mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
clear queue aborts currently generating item
This commit is contained in:
parent
452d246c88
commit
965267d740
156
wgp.py
156
wgp.py
@ -362,24 +362,21 @@ def save_queue_action(state):
|
|||||||
gen = get_gen_info(state)
|
gen = get_gen_info(state)
|
||||||
queue = gen.get("queue", [])
|
queue = gen.get("queue", [])
|
||||||
|
|
||||||
if not queue or len(queue) <=1 : # Check if queue is empty or only has the placeholder
|
if not queue or len(queue) <=1 :
|
||||||
gr.Info("Queue is empty. Nothing to save.")
|
gr.Info("Queue is empty. Nothing to save.")
|
||||||
return None # Return None if nothing to save
|
return None
|
||||||
|
|
||||||
# Use an in-memory buffer for the zip file
|
|
||||||
zip_buffer = io.BytesIO()
|
zip_buffer = io.BytesIO()
|
||||||
|
|
||||||
# Still use a temporary directory *only* for storing images before zipping
|
|
||||||
with tempfile.TemporaryDirectory() as tmpdir:
|
with tempfile.TemporaryDirectory() as tmpdir:
|
||||||
queue_manifest = []
|
queue_manifest = []
|
||||||
image_paths_in_zip = {} # Tracks image PIL object ID -> filename in zip
|
image_paths_in_zip = {}
|
||||||
|
|
||||||
for task_index, task in enumerate(queue):
|
for task_index, task in enumerate(queue):
|
||||||
# Skip the placeholder item if it exists
|
|
||||||
if task is None or not isinstance(task, dict) or task_index == 0: continue
|
if task is None or not isinstance(task, dict) or task_index == 0: continue
|
||||||
|
|
||||||
params_copy = task.get('params', {}).copy()
|
params_copy = task.get('params', {}).copy()
|
||||||
task_id_s = task.get('id', f"task_{task_index}") # Use a different var name
|
task_id_s = task.get('id', f"task_{task_index}")
|
||||||
|
|
||||||
image_keys = ["image_start", "image_end", "image_refs"]
|
image_keys = ["image_start", "image_end", "image_refs"]
|
||||||
for key in image_keys:
|
for key in image_keys:
|
||||||
@ -387,95 +384,71 @@ def save_queue_action(state):
|
|||||||
if images_pil is None:
|
if images_pil is None:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Ensure images_pil is always a list for processing
|
|
||||||
is_originally_list = isinstance(images_pil, list)
|
is_originally_list = isinstance(images_pil, list)
|
||||||
if not is_originally_list:
|
if not is_originally_list:
|
||||||
images_pil = [images_pil]
|
images_pil = [images_pil]
|
||||||
|
|
||||||
image_filenames_for_json = []
|
image_filenames_for_json = []
|
||||||
for img_index, pil_image in enumerate(images_pil):
|
for img_index, pil_image in enumerate(images_pil):
|
||||||
# Ensure it's actually a PIL Image object before proceeding
|
|
||||||
if not isinstance(pil_image, Image.Image):
|
if not isinstance(pil_image, Image.Image):
|
||||||
print(f"Warning: Expected PIL Image for key '{key}' in task {task_id_s}, got {type(pil_image)}. Skipping image.")
|
print(f"Warning: Expected PIL Image for key '{key}' in task {task_id_s}, got {type(pil_image)}. Skipping image.")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Use object ID to check if this specific image instance is already saved
|
|
||||||
img_id = id(pil_image)
|
img_id = id(pil_image)
|
||||||
if img_id in image_paths_in_zip:
|
if img_id in image_paths_in_zip:
|
||||||
# If already saved, just add its filename to the list
|
|
||||||
image_filenames_for_json.append(image_paths_in_zip[img_id])
|
image_filenames_for_json.append(image_paths_in_zip[img_id])
|
||||||
continue # Move to the next image in the list
|
continue
|
||||||
|
|
||||||
# Image not saved yet, create filename and save path
|
|
||||||
img_filename_in_zip = f"task{task_id_s}_{key}_{img_index}.png"
|
img_filename_in_zip = f"task{task_id_s}_{key}_{img_index}.png"
|
||||||
img_save_path = os.path.join(tmpdir, img_filename_in_zip)
|
img_save_path = os.path.join(tmpdir, img_filename_in_zip)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
# Save the image to the temporary directory
|
|
||||||
pil_image.save(img_save_path, "PNG")
|
pil_image.save(img_save_path, "PNG")
|
||||||
image_filenames_for_json.append(img_filename_in_zip)
|
image_filenames_for_json.append(img_filename_in_zip)
|
||||||
# Store the mapping from image ID to its filename in the zip
|
|
||||||
image_paths_in_zip[img_id] = img_filename_in_zip
|
image_paths_in_zip[img_id] = img_filename_in_zip
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Error saving image {img_filename_in_zip} for task {task_id_s}: {e}")
|
print(f"Error saving image {img_filename_in_zip} for task {task_id_s}: {e}")
|
||||||
# Optionally decide if you want to continue or fail here
|
|
||||||
|
|
||||||
# Update the params_copy with the list of filenames (or single filename)
|
|
||||||
if image_filenames_for_json:
|
if image_filenames_for_json:
|
||||||
params_copy[key] = image_filenames_for_json if is_originally_list else image_filenames_for_json[0]
|
params_copy[key] = image_filenames_for_json if is_originally_list else image_filenames_for_json[0]
|
||||||
else:
|
else:
|
||||||
# If no images were successfully processed for this key, remove it
|
|
||||||
params_copy.pop(key, None)
|
params_copy.pop(key, None)
|
||||||
|
|
||||||
|
|
||||||
# Clean up parameters before adding to manifest
|
|
||||||
params_copy.pop('state', None)
|
params_copy.pop('state', None)
|
||||||
params_copy.pop('start_image_data_base64', None) # Don't need base64 in saved queue
|
params_copy.pop('start_image_data_base64', None)
|
||||||
params_copy.pop('end_image_data_base64', None)
|
params_copy.pop('end_image_data_base64', None)
|
||||||
# Also remove the actual PIL data if it somehow remained
|
|
||||||
params_copy.pop('start_image_data', None)
|
params_copy.pop('start_image_data', None)
|
||||||
params_copy.pop('end_image_data', None)
|
params_copy.pop('end_image_data', None)
|
||||||
|
|
||||||
manifest_entry = {
|
manifest_entry = {
|
||||||
"id": task.get('id'),
|
"id": task.get('id'),
|
||||||
"params": params_copy,
|
"params": params_copy,
|
||||||
# Keep other necessary top-level task info if needed, like repeats etc.
|
|
||||||
# Example: "repeats": task.get('repeats', 1)
|
|
||||||
}
|
}
|
||||||
queue_manifest.append(manifest_entry)
|
queue_manifest.append(manifest_entry)
|
||||||
|
|
||||||
# --- Create queue.json content ---
|
|
||||||
manifest_path = os.path.join(tmpdir, "queue.json")
|
manifest_path = os.path.join(tmpdir, "queue.json")
|
||||||
try:
|
try:
|
||||||
with open(manifest_path, 'w', encoding='utf-8') as f:
|
with open(manifest_path, 'w', encoding='utf-8') as f:
|
||||||
# Dump only the relevant manifest data
|
|
||||||
json.dump(queue_manifest, f, indent=4)
|
json.dump(queue_manifest, f, indent=4)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Error writing queue.json: {e}")
|
print(f"Error writing queue.json: {e}")
|
||||||
gr.Warning("Failed to create queue manifest.")
|
gr.Warning("Failed to create queue manifest.")
|
||||||
return None # Return None on failure
|
return None
|
||||||
|
|
||||||
# --- Create the zip file in memory ---
|
|
||||||
try:
|
try:
|
||||||
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zf:
|
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zf:
|
||||||
# Add queue.json
|
|
||||||
zf.write(manifest_path, arcname="queue.json")
|
zf.write(manifest_path, arcname="queue.json")
|
||||||
|
|
||||||
# Add all unique images that were saved to the temp dir
|
|
||||||
for saved_img_rel_path in image_paths_in_zip.values():
|
for saved_img_rel_path in image_paths_in_zip.values():
|
||||||
saved_img_abs_path = os.path.join(tmpdir, saved_img_rel_path)
|
saved_img_abs_path = os.path.join(tmpdir, saved_img_rel_path)
|
||||||
if os.path.exists(saved_img_abs_path):
|
if os.path.exists(saved_img_abs_path):
|
||||||
zf.write(saved_img_abs_path, arcname=saved_img_rel_path)
|
zf.write(saved_img_abs_path, arcname=saved_img_rel_path)
|
||||||
else:
|
else:
|
||||||
# This shouldn't happen if saving was successful, but good to check
|
|
||||||
print(f"Warning: Image file {saved_img_rel_path} not found during zipping.")
|
print(f"Warning: Image file {saved_img_rel_path} not found during zipping.")
|
||||||
|
|
||||||
# --- Prepare for return ---
|
|
||||||
# Move buffer position to the beginning
|
|
||||||
zip_buffer.seek(0)
|
zip_buffer.seek(0)
|
||||||
# Read the binary content
|
|
||||||
zip_binary_content = zip_buffer.getvalue()
|
zip_binary_content = zip_buffer.getvalue()
|
||||||
# Encode as base64 string
|
|
||||||
zip_base64 = base64.b64encode(zip_binary_content).decode('utf-8')
|
zip_base64 = base64.b64encode(zip_binary_content).decode('utf-8')
|
||||||
print(f"Queue successfully prepared as base64 string ({len(zip_base64)} chars).")
|
print(f"Queue successfully prepared as base64 string ({len(zip_base64)} chars).")
|
||||||
return zip_base64
|
return zip_base64
|
||||||
@ -483,18 +456,17 @@ def save_queue_action(state):
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"Error creating zip file in memory: {e}")
|
print(f"Error creating zip file in memory: {e}")
|
||||||
gr.Warning("Failed to create zip data for download.")
|
gr.Warning("Failed to create zip data for download.")
|
||||||
return None # Return None on failure
|
return None
|
||||||
finally:
|
finally:
|
||||||
zip_buffer.close()
|
zip_buffer.close()
|
||||||
|
|
||||||
def load_queue_action(filepath, state):
|
def load_queue_action(filepath, state):
|
||||||
global task_id
|
global task_id
|
||||||
gen = get_gen_info(state)
|
gen = get_gen_info(state)
|
||||||
original_queue = gen.get("queue", []) # Store original queue for error case
|
original_queue = gen.get("queue", [])
|
||||||
|
|
||||||
if not filepath or not hasattr(filepath, 'name') or not Path(filepath.name).is_file():
|
if not filepath or not hasattr(filepath, 'name') or not Path(filepath.name).is_file():
|
||||||
print("[load_queue_action] Warning: No valid file selected or file not found.")
|
print("[load_queue_action] Warning: No valid file selected or file not found.")
|
||||||
# Return the current state of the DataFrame
|
|
||||||
return update_queue_data(original_queue)
|
return update_queue_data(original_queue)
|
||||||
|
|
||||||
newly_loaded_queue = []
|
newly_loaded_queue = []
|
||||||
@ -518,7 +490,6 @@ def load_queue_action(filepath, state):
|
|||||||
print(f"[load_queue_action] Manifest loaded. Processing {len(loaded_manifest)} tasks.")
|
print(f"[load_queue_action] Manifest loaded. Processing {len(loaded_manifest)} tasks.")
|
||||||
|
|
||||||
for task_index, task_data in enumerate(loaded_manifest):
|
for task_index, task_data in enumerate(loaded_manifest):
|
||||||
# (Keep the existing task processing logic here...)
|
|
||||||
if task_data is None or not isinstance(task_data, dict):
|
if task_data is None or not isinstance(task_data, dict):
|
||||||
print(f"[load_queue_action] Skipping invalid task data at index {task_index}")
|
print(f"[load_queue_action] Skipping invalid task data at index {task_index}")
|
||||||
continue
|
continue
|
||||||
@ -528,7 +499,7 @@ def load_queue_action(filepath, state):
|
|||||||
max_id_in_file = max(max_id_in_file, task_id_loaded)
|
max_id_in_file = max(max_id_in_file, task_id_loaded)
|
||||||
loaded_pil_images = {}
|
loaded_pil_images = {}
|
||||||
image_keys = ["image_start", "image_end", "image_refs"]
|
image_keys = ["image_start", "image_end", "image_refs"]
|
||||||
params['state'] = state # Add state back temporarily for consistency if needed by internal logic, but it's removed before saving
|
params['state'] = state
|
||||||
|
|
||||||
for key in image_keys:
|
for key in image_keys:
|
||||||
image_filenames = params.get(key)
|
image_filenames = params.get(key)
|
||||||
@ -544,26 +515,22 @@ def load_queue_action(filepath, state):
|
|||||||
continue
|
continue
|
||||||
try:
|
try:
|
||||||
pil_image = Image.open(img_load_path)
|
pil_image = Image.open(img_load_path)
|
||||||
# Ensure the image data is loaded into memory before the temp dir is cleaned up
|
|
||||||
pil_image.load()
|
pil_image.load()
|
||||||
# Convert image right after loading
|
|
||||||
converted_image = convert_image(pil_image)
|
converted_image = convert_image(pil_image)
|
||||||
loaded_pils.append(converted_image)
|
loaded_pils.append(converted_image)
|
||||||
pil_image.close() # Close the file handle
|
pil_image.close()
|
||||||
except Exception as img_e:
|
except Exception as img_e:
|
||||||
print(f"[load_queue_action] Error loading image {img_filename_in_zip}: {img_e}")
|
print(f"[load_queue_action] Error loading image {img_filename_in_zip}: {img_e}")
|
||||||
if loaded_pils:
|
if loaded_pils:
|
||||||
params[key] = loaded_pils if is_list else loaded_pils[0]
|
params[key] = loaded_pils if is_list else loaded_pils[0]
|
||||||
loaded_pil_images[key] = params[key] # Store loaded PILs for preview generation
|
loaded_pil_images[key] = params[key]
|
||||||
else: params.pop(key, None)
|
else: params.pop(key, None)
|
||||||
|
|
||||||
# Generate preview base64 strings
|
|
||||||
primary_preview_pil, secondary_preview_pil = None, None
|
primary_preview_pil, secondary_preview_pil = None, None
|
||||||
start_prev_pil_list = loaded_pil_images.get("image_start")
|
start_prev_pil_list = loaded_pil_images.get("image_start")
|
||||||
end_prev_pil_list = loaded_pil_images.get("image_end")
|
end_prev_pil_list = loaded_pil_images.get("image_end")
|
||||||
ref_prev_pil_list = loaded_pil_images.get("image_refs")
|
ref_prev_pil_list = loaded_pil_images.get("image_refs")
|
||||||
|
|
||||||
# Extract first image for preview if available
|
|
||||||
if start_prev_pil_list:
|
if start_prev_pil_list:
|
||||||
primary_preview_pil = start_prev_pil_list[0] if isinstance(start_prev_pil_list, list) and start_prev_pil_list else start_prev_pil_list if not isinstance(start_prev_pil_list, list) else None
|
primary_preview_pil = start_prev_pil_list[0] if isinstance(start_prev_pil_list, list) and start_prev_pil_list else start_prev_pil_list if not isinstance(start_prev_pil_list, list) else None
|
||||||
if end_prev_pil_list:
|
if end_prev_pil_list:
|
||||||
@ -571,97 +538,102 @@ def load_queue_action(filepath, state):
|
|||||||
elif ref_prev_pil_list and isinstance(ref_prev_pil_list, list) and ref_prev_pil_list:
|
elif ref_prev_pil_list and isinstance(ref_prev_pil_list, list) and ref_prev_pil_list:
|
||||||
primary_preview_pil = ref_prev_pil_list[0]
|
primary_preview_pil = ref_prev_pil_list[0]
|
||||||
|
|
||||||
# Generate base64 only if PIL image exists
|
|
||||||
start_b64 = [pil_to_base64_uri(primary_preview_pil, format="jpeg", quality=70)] if primary_preview_pil else None
|
start_b64 = [pil_to_base64_uri(primary_preview_pil, format="jpeg", quality=70)] if primary_preview_pil else None
|
||||||
end_b64 = [pil_to_base64_uri(secondary_preview_pil, format="jpeg", quality=70)] if secondary_preview_pil else None
|
end_b64 = [pil_to_base64_uri(secondary_preview_pil, format="jpeg", quality=70)] if secondary_preview_pil else None
|
||||||
|
|
||||||
# Get top-level image data (PIL objects) for runtime task
|
|
||||||
top_level_start_image = loaded_pil_images.get("image_start")
|
top_level_start_image = loaded_pil_images.get("image_start")
|
||||||
top_level_end_image = loaded_pil_images.get("image_end")
|
top_level_end_image = loaded_pil_images.get("image_end")
|
||||||
|
|
||||||
# Construct the runtime task dictionary
|
|
||||||
runtime_task = {
|
runtime_task = {
|
||||||
"id": task_id_loaded,
|
"id": task_id_loaded,
|
||||||
"params": params.copy(), # Use a copy of params
|
"params": params.copy(),
|
||||||
# Extract necessary params for top level if they exist
|
|
||||||
"repeats": params.get('repeat_generation', 1),
|
"repeats": params.get('repeat_generation', 1),
|
||||||
"length": params.get('video_length'),
|
"length": params.get('video_length'),
|
||||||
"steps": params.get('num_inference_steps'),
|
"steps": params.get('num_inference_steps'),
|
||||||
"prompt": params.get('prompt'),
|
"prompt": params.get('prompt'),
|
||||||
# Store the actual loaded PIL image data here
|
|
||||||
"start_image_data": top_level_start_image,
|
"start_image_data": top_level_start_image,
|
||||||
"end_image_data": top_level_end_image,
|
"end_image_data": top_level_end_image,
|
||||||
# Store base64 previews generated above
|
|
||||||
"start_image_data_base64": start_b64,
|
"start_image_data_base64": start_b64,
|
||||||
"end_image_data_base64": end_b64,
|
"end_image_data_base64": end_b64,
|
||||||
}
|
}
|
||||||
newly_loaded_queue.append(runtime_task)
|
newly_loaded_queue.append(runtime_task)
|
||||||
print(f"[load_queue_action] Processed task {task_index+1}/{len(loaded_manifest)}, ID: {task_id_loaded}")
|
print(f"[load_queue_action] Processed task {task_index+1}/{len(loaded_manifest)}, ID: {task_id_loaded}")
|
||||||
|
|
||||||
# --- State Update ---
|
|
||||||
with lock:
|
with lock:
|
||||||
print("[load_queue_action] Acquiring lock to update state...")
|
print("[load_queue_action] Acquiring lock to update state...")
|
||||||
gen["queue"] = newly_loaded_queue[:] # Replace the queue in the state
|
gen["queue"] = newly_loaded_queue[:]
|
||||||
local_queue_copy_for_global_ref = gen["queue"][:] # Copy for global ref update
|
local_queue_copy_for_global_ref = gen["queue"][:]
|
||||||
current_max_id_in_new_queue = max([t['id'] for t in newly_loaded_queue if 'id' in t] + [0]) # Safer max ID calculation
|
current_max_id_in_new_queue = max([t['id'] for t in newly_loaded_queue if 'id' in t] + [0])
|
||||||
|
|
||||||
# Update global task ID only if the loaded max ID is higher
|
|
||||||
if current_max_id_in_new_queue > task_id:
|
if current_max_id_in_new_queue > task_id:
|
||||||
print(f"[load_queue_action] Updating global task_id from {task_id} to {current_max_id_in_new_queue + 1}")
|
print(f"[load_queue_action] Updating global task_id from {task_id} to {current_max_id_in_new_queue + 1}")
|
||||||
task_id = current_max_id_in_new_queue + 1 # Ensure next ID is unique
|
task_id = current_max_id_in_new_queue + 1
|
||||||
else:
|
else:
|
||||||
print(f"[load_queue_action] Global task_id ({task_id}) is >= max in file ({current_max_id_in_new_queue}). Not changing task_id.")
|
print(f"[load_queue_action] Global task_id ({task_id}) is >= max in file ({current_max_id_in_new_queue}). Not changing task_id.")
|
||||||
|
|
||||||
gen["prompts_max"] = len(newly_loaded_queue)
|
gen["prompts_max"] = len(newly_loaded_queue)
|
||||||
print("[load_queue_action] State update complete. Releasing lock.")
|
print("[load_queue_action] State update complete. Releasing lock.")
|
||||||
|
|
||||||
# --- Global Reference Update ---
|
|
||||||
if local_queue_copy_for_global_ref is not None:
|
if local_queue_copy_for_global_ref is not None:
|
||||||
print("[load_queue_action] Updating global queue reference...")
|
print("[load_queue_action] Updating global queue reference...")
|
||||||
update_global_queue_ref(local_queue_copy_for_global_ref)
|
update_global_queue_ref(local_queue_copy_for_global_ref)
|
||||||
else:
|
else:
|
||||||
# This case should ideally not be reached if state update happens
|
|
||||||
print("[load_queue_action] Warning: Skipping global ref update as local copy is None.")
|
print("[load_queue_action] Warning: Skipping global ref update as local copy is None.")
|
||||||
|
|
||||||
print(f"[load_queue_action] Queue load successful. Returning DataFrame update for {len(newly_loaded_queue)} tasks.")
|
print(f"[load_queue_action] Queue load successful. Returning DataFrame update for {len(newly_loaded_queue)} tasks.")
|
||||||
# *** Return the DataFrame update object ***
|
|
||||||
return update_queue_data(newly_loaded_queue)
|
return update_queue_data(newly_loaded_queue)
|
||||||
|
|
||||||
except (ValueError, zipfile.BadZipFile, FileNotFoundError, Exception) as e:
|
except (ValueError, zipfile.BadZipFile, FileNotFoundError, Exception) as e:
|
||||||
error_message = f"Error during queue load: {e}"
|
error_message = f"Error during queue load: {e}"
|
||||||
print(f"[load_queue_action] Caught error: {error_message}")
|
print(f"[load_queue_action] Caught error: {error_message}")
|
||||||
traceback.print_exc()
|
traceback.print_exc()
|
||||||
# Optionally show a Gradio warning/error to the user
|
gr.Warning(f"Failed to load queue: {error_message[:200]}")
|
||||||
gr.Warning(f"Failed to load queue: {error_message[:200]}") # Show truncated error
|
|
||||||
|
|
||||||
# *** Return the DataFrame update for the original queue ***
|
|
||||||
print("[load_queue_action] Load failed. Returning DataFrame update for original queue.")
|
print("[load_queue_action] Load failed. Returning DataFrame update for original queue.")
|
||||||
return update_queue_data(original_queue)
|
return update_queue_data(original_queue)
|
||||||
finally:
|
finally:
|
||||||
# Clean up the uploaded file object if it exists and has a path
|
|
||||||
if filepath and hasattr(filepath, 'name') and filepath.name and os.path.exists(filepath.name):
|
if filepath and hasattr(filepath, 'name') and filepath.name and os.path.exists(filepath.name):
|
||||||
try:
|
try:
|
||||||
# Gradio often uses temp files, attempting removal is good practice
|
pass
|
||||||
# os.remove(filepath.name)
|
|
||||||
# print(f"[load_queue_action] Cleaned up temporary upload file: {filepath.name}")
|
|
||||||
pass # Let Gradio manage its temp files unless specifically needed
|
|
||||||
except OSError as e:
|
except OSError as e:
|
||||||
# Ignore errors like "file not found" if already cleaned up
|
|
||||||
print(f"[load_queue_action] Info: Could not remove temp file {filepath.name}: {e}")
|
print(f"[load_queue_action] Info: Could not remove temp file {filepath.name}: {e}")
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def clear_queue_action(state):
|
def clear_queue_action(state):
|
||||||
gen = get_gen_info(state)
|
gen = get_gen_info(state)
|
||||||
queue = gen.get("queue", [])
|
queue = gen.get("queue", [])
|
||||||
if not queue:
|
aborted_current = False
|
||||||
gr.Info("Queue is already empty.")
|
cleared_pending = False
|
||||||
return update_queue_data([])
|
|
||||||
|
|
||||||
with lock:
|
with lock:
|
||||||
queue.clear()
|
if "in_progress" in gen and gen["in_progress"]:
|
||||||
gen["prompts_max"] = 0
|
print("Clear Queue: Signalling abort for in-progress task.")
|
||||||
|
gen["abort"] = True
|
||||||
|
gen["extra_orders"] = 0
|
||||||
|
if wan_model is not None:
|
||||||
|
wan_model._interrupt = True
|
||||||
|
aborted_current = True
|
||||||
|
|
||||||
|
if queue:
|
||||||
|
if len(queue) > 1 or (len(queue) == 1 and queue[0] is not None and queue[0].get('id') is not None):
|
||||||
|
print(f"Clear Queue: Clearing {len(queue)} tasks from queue.")
|
||||||
|
queue.clear()
|
||||||
|
cleared_pending = True
|
||||||
|
else:
|
||||||
|
pass
|
||||||
|
|
||||||
|
if aborted_current or cleared_pending:
|
||||||
|
gen["prompts_max"] = 0
|
||||||
|
|
||||||
|
if aborted_current and cleared_pending:
|
||||||
|
gr.Info("Queue cleared and current generation aborted.")
|
||||||
|
elif aborted_current:
|
||||||
|
gr.Info("Current generation aborted.")
|
||||||
|
elif cleared_pending:
|
||||||
|
gr.Info("Queue cleared.")
|
||||||
|
else:
|
||||||
|
gr.Info("Queue is already empty or only contains the active task (which wasn't aborted now).")
|
||||||
|
|
||||||
gr.Info("Queue cleared.")
|
|
||||||
return update_queue_data([])
|
return update_queue_data([])
|
||||||
|
|
||||||
def autosave_queue():
|
def autosave_queue():
|
||||||
@ -725,7 +697,7 @@ def autosave_queue():
|
|||||||
if os.path.exists(saved_img_abs_path):
|
if os.path.exists(saved_img_abs_path):
|
||||||
zf.write(saved_img_abs_path, arcname=saved_img_rel_path)
|
zf.write(saved_img_abs_path, arcname=saved_img_rel_path)
|
||||||
return output_filename
|
return output_filename
|
||||||
return None # Should not happen if queue has items
|
return None
|
||||||
|
|
||||||
saved_path = _save_queue_to_file(global_queue_ref, AUTOSAVE_FILENAME)
|
saved_path = _save_queue_to_file(global_queue_ref, AUTOSAVE_FILENAME)
|
||||||
|
|
||||||
@ -740,17 +712,15 @@ def autosave_queue():
|
|||||||
|
|
||||||
def autoload_queue(state):
|
def autoload_queue(state):
|
||||||
global task_id
|
global task_id
|
||||||
# Initial check using the original state
|
|
||||||
try:
|
try:
|
||||||
gen = get_gen_info(state) # Make sure initial state is a dict
|
gen = get_gen_info(state)
|
||||||
original_queue = gen.get("queue", [])
|
original_queue = gen.get("queue", [])
|
||||||
except AttributeError:
|
except AttributeError:
|
||||||
print("[autoload_queue] Error: Initial state is not a dictionary. Cannot autoload.")
|
print("[autoload_queue] Error: Initial state is not a dictionary. Cannot autoload.")
|
||||||
# Return default values indicating no load occurred and the state is unchanged
|
return gr.update(visible=False), False, state
|
||||||
return gr.update(visible=False), False, state # Return an empty DF update
|
|
||||||
|
|
||||||
loaded_flag = False
|
loaded_flag = False
|
||||||
dataframe_update = update_queue_data(original_queue) # Default update is the original queue
|
dataframe_update = update_queue_data(original_queue)
|
||||||
|
|
||||||
if not original_queue and Path(AUTOSAVE_FILENAME).is_file():
|
if not original_queue and Path(AUTOSAVE_FILENAME).is_file():
|
||||||
print(f"Autoloading queue from {AUTOSAVE_FILENAME}...")
|
print(f"Autoloading queue from {AUTOSAVE_FILENAME}...")
|
||||||
@ -758,38 +728,32 @@ def autoload_queue(state):
|
|||||||
def __init__(self, name):
|
def __init__(self, name):
|
||||||
self.name = name
|
self.name = name
|
||||||
mock_filepath = MockFile(AUTOSAVE_FILENAME)
|
mock_filepath = MockFile(AUTOSAVE_FILENAME)
|
||||||
|
|
||||||
# Call load_queue_action, it modifies 'state' internally and returns a DataFrame update
|
|
||||||
dataframe_update = load_queue_action(mock_filepath, state)
|
dataframe_update = load_queue_action(mock_filepath, state)
|
||||||
|
|
||||||
# Now check the 'state' dictionary which should have been modified by load_queue_action
|
gen = get_gen_info(state)
|
||||||
gen = get_gen_info(state) # Use the (potentially) modified state dictionary
|
|
||||||
loaded_queue_after_action = gen.get("queue", [])
|
loaded_queue_after_action = gen.get("queue", [])
|
||||||
|
|
||||||
if loaded_queue_after_action: # Check if the queue in the state is now populated
|
if loaded_queue_after_action:
|
||||||
print(f"Autoload successful. Loaded {len(loaded_queue_after_action)} tasks into state.")
|
print(f"Autoload successful. Loaded {len(loaded_queue_after_action)} tasks into state.")
|
||||||
loaded_flag = True
|
loaded_flag = True
|
||||||
# Global ref update was already done inside load_queue_action if successful
|
|
||||||
else:
|
else:
|
||||||
print("Autoload attempted but queue in state remains empty (file might be empty or invalid).")
|
print("Autoload attempted but queue in state remains empty (file might be empty or invalid).")
|
||||||
# Ensure state reflects empty queue if load failed but file existed
|
|
||||||
with lock:
|
with lock:
|
||||||
gen["queue"] = []
|
gen["queue"] = []
|
||||||
gen["prompts_max"] = 0
|
gen["prompts_max"] = 0
|
||||||
update_global_queue_ref([])
|
update_global_queue_ref([])
|
||||||
dataframe_update = update_queue_data([]) # Ensure UI shows empty queue
|
dataframe_update = update_queue_data([])
|
||||||
|
|
||||||
else: # Handle cases where autoload shouldn't happen
|
else:
|
||||||
if original_queue:
|
if original_queue:
|
||||||
print("Autoload skipped: Queue is not empty.")
|
print("Autoload skipped: Queue is not empty.")
|
||||||
update_global_queue_ref(original_queue) # Ensure global ref matches current state
|
update_global_queue_ref(original_queue)
|
||||||
dataframe_update = update_queue_data(original_queue) # UI should show current queue
|
dataframe_update = update_queue_data(original_queue)
|
||||||
else:
|
else:
|
||||||
print(f"Autoload skipped: {AUTOSAVE_FILENAME} not found.")
|
print(f"Autoload skipped: {AUTOSAVE_FILENAME} not found.")
|
||||||
update_global_queue_ref([]) # Ensure global ref is empty
|
update_global_queue_ref([])
|
||||||
dataframe_update = update_queue_data([]) # UI should show empty queue
|
dataframe_update = update_queue_data([])
|
||||||
|
|
||||||
# Return the DataFrame update needed for the UI, the flag, and the final state dictionary
|
|
||||||
return dataframe_update, loaded_flag, state
|
return dataframe_update, loaded_flag, state
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user