e
 | 
			
		||||
 | 
			
		||||
# ======================
 | 
			
		||||
# API端点
 | 
			
		||||
# ======================
 | 
			
		||||
@app.post("/video/submit",
 | 
			
		||||
          response_model=dict,
 | 
			
		||||
          status_code=status.HTTP_202_ACCEPTED,
 | 
			
		||||
          tags=["视频生成"])
 | 
			
		||||
async def submit_task(
 | 
			
		||||
    request: VideoSubmitRequest,
 | 
			
		||||
    auth: bool = Depends(verify_auth)
 | 
			
		||||
):
 | 
			
		||||
    """提交生成任务"""
 | 
			
		||||
    # 参数验证
 | 
			
		||||
    if request.image_url is None:
 | 
			
		||||
        raise HTTPException(
 | 
			
		||||
            status_code=422,
 | 
			
		||||
            detail={"status": "Failed", "reason": "需要图像URL参数"}
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    # 创建任务记录
 | 
			
		||||
    task_id = uuid.uuid4().hex
 | 
			
		||||
    with app.state.task_lock:
 | 
			
		||||
        app.state.tasks[task_id] = {
 | 
			
		||||
            "request": request,
 | 
			
		||||
            "status": "InQueue",
 | 
			
		||||
            "created_at": int(time.time())
 | 
			
		||||
        }
 | 
			
		||||
        app.state.pending_queue.append(task_id)
 | 
			
		||||
  
 | 
			
		||||
    return {"requestId": task_id}
 | 
			
		||||
 | 
			
		||||
@app.post("/video/status",
 | 
			
		||||
          response_model=VideoStatusResponse,
 | 
			
		||||
          tags=["视频生成"])
 | 
			
		||||
async def get_status(
 | 
			
		||||
    request: VideoStatusRequest,
 | 
			
		||||
    auth: bool = Depends(verify_auth)
 | 
			
		||||
):
 | 
			
		||||
    """查询任务状态"""
 | 
			
		||||
    task = app.state.tasks.get(request.requestId)
 | 
			
		||||
    if not task:
 | 
			
		||||
        raise HTTPException(
 | 
			
		||||
            status_code=404,
 | 
			
		||||
            detail={"status": "Failed", "reason": "无效的任务ID"}
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    # 计算队列位置(仅当在队列中时)
 | 
			
		||||
    queue_pos = 0
 | 
			
		||||
    if task['status'] == "InQueue" and request.requestId in app.state.pending_queue:
 | 
			
		||||
        queue_pos = app.state.pending_queue.index(request.requestId) + 1
 | 
			
		||||
 | 
			
		||||
    response = {
 | 
			
		||||
        "status": task['status'],
 | 
			
		||||
        "reason": task.get('reason'),
 | 
			
		||||
        "queue_position": queue_pos if task['status'] == "InQueue" else None  # 非排队状态返回null
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    # 成功状态的特殊处理
 | 
			
		||||
    if task['status'] == "Succeed":
 | 
			
		||||
        response["results"] = {
 | 
			
		||||
            "videos": [{"url": task['download_url']}],
 | 
			
		||||
            "timings": {
 | 
			
		||||
                "inference": task['completed_at'] - task['started_at']
 | 
			
		||||
            },
 | 
			
		||||
            "seed": task['request'].seed
 | 
			
		||||
        }
 | 
			
		||||
    # 取消状态的补充信息
 | 
			
		||||
    elif task['status'] == "Cancelled":
 | 
			
		||||
        response["reason"] = task.get('reason', "用户主动取消")  # 确保原因字段存在
 | 
			
		||||
 | 
			
		||||
    return response
 | 
			
		||||
 | 
			
		||||
@app.post("/video/cancel",
 | 
			
		||||
         response_model=dict,
 | 
			
		||||
         tags=["视频生成"])
 | 
			
		||||
async def cancel_task(
 | 
			
		||||
    request: VideoCancelRequest,
 | 
			
		||||
    auth: bool = Depends(verify_auth)
 | 
			
		||||
):
 | 
			
		||||
    """取消排队中的生成任务"""
 | 
			
		||||
    task_id = request.requestId
 | 
			
		||||
  
 | 
			
		||||
    with app.state.task_lock:
 | 
			
		||||
        task = app.state.tasks.get(task_id)
 | 
			
		||||
      
 | 
			
		||||
        # 检查任务是否存在
 | 
			
		||||
        if not task:
 | 
			
		||||
            raise HTTPException(
 | 
			
		||||
                status_code=404,
 | 
			
		||||
                detail={"status": "Failed", "reason": "无效的任务ID"}
 | 
			
		||||
            )
 | 
			
		||||
          
 | 
			
		||||
        current_status = task['status']
 | 
			
		||||
      
 | 
			
		||||
        # 仅允许取消排队中的任务
 | 
			
		||||
        if current_status != "InQueue":
 | 
			
		||||
            raise HTTPException(
 | 
			
		||||
                status_code=400,
 | 
			
		||||
                detail={"status": "Failed", "reason": f"仅允许取消排队任务,当前状态: {current_status}"}
 | 
			
		||||
            )
 | 
			
		||||
      
 | 
			
		||||
        # 从队列移除
 | 
			
		||||
        try:
 | 
			
		||||
            app.state.pending_queue.remove(task_id)
 | 
			
		||||
        except ValueError:
 | 
			
		||||
            pass  # 可能已被处理
 | 
			
		||||
      
 | 
			
		||||
        # 更新任务状态
 | 
			
		||||
        task.update({
 | 
			
		||||
            "status": "Cancelled",
 | 
			
		||||
            "reason": "用户主动取消",
 | 
			
		||||
            "completed_at": int(time.time())
 | 
			
		||||
        })
 | 
			
		||||
      
 | 
			
		||||
    return {"status": "Succeed"}
 | 
			
		||||
 | 
			
		||||
async def cleanup_files(paths: List[str], delay: int = 3600):
 | 
			
		||||
    """定时清理文件"""
 | 
			
		||||
    await asyncio.sleep(delay)
 | 
			
		||||
    for path in paths:
 | 
			
		||||
        try:
 | 
			
		||||
            if os.path.exists(path):
 | 
			
		||||
                os.remove(path)
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            print(f"清理失败 {path}: {str(e)}")
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    import uvicorn
 | 
			
		||||
    uvicorn.run(app, host="0.0.0.0", port=8088)
 | 
			
		||||
							
								
								
									
										450
									
								
								t2v-api.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										450
									
								
								t2v-api.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,450 @@
 | 
			
		||||
import os
 | 
			
		||||
import torch
 | 
			
		||||
import uuid
 | 
			
		||||
import time
 | 
			
		||||
import asyncio
 | 
			
		||||
from enum import Enum
 | 
			
		||||
from threading import Lock
 | 
			
		||||
from typing import Optional, Dict, List
 | 
			
		||||
from contextlib import asynccontextmanager
 | 
			
		||||
from fastapi import FastAPI, HTTPException, status, Depends
 | 
			
		||||
from fastapi.staticfiles import StaticFiles
 | 
			
		||||
from pydantic import BaseModel, Field, field_validator, ValidationError
 | 
			
		||||
from diffusers.utils import export_to_video
 | 
			
		||||
from diffusers import AutoencoderKLWan, WanPipeline
 | 
			
		||||
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
 | 
			
		||||
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
 | 
			
		||||
from fastapi.responses import JSONResponse
 | 
			
		||||
 | 
			
		||||
# 创建视频存储目录
 | 
			
		||||
os.makedirs("generated_videos", exist_ok=True)
 | 
			
		||||
 | 
			
		||||
# 生命周期管理器
 | 
			
		||||
@asynccontextmanager
 | 
			
		||||
async def lifespan(app: FastAPI):
 | 
			
		||||
    """管理应用生命周期"""
 | 
			
		||||
    # 初始化模型和资源
 | 
			
		||||
    try:
 | 
			
		||||
        # 初始化认证密钥
 | 
			
		||||
        app.state.valid_api_keys = {
 | 
			
		||||
            "密钥"
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        # 初始化视频生成模型
 | 
			
		||||
        model_id = "./Wan2.1-T2V-1.3B-Diffusers"
 | 
			
		||||
        vae = AutoencoderKLWan.from_pretrained(
 | 
			
		||||
            model_id,
 | 
			
		||||
            subfolder="vae",
 | 
			
		||||
            torch_dtype=torch.float32
 | 
			
		||||
        )
 | 
			
		||||
      
 | 
			
		||||
        scheduler = UniPCMultistepScheduler(
 | 
			
		||||
            prediction_type='flow_prediction',
 | 
			
		||||
            use_flow_sigmas=True,
 | 
			
		||||
            num_train_timesteps=1000,
 | 
			
		||||
            flow_shift=3.0
 | 
			
		||||
        )
 | 
			
		||||
      
 | 
			
		||||
        app.state.pipe = WanPipeline.from_pretrained(
 | 
			
		||||
            model_id,
 | 
			
		||||
            vae=vae,
 | 
			
		||||
            torch_dtype=torch.bfloat16
 | 
			
		||||
        ).to("cuda")
 | 
			
		||||
        app.state.pipe.scheduler = scheduler
 | 
			
		||||
 | 
			
		||||
        # 初始化任务系统
 | 
			
		||||
        app.state.tasks: Dict[str, dict] = {}
 | 
			
		||||
        app.state.pending_queue: List[str] = []
 | 
			
		||||
        app.state.model_lock = Lock()
 | 
			
		||||
        app.state.task_lock = Lock()
 | 
			
		||||
        app.state.base_url = "ip地址+端口"
 | 
			
		||||
        app.state.max_concurrent = 2
 | 
			
		||||
        app.state.semaphore = asyncio.Semaphore(app.state.max_concurrent)
 | 
			
		||||
 | 
			
		||||
        # 启动后台任务处理器
 | 
			
		||||
        asyncio.create_task(task_processor())
 | 
			
		||||
      
 | 
			
		||||
        print("✅ 应用初始化完成")
 | 
			
		||||
        yield
 | 
			
		||||
      
 | 
			
		||||
    finally:
 | 
			
		||||
        # 清理资源
 | 
			
		||||
        if hasattr(app.state, 'pipe'):
 | 
			
		||||
            del app.state.pipe
 | 
			
		||||
            torch.cuda.empty_cache()
 | 
			
		||||
            print("♻️ 已释放模型资源")
 | 
			
		||||
 | 
			
		||||
# 创建FastAPI应用
 | 
			
		||||
app = FastAPI(lifespan=lifespan)
 | 
			
		||||
app.mount("/videos", StaticFiles(directory="generated_videos"), name="videos")
 | 
			
		||||
 | 
			
		||||
# 认证模块
 | 
			
		||||
security = HTTPBearer(auto_error=False)
 | 
			
		||||
 | 
			
		||||
# ======================
 | 
			
		||||
# 数据模型--查询参数模型
 | 
			
		||||
# ======================
 | 
			
		||||
class VideoSubmitRequest(BaseModel):
 | 
			
		||||
    model: str = Field(default="Wan2.1-T2V-1.3B",description="使用的模型版本")
 | 
			
		||||
    prompt: str = Field(
 | 
			
		||||
        ...,
 | 
			
		||||
        min_length=10,
 | 
			
		||||
        max_length=500,
 | 
			
		||||
        description="视频描述提示词,10-500个字符"
 | 
			
		||||
    )
 | 
			
		||||
    image_size: str = Field(
 | 
			
		||||
        ...,
 | 
			
		||||
        description="视频分辨率,仅支持480x832或832x480"
 | 
			
		||||
    )
 | 
			
		||||
    negative_prompt: Optional[str] = Field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        max_length=500,
 | 
			
		||||
        description="排除不需要的内容"
 | 
			
		||||
    )
 | 
			
		||||
    seed: Optional[int] = Field(
 | 
			
		||||
        default=None,
 | 
			
		||||
        ge=0,
 | 
			
		||||
        le=2147483647,
 | 
			
		||||
        description="随机数种子,范围0-2147483647"
 | 
			
		||||
    )
 | 
			
		||||
    num_frames: int = Field(
 | 
			
		||||
        default=81,
 | 
			
		||||
        ge=24,
 | 
			
		||||
        le=120,
 | 
			
		||||
        description="视频帧数,24-120帧"
 | 
			
		||||
    )
 | 
			
		||||
    guidance_scale: float = Field(
 | 
			
		||||
        default=5.0,
 | 
			
		||||
        ge=1.0,
 | 
			
		||||
        le=20.0,
 | 
			
		||||
        description="引导系数,1.0-20.0"
 | 
			
		||||
    )
 | 
			
		||||
    infer_steps: int = Field(
 | 
			
		||||
        default=50,
 | 
			
		||||
        ge=20,
 | 
			
		||||
        le=100,
 | 
			
		||||
        description="推理步数,20-100步"
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    @field_validator('image_size', mode='before')
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def validate_image_size(cls, value):
 | 
			
		||||
        allowed_sizes = {"480x832", "832x480"}
 | 
			
		||||
        if value not in allowed_sizes:
 | 
			
		||||
            raise ValueError(f"仅支持以下分辨率: {', '.join(allowed_sizes)}")
 | 
			
		||||
        return value
 | 
			
		||||
 | 
			
		||||
class VideoStatusRequest(BaseModel):
 | 
			
		||||
    requestId: str = Field(
 | 
			
		||||
        ...,
 | 
			
		||||
        min_length=32,
 | 
			
		||||
        max_length=32,
 | 
			
		||||
        description="32位任务ID"
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
class VideoSubmitResponse(BaseModel):
 | 
			
		||||
    requestId: str
 | 
			
		||||
 | 
			
		||||
class VideoStatusResponse(BaseModel):
 | 
			
		||||
    status: str = Field(..., description="任务状态: Succeed, InQueue, InProgress, Failed,Cancelled")
 | 
			
		||||
    reason: Optional[str] = Field(None, description="失败原因")
 | 
			
		||||
    results: Optional[dict] = Field(None, description="生成结果")
 | 
			
		||||
    queue_position: Optional[int] = Field(None, description="队列位置")
 | 
			
		||||
 | 
			
		||||
class VideoCancelRequest(BaseModel):
 | 
			
		||||
    requestId: str = Field(
 | 
			
		||||
        ...,
 | 
			
		||||
        min_length=32,
 | 
			
		||||
        max_length=32,
 | 
			
		||||
        description="32位任务ID"
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
# # 自定义HTTP异常处理器
 | 
			
		||||
# @app.exception_handler(HTTPException)
 | 
			
		||||
# async def http_exception_handler(request, exc):
 | 
			
		||||
#     return JSONResponse(
 | 
			
		||||
#         status_code=exc.status_code,
 | 
			
		||||
#         content=exc.detail,  # 直接返回detail内容(不再包装在detail字段)
 | 
			
		||||
#         headers=exc.headers
 | 
			
		||||
#     )
 | 
			
		||||
 | 
			
		||||
# ======================
 | 
			
		||||
# 后台任务处理
 | 
			
		||||
# ======================
 | 
			
		||||
async def task_processor():
 | 
			
		||||
    """处理任务队列"""
 | 
			
		||||
    while True:
 | 
			
		||||
        async with app.state.semaphore:
 | 
			
		||||
            task_id = await get_next_task()
 | 
			
		||||
            if task_id:
 | 
			
		||||
                await process_task(task_id)
 | 
			
		||||
            else:
 | 
			
		||||
                await asyncio.sleep(0.5)
 | 
			
		||||
 | 
			
		||||
async def get_next_task():
 | 
			
		||||
    """获取下一个待处理任务"""
 | 
			
		||||
    with app.state.task_lock:
 | 
			
		||||
        if app.state.pending_queue:
 | 
			
		||||
            return app.state.pending_queue.pop(0)
 | 
			
		||||
    return None
 | 
			
		||||
 | 
			
		||||
async def process_task(task_id: str):
 | 
			
		||||
    """处理单个任务"""
 | 
			
		||||
    task = app.state.tasks.get(task_id)
 | 
			
		||||
    if not task:
 | 
			
		||||
        return
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        # 更新任务状态
 | 
			
		||||
        task['status'] = 'InProgress'
 | 
			
		||||
        task['started_at'] = int(time.time())
 | 
			
		||||
 | 
			
		||||
        # 执行视频生成
 | 
			
		||||
        video_path = await generate_video(task['request'], task_id)
 | 
			
		||||
      
 | 
			
		||||
        # 生成下载链接
 | 
			
		||||
        download_url = f"{app.state.base_url}/videos/{os.path.basename(video_path)}"
 | 
			
		||||
      
 | 
			
		||||
        # 更新任务状态
 | 
			
		||||
        task.update({
 | 
			
		||||
            'status': 'Succeed',
 | 
			
		||||
            'download_url': download_url,
 | 
			
		||||
            'completed_at': int(time.time())
 | 
			
		||||
        })
 | 
			
		||||
      
 | 
			
		||||
        # 安排自动清理
 | 
			
		||||
        asyncio.create_task(auto_cleanup(video_path))
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        handle_task_error(task, e)
 | 
			
		||||
 | 
			
		||||
def handle_task_error(task: dict, error: Exception):
 | 
			
		||||
    """统一处理任务错误"""
 | 
			
		||||
    error_msg = str(error)
 | 
			
		||||
    if isinstance(error, torch.cuda.OutOfMemoryError):
 | 
			
		||||
        error_msg = "显存不足,请降低分辨率或减少帧数"
 | 
			
		||||
    elif isinstance(error, ValidationError):
 | 
			
		||||
        error_msg = "参数校验失败: " + str(error)
 | 
			
		||||
  
 | 
			
		||||
    task.update({
 | 
			
		||||
        'status': 'Failed',
 | 
			
		||||
        'reason': error_msg,
 | 
			
		||||
        'completed_at': int(time.time())
 | 
			
		||||
    })
 | 
			
		||||
 | 
			
		||||
# ======================
 | 
			
		||||
# 视频生成核心逻辑
 | 
			
		||||
# ======================
 | 
			
		||||
async def generate_video(request: dict, task_id: str) -> str:
 | 
			
		||||
    """异步执行视频生成"""
 | 
			
		||||
    loop = asyncio.get_event_loop()
 | 
			
		||||
    return await loop.run_in_executor(
 | 
			
		||||
        None,
 | 
			
		||||
        sync_generate_video,
 | 
			
		||||
        request,
 | 
			
		||||
        task_id
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
def sync_generate_video(request: dict, task_id: str) -> str:
 | 
			
		||||
    """同步生成视频"""
 | 
			
		||||
    with app.state.model_lock:
 | 
			
		||||
        try:
 | 
			
		||||
            generator = None
 | 
			
		||||
            if request.get('seed') is not None:
 | 
			
		||||
                generator = torch.Generator(device="cuda")
 | 
			
		||||
                generator.manual_seed(request['seed'])
 | 
			
		||||
                print(f"🔮 使用随机种子: {request['seed']}")
 | 
			
		||||
            
 | 
			
		||||
            # 执行模型推理
 | 
			
		||||
            result = app.state.pipe(
 | 
			
		||||
                prompt=request['prompt'],
 | 
			
		||||
                negative_prompt=request['negative_prompt'],
 | 
			
		||||
                height=request['height'],
 | 
			
		||||
                width=request['width'],
 | 
			
		||||
                num_frames=request['num_frames'],
 | 
			
		||||
                guidance_scale=request['guidance_scale'],
 | 
			
		||||
                num_inference_steps=request['infer_steps'],
 | 
			
		||||
                generator=generator
 | 
			
		||||
            )
 | 
			
		||||
          
 | 
			
		||||
            # 导出视频文件
 | 
			
		||||
            video_id = uuid.uuid4().hex
 | 
			
		||||
            output_path = f"generated_videos/{video_id}.mp4"
 | 
			
		||||
            export_to_video(result.frames[0], output_path, fps=16)
 | 
			
		||||
          
 | 
			
		||||
            return output_path
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            raise RuntimeError(f"视频生成失败: {str(e)}") from e
 | 
			
		||||
 | 
			
		||||
# ======================
 | 
			
		||||
# API端点
 | 
			
		||||
# ======================
 | 
			
		||||
async def verify_auth(credentials: HTTPAuthorizationCredentials = Depends(security)):
 | 
			
		||||
    """认证验证"""
 | 
			
		||||
    if not credentials:
 | 
			
		||||
        raise HTTPException(
 | 
			
		||||
            status_code=401,
 | 
			
		||||
            detail={"status": "Failed", "reason": "缺少认证头"},
 | 
			
		||||
            headers={"WWW-Authenticate": "Bearer"}
 | 
			
		||||
        )
 | 
			
		||||
    if credentials.scheme != "Bearer":
 | 
			
		||||
        raise HTTPException(
 | 
			
		||||
            status_code=401,
 | 
			
		||||
            detail={"status": "Failed", "reason": "无效的认证方案"},
 | 
			
		||||
            headers={"WWW-Authenticate": "Bearer"}
 | 
			
		||||
        )
 | 
			
		||||
    if credentials.credentials not in app.state.valid_api_keys:
 | 
			
		||||
        raise HTTPException(
 | 
			
		||||
            status_code=401,
 | 
			
		||||
            detail={"status": "Failed", "reason": "无效的API密钥"},
 | 
			
		||||
            headers={"WWW-Authenticate": "Bearer"}
 | 
			
		||||
        )
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
@app.post("/video/submit",
 | 
			
		||||
          response_model=VideoSubmitResponse,
 | 
			
		||||
          status_code=status.HTTP_202_ACCEPTED,
 | 
			
		||||
          tags=["视频生成"],
 | 
			
		||||
          summary="提交视频生成请求")
 | 
			
		||||
async def submit_video_task(
 | 
			
		||||
    request: VideoSubmitRequest,
 | 
			
		||||
    auth: bool = Depends(verify_auth)
 | 
			
		||||
):
 | 
			
		||||
    """提交新的视频生成任务"""
 | 
			
		||||
    try:
 | 
			
		||||
        # 解析分辨率参数
 | 
			
		||||
        width, height = map(int, request.image_size.split('x'))
 | 
			
		||||
      
 | 
			
		||||
        # 创建任务记录
 | 
			
		||||
        task_id = uuid.uuid4().hex
 | 
			
		||||
        task_data = {
 | 
			
		||||
            'request': {
 | 
			
		||||
                'prompt': request.prompt,
 | 
			
		||||
                'negative_prompt': request.negative_prompt,
 | 
			
		||||
                'width': width,
 | 
			
		||||
                'height': height,
 | 
			
		||||
                'num_frames': request.num_frames,
 | 
			
		||||
                'guidance_scale': request.guidance_scale,
 | 
			
		||||
                'infer_steps': request.infer_steps,
 | 
			
		||||
                'seed': request.seed
 | 
			
		||||
            },
 | 
			
		||||
            'status': 'InQueue',
 | 
			
		||||
            'created_at': int(time.time())
 | 
			
		||||
        }
 | 
			
		||||
      
 | 
			
		||||
        # 加入任务队列
 | 
			
		||||
        with app.state.task_lock:
 | 
			
		||||
            app.state.tasks[task_id] = task_data
 | 
			
		||||
            app.state.pending_queue.append(task_id)
 | 
			
		||||
      
 | 
			
		||||
        return {"requestId": task_id}
 | 
			
		||||
  
 | 
			
		||||
    except ValidationError as e:
 | 
			
		||||
        raise HTTPException(
 | 
			
		||||
            status_code=422,
 | 
			
		||||
            detail={"status": "Failed", "reason": str(e)}
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
@app.post("/video/status",
 | 
			
		||||
          response_model=VideoStatusResponse,
 | 
			
		||||
          tags=["视频生成"],
 | 
			
		||||
          summary="查询任务状态")
 | 
			
		||||
async def get_video_status(
 | 
			
		||||
    request: VideoStatusRequest,
 | 
			
		||||
    auth: bool = Depends(verify_auth)
 | 
			
		||||
):
 | 
			
		||||
    """查询任务状态"""
 | 
			
		||||
    task = app.state.tasks.get(request.requestId)
 | 
			
		||||
    if not task:
 | 
			
		||||
        raise HTTPException(
 | 
			
		||||
            status_code=404,
 | 
			
		||||
            detail={"status": "Failed", "reason": "无效的任务ID"}
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    # 计算队列位置(仅当在队列中时)
 | 
			
		||||
    queue_pos = 0
 | 
			
		||||
    if task['status'] == "InQueue" and request.requestId in app.state.pending_queue:
 | 
			
		||||
        queue_pos = app.state.pending_queue.index(request.requestId) + 1
 | 
			
		||||
 | 
			
		||||
    response = {
 | 
			
		||||
        "status": task['status'],
 | 
			
		||||
        "reason": task.get('reason'),
 | 
			
		||||
        "queue_position": queue_pos if task['status'] == "InQueue" else None  # 非排队状态返回null
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    # 成功状态的特殊处理
 | 
			
		||||
    if task['status'] == "Succeed":
 | 
			
		||||
        response["results"] = {
 | 
			
		||||
            "videos": [{"url": task['download_url']}],
 | 
			
		||||
            "timings": {
 | 
			
		||||
                "inference": task['completed_at'] - task['started_at']
 | 
			
		||||
            },
 | 
			
		||||
            "seed": task['request']['seed']
 | 
			
		||||
        }
 | 
			
		||||
    # 取消状态的补充信息
 | 
			
		||||
    elif task['status'] == "Cancelled":
 | 
			
		||||
        response["reason"] = task.get('reason', "用户主动取消")  # 确保原因字段存在
 | 
			
		||||
 | 
			
		||||
    return response
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@app.post("/video/cancel",
 | 
			
		||||
         response_model=dict,
 | 
			
		||||
         tags=["视频生成"])
 | 
			
		||||
async def cancel_task(
 | 
			
		||||
    request: VideoCancelRequest,
 | 
			
		||||
    auth: bool = Depends(verify_auth)
 | 
			
		||||
):
 | 
			
		||||
    """取消排队中的生成任务"""
 | 
			
		||||
    task_id = request.requestId
 | 
			
		||||
  
 | 
			
		||||
    with app.state.task_lock:
 | 
			
		||||
        task = app.state.tasks.get(task_id)
 | 
			
		||||
      
 | 
			
		||||
        # 检查任务是否存在
 | 
			
		||||
        if not task:
 | 
			
		||||
            raise HTTPException(
 | 
			
		||||
                status_code=404,
 | 
			
		||||
                detail={"status": "Failed", "reason": "无效的任务ID"}
 | 
			
		||||
            )
 | 
			
		||||
          
 | 
			
		||||
        current_status = task['status']
 | 
			
		||||
      
 | 
			
		||||
        # 仅允许取消排队中的任务
 | 
			
		||||
        if current_status != "InQueue":
 | 
			
		||||
            raise HTTPException(
 | 
			
		||||
                status_code=400,
 | 
			
		||||
                detail={"status": "Failed", "reason": f"仅允许取消排队任务,当前状态: {current_status}"}
 | 
			
		||||
            )
 | 
			
		||||
      
 | 
			
		||||
        # 从队列移除
 | 
			
		||||
        try:
 | 
			
		||||
            app.state.pending_queue.remove(task_id)
 | 
			
		||||
        except ValueError:
 | 
			
		||||
            pass  # 可能已被处理
 | 
			
		||||
      
 | 
			
		||||
        # 更新任务状态
 | 
			
		||||
        task.update({
 | 
			
		||||
            "status": "Cancelled",
 | 
			
		||||
            "reason": "用户主动取消",
 | 
			
		||||
            "completed_at": int(time.time())
 | 
			
		||||
        })
 | 
			
		||||
      
 | 
			
		||||
    return {"status": "Succeed"}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# ======================
 | 
			
		||||
# 工具函数
 | 
			
		||||
# ======================
 | 
			
		||||
async def auto_cleanup(file_path: str, delay: int = 3600):
 | 
			
		||||
    """自动清理生成的视频文件"""
 | 
			
		||||
    await asyncio.sleep(delay)
 | 
			
		||||
    try:
 | 
			
		||||
        if os.path.exists(file_path):
 | 
			
		||||
            os.remove(file_path)
 | 
			
		||||
            print(f"已清理文件: {file_path}")
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        print(f"文件清理失败: {str(e)}")
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    import uvicorn
 | 
			
		||||
    uvicorn.run(app, host="0.0.0.0", port=8088)
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user