clear queue aborts currently generating item

This commit is contained in:
Chris Malone 2025-04-10 04:37:27 +10:00
parent 452d246c88
commit 965267d740

156
wgp.py
View File

@ -362,24 +362,21 @@ def save_queue_action(state):
gen = get_gen_info(state) gen = get_gen_info(state)
queue = gen.get("queue", []) queue = gen.get("queue", [])
if not queue or len(queue) <=1 : # Check if queue is empty or only has the placeholder if not queue or len(queue) <=1 :
gr.Info("Queue is empty. Nothing to save.") gr.Info("Queue is empty. Nothing to save.")
return None # Return None if nothing to save return None
# Use an in-memory buffer for the zip file
zip_buffer = io.BytesIO() zip_buffer = io.BytesIO()
# Still use a temporary directory *only* for storing images before zipping
with tempfile.TemporaryDirectory() as tmpdir: with tempfile.TemporaryDirectory() as tmpdir:
queue_manifest = [] queue_manifest = []
image_paths_in_zip = {} # Tracks image PIL object ID -> filename in zip image_paths_in_zip = {}
for task_index, task in enumerate(queue): for task_index, task in enumerate(queue):
# Skip the placeholder item if it exists
if task is None or not isinstance(task, dict) or task_index == 0: continue if task is None or not isinstance(task, dict) or task_index == 0: continue
params_copy = task.get('params', {}).copy() params_copy = task.get('params', {}).copy()
task_id_s = task.get('id', f"task_{task_index}") # Use a different var name task_id_s = task.get('id', f"task_{task_index}")
image_keys = ["image_start", "image_end", "image_refs"] image_keys = ["image_start", "image_end", "image_refs"]
for key in image_keys: for key in image_keys:
@ -387,95 +384,71 @@ def save_queue_action(state):
if images_pil is None: if images_pil is None:
continue continue
# Ensure images_pil is always a list for processing
is_originally_list = isinstance(images_pil, list) is_originally_list = isinstance(images_pil, list)
if not is_originally_list: if not is_originally_list:
images_pil = [images_pil] images_pil = [images_pil]
image_filenames_for_json = [] image_filenames_for_json = []
for img_index, pil_image in enumerate(images_pil): for img_index, pil_image in enumerate(images_pil):
# Ensure it's actually a PIL Image object before proceeding
if not isinstance(pil_image, Image.Image): if not isinstance(pil_image, Image.Image):
print(f"Warning: Expected PIL Image for key '{key}' in task {task_id_s}, got {type(pil_image)}. Skipping image.") print(f"Warning: Expected PIL Image for key '{key}' in task {task_id_s}, got {type(pil_image)}. Skipping image.")
continue continue
# Use object ID to check if this specific image instance is already saved
img_id = id(pil_image) img_id = id(pil_image)
if img_id in image_paths_in_zip: if img_id in image_paths_in_zip:
# If already saved, just add its filename to the list
image_filenames_for_json.append(image_paths_in_zip[img_id]) image_filenames_for_json.append(image_paths_in_zip[img_id])
continue # Move to the next image in the list continue
# Image not saved yet, create filename and save path
img_filename_in_zip = f"task{task_id_s}_{key}_{img_index}.png" img_filename_in_zip = f"task{task_id_s}_{key}_{img_index}.png"
img_save_path = os.path.join(tmpdir, img_filename_in_zip) img_save_path = os.path.join(tmpdir, img_filename_in_zip)
try: try:
# Save the image to the temporary directory
pil_image.save(img_save_path, "PNG") pil_image.save(img_save_path, "PNG")
image_filenames_for_json.append(img_filename_in_zip) image_filenames_for_json.append(img_filename_in_zip)
# Store the mapping from image ID to its filename in the zip
image_paths_in_zip[img_id] = img_filename_in_zip image_paths_in_zip[img_id] = img_filename_in_zip
except Exception as e: except Exception as e:
print(f"Error saving image {img_filename_in_zip} for task {task_id_s}: {e}") print(f"Error saving image {img_filename_in_zip} for task {task_id_s}: {e}")
# Optionally decide if you want to continue or fail here
# Update the params_copy with the list of filenames (or single filename)
if image_filenames_for_json: if image_filenames_for_json:
params_copy[key] = image_filenames_for_json if is_originally_list else image_filenames_for_json[0] params_copy[key] = image_filenames_for_json if is_originally_list else image_filenames_for_json[0]
else: else:
# If no images were successfully processed for this key, remove it
params_copy.pop(key, None) params_copy.pop(key, None)
# Clean up parameters before adding to manifest
params_copy.pop('state', None) params_copy.pop('state', None)
params_copy.pop('start_image_data_base64', None) # Don't need base64 in saved queue params_copy.pop('start_image_data_base64', None)
params_copy.pop('end_image_data_base64', None) params_copy.pop('end_image_data_base64', None)
# Also remove the actual PIL data if it somehow remained
params_copy.pop('start_image_data', None) params_copy.pop('start_image_data', None)
params_copy.pop('end_image_data', None) params_copy.pop('end_image_data', None)
manifest_entry = { manifest_entry = {
"id": task.get('id'), "id": task.get('id'),
"params": params_copy, "params": params_copy,
# Keep other necessary top-level task info if needed, like repeats etc.
# Example: "repeats": task.get('repeats', 1)
} }
queue_manifest.append(manifest_entry) queue_manifest.append(manifest_entry)
# --- Create queue.json content ---
manifest_path = os.path.join(tmpdir, "queue.json") manifest_path = os.path.join(tmpdir, "queue.json")
try: try:
with open(manifest_path, 'w', encoding='utf-8') as f: with open(manifest_path, 'w', encoding='utf-8') as f:
# Dump only the relevant manifest data
json.dump(queue_manifest, f, indent=4) json.dump(queue_manifest, f, indent=4)
except Exception as e: except Exception as e:
print(f"Error writing queue.json: {e}") print(f"Error writing queue.json: {e}")
gr.Warning("Failed to create queue manifest.") gr.Warning("Failed to create queue manifest.")
return None # Return None on failure return None
# --- Create the zip file in memory ---
try: try:
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zf: with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zf:
# Add queue.json
zf.write(manifest_path, arcname="queue.json") zf.write(manifest_path, arcname="queue.json")
# Add all unique images that were saved to the temp dir
for saved_img_rel_path in image_paths_in_zip.values(): for saved_img_rel_path in image_paths_in_zip.values():
saved_img_abs_path = os.path.join(tmpdir, saved_img_rel_path) saved_img_abs_path = os.path.join(tmpdir, saved_img_rel_path)
if os.path.exists(saved_img_abs_path): if os.path.exists(saved_img_abs_path):
zf.write(saved_img_abs_path, arcname=saved_img_rel_path) zf.write(saved_img_abs_path, arcname=saved_img_rel_path)
else: else:
# This shouldn't happen if saving was successful, but good to check
print(f"Warning: Image file {saved_img_rel_path} not found during zipping.") print(f"Warning: Image file {saved_img_rel_path} not found during zipping.")
# --- Prepare for return ---
# Move buffer position to the beginning
zip_buffer.seek(0) zip_buffer.seek(0)
# Read the binary content
zip_binary_content = zip_buffer.getvalue() zip_binary_content = zip_buffer.getvalue()
# Encode as base64 string
zip_base64 = base64.b64encode(zip_binary_content).decode('utf-8') zip_base64 = base64.b64encode(zip_binary_content).decode('utf-8')
print(f"Queue successfully prepared as base64 string ({len(zip_base64)} chars).") print(f"Queue successfully prepared as base64 string ({len(zip_base64)} chars).")
return zip_base64 return zip_base64
@ -483,18 +456,17 @@ def save_queue_action(state):
except Exception as e: except Exception as e:
print(f"Error creating zip file in memory: {e}") print(f"Error creating zip file in memory: {e}")
gr.Warning("Failed to create zip data for download.") gr.Warning("Failed to create zip data for download.")
return None # Return None on failure return None
finally: finally:
zip_buffer.close() zip_buffer.close()
def load_queue_action(filepath, state): def load_queue_action(filepath, state):
global task_id global task_id
gen = get_gen_info(state) gen = get_gen_info(state)
original_queue = gen.get("queue", []) # Store original queue for error case original_queue = gen.get("queue", [])
if not filepath or not hasattr(filepath, 'name') or not Path(filepath.name).is_file(): if not filepath or not hasattr(filepath, 'name') or not Path(filepath.name).is_file():
print("[load_queue_action] Warning: No valid file selected or file not found.") print("[load_queue_action] Warning: No valid file selected or file not found.")
# Return the current state of the DataFrame
return update_queue_data(original_queue) return update_queue_data(original_queue)
newly_loaded_queue = [] newly_loaded_queue = []
@ -518,7 +490,6 @@ def load_queue_action(filepath, state):
print(f"[load_queue_action] Manifest loaded. Processing {len(loaded_manifest)} tasks.") print(f"[load_queue_action] Manifest loaded. Processing {len(loaded_manifest)} tasks.")
for task_index, task_data in enumerate(loaded_manifest): for task_index, task_data in enumerate(loaded_manifest):
# (Keep the existing task processing logic here...)
if task_data is None or not isinstance(task_data, dict): if task_data is None or not isinstance(task_data, dict):
print(f"[load_queue_action] Skipping invalid task data at index {task_index}") print(f"[load_queue_action] Skipping invalid task data at index {task_index}")
continue continue
@ -528,7 +499,7 @@ def load_queue_action(filepath, state):
max_id_in_file = max(max_id_in_file, task_id_loaded) max_id_in_file = max(max_id_in_file, task_id_loaded)
loaded_pil_images = {} loaded_pil_images = {}
image_keys = ["image_start", "image_end", "image_refs"] image_keys = ["image_start", "image_end", "image_refs"]
params['state'] = state # Add state back temporarily for consistency if needed by internal logic, but it's removed before saving params['state'] = state
for key in image_keys: for key in image_keys:
image_filenames = params.get(key) image_filenames = params.get(key)
@ -544,26 +515,22 @@ def load_queue_action(filepath, state):
continue continue
try: try:
pil_image = Image.open(img_load_path) pil_image = Image.open(img_load_path)
# Ensure the image data is loaded into memory before the temp dir is cleaned up
pil_image.load() pil_image.load()
# Convert image right after loading
converted_image = convert_image(pil_image) converted_image = convert_image(pil_image)
loaded_pils.append(converted_image) loaded_pils.append(converted_image)
pil_image.close() # Close the file handle pil_image.close()
except Exception as img_e: except Exception as img_e:
print(f"[load_queue_action] Error loading image {img_filename_in_zip}: {img_e}") print(f"[load_queue_action] Error loading image {img_filename_in_zip}: {img_e}")
if loaded_pils: if loaded_pils:
params[key] = loaded_pils if is_list else loaded_pils[0] params[key] = loaded_pils if is_list else loaded_pils[0]
loaded_pil_images[key] = params[key] # Store loaded PILs for preview generation loaded_pil_images[key] = params[key]
else: params.pop(key, None) else: params.pop(key, None)
# Generate preview base64 strings
primary_preview_pil, secondary_preview_pil = None, None primary_preview_pil, secondary_preview_pil = None, None
start_prev_pil_list = loaded_pil_images.get("image_start") start_prev_pil_list = loaded_pil_images.get("image_start")
end_prev_pil_list = loaded_pil_images.get("image_end") end_prev_pil_list = loaded_pil_images.get("image_end")
ref_prev_pil_list = loaded_pil_images.get("image_refs") ref_prev_pil_list = loaded_pil_images.get("image_refs")
# Extract first image for preview if available
if start_prev_pil_list: if start_prev_pil_list:
primary_preview_pil = start_prev_pil_list[0] if isinstance(start_prev_pil_list, list) and start_prev_pil_list else start_prev_pil_list if not isinstance(start_prev_pil_list, list) else None primary_preview_pil = start_prev_pil_list[0] if isinstance(start_prev_pil_list, list) and start_prev_pil_list else start_prev_pil_list if not isinstance(start_prev_pil_list, list) else None
if end_prev_pil_list: if end_prev_pil_list:
@ -571,97 +538,102 @@ def load_queue_action(filepath, state):
elif ref_prev_pil_list and isinstance(ref_prev_pil_list, list) and ref_prev_pil_list: elif ref_prev_pil_list and isinstance(ref_prev_pil_list, list) and ref_prev_pil_list:
primary_preview_pil = ref_prev_pil_list[0] primary_preview_pil = ref_prev_pil_list[0]
# Generate base64 only if PIL image exists
start_b64 = [pil_to_base64_uri(primary_preview_pil, format="jpeg", quality=70)] if primary_preview_pil else None start_b64 = [pil_to_base64_uri(primary_preview_pil, format="jpeg", quality=70)] if primary_preview_pil else None
end_b64 = [pil_to_base64_uri(secondary_preview_pil, format="jpeg", quality=70)] if secondary_preview_pil else None end_b64 = [pil_to_base64_uri(secondary_preview_pil, format="jpeg", quality=70)] if secondary_preview_pil else None
# Get top-level image data (PIL objects) for runtime task
top_level_start_image = loaded_pil_images.get("image_start") top_level_start_image = loaded_pil_images.get("image_start")
top_level_end_image = loaded_pil_images.get("image_end") top_level_end_image = loaded_pil_images.get("image_end")
# Construct the runtime task dictionary
runtime_task = { runtime_task = {
"id": task_id_loaded, "id": task_id_loaded,
"params": params.copy(), # Use a copy of params "params": params.copy(),
# Extract necessary params for top level if they exist
"repeats": params.get('repeat_generation', 1), "repeats": params.get('repeat_generation', 1),
"length": params.get('video_length'), "length": params.get('video_length'),
"steps": params.get('num_inference_steps'), "steps": params.get('num_inference_steps'),
"prompt": params.get('prompt'), "prompt": params.get('prompt'),
# Store the actual loaded PIL image data here
"start_image_data": top_level_start_image, "start_image_data": top_level_start_image,
"end_image_data": top_level_end_image, "end_image_data": top_level_end_image,
# Store base64 previews generated above
"start_image_data_base64": start_b64, "start_image_data_base64": start_b64,
"end_image_data_base64": end_b64, "end_image_data_base64": end_b64,
} }
newly_loaded_queue.append(runtime_task) newly_loaded_queue.append(runtime_task)
print(f"[load_queue_action] Processed task {task_index+1}/{len(loaded_manifest)}, ID: {task_id_loaded}") print(f"[load_queue_action] Processed task {task_index+1}/{len(loaded_manifest)}, ID: {task_id_loaded}")
# --- State Update ---
with lock: with lock:
print("[load_queue_action] Acquiring lock to update state...") print("[load_queue_action] Acquiring lock to update state...")
gen["queue"] = newly_loaded_queue[:] # Replace the queue in the state gen["queue"] = newly_loaded_queue[:]
local_queue_copy_for_global_ref = gen["queue"][:] # Copy for global ref update local_queue_copy_for_global_ref = gen["queue"][:]
current_max_id_in_new_queue = max([t['id'] for t in newly_loaded_queue if 'id' in t] + [0]) # Safer max ID calculation current_max_id_in_new_queue = max([t['id'] for t in newly_loaded_queue if 'id' in t] + [0])
# Update global task ID only if the loaded max ID is higher
if current_max_id_in_new_queue > task_id: if current_max_id_in_new_queue > task_id:
print(f"[load_queue_action] Updating global task_id from {task_id} to {current_max_id_in_new_queue + 1}") print(f"[load_queue_action] Updating global task_id from {task_id} to {current_max_id_in_new_queue + 1}")
task_id = current_max_id_in_new_queue + 1 # Ensure next ID is unique task_id = current_max_id_in_new_queue + 1
else: else:
print(f"[load_queue_action] Global task_id ({task_id}) is >= max in file ({current_max_id_in_new_queue}). Not changing task_id.") print(f"[load_queue_action] Global task_id ({task_id}) is >= max in file ({current_max_id_in_new_queue}). Not changing task_id.")
gen["prompts_max"] = len(newly_loaded_queue) gen["prompts_max"] = len(newly_loaded_queue)
print("[load_queue_action] State update complete. Releasing lock.") print("[load_queue_action] State update complete. Releasing lock.")
# --- Global Reference Update ---
if local_queue_copy_for_global_ref is not None: if local_queue_copy_for_global_ref is not None:
print("[load_queue_action] Updating global queue reference...") print("[load_queue_action] Updating global queue reference...")
update_global_queue_ref(local_queue_copy_for_global_ref) update_global_queue_ref(local_queue_copy_for_global_ref)
else: else:
# This case should ideally not be reached if state update happens
print("[load_queue_action] Warning: Skipping global ref update as local copy is None.") print("[load_queue_action] Warning: Skipping global ref update as local copy is None.")
print(f"[load_queue_action] Queue load successful. Returning DataFrame update for {len(newly_loaded_queue)} tasks.") print(f"[load_queue_action] Queue load successful. Returning DataFrame update for {len(newly_loaded_queue)} tasks.")
# *** Return the DataFrame update object ***
return update_queue_data(newly_loaded_queue) return update_queue_data(newly_loaded_queue)
except (ValueError, zipfile.BadZipFile, FileNotFoundError, Exception) as e: except (ValueError, zipfile.BadZipFile, FileNotFoundError, Exception) as e:
error_message = f"Error during queue load: {e}" error_message = f"Error during queue load: {e}"
print(f"[load_queue_action] Caught error: {error_message}") print(f"[load_queue_action] Caught error: {error_message}")
traceback.print_exc() traceback.print_exc()
# Optionally show a Gradio warning/error to the user gr.Warning(f"Failed to load queue: {error_message[:200]}")
gr.Warning(f"Failed to load queue: {error_message[:200]}") # Show truncated error
# *** Return the DataFrame update for the original queue ***
print("[load_queue_action] Load failed. Returning DataFrame update for original queue.") print("[load_queue_action] Load failed. Returning DataFrame update for original queue.")
return update_queue_data(original_queue) return update_queue_data(original_queue)
finally: finally:
# Clean up the uploaded file object if it exists and has a path
if filepath and hasattr(filepath, 'name') and filepath.name and os.path.exists(filepath.name): if filepath and hasattr(filepath, 'name') and filepath.name and os.path.exists(filepath.name):
try: try:
# Gradio often uses temp files, attempting removal is good practice pass
# os.remove(filepath.name)
# print(f"[load_queue_action] Cleaned up temporary upload file: {filepath.name}")
pass # Let Gradio manage its temp files unless specifically needed
except OSError as e: except OSError as e:
# Ignore errors like "file not found" if already cleaned up
print(f"[load_queue_action] Info: Could not remove temp file {filepath.name}: {e}") print(f"[load_queue_action] Info: Could not remove temp file {filepath.name}: {e}")
pass pass
def clear_queue_action(state): def clear_queue_action(state):
gen = get_gen_info(state) gen = get_gen_info(state)
queue = gen.get("queue", []) queue = gen.get("queue", [])
if not queue: aborted_current = False
gr.Info("Queue is already empty.") cleared_pending = False
return update_queue_data([])
with lock: with lock:
queue.clear() if "in_progress" in gen and gen["in_progress"]:
gen["prompts_max"] = 0 print("Clear Queue: Signalling abort for in-progress task.")
gen["abort"] = True
gen["extra_orders"] = 0
if wan_model is not None:
wan_model._interrupt = True
aborted_current = True
if queue:
if len(queue) > 1 or (len(queue) == 1 and queue[0] is not None and queue[0].get('id') is not None):
print(f"Clear Queue: Clearing {len(queue)} tasks from queue.")
queue.clear()
cleared_pending = True
else:
pass
if aborted_current or cleared_pending:
gen["prompts_max"] = 0
if aborted_current and cleared_pending:
gr.Info("Queue cleared and current generation aborted.")
elif aborted_current:
gr.Info("Current generation aborted.")
elif cleared_pending:
gr.Info("Queue cleared.")
else:
gr.Info("Queue is already empty or only contains the active task (which wasn't aborted now).")
gr.Info("Queue cleared.")
return update_queue_data([]) return update_queue_data([])
def autosave_queue(): def autosave_queue():
@ -725,7 +697,7 @@ def autosave_queue():
if os.path.exists(saved_img_abs_path): if os.path.exists(saved_img_abs_path):
zf.write(saved_img_abs_path, arcname=saved_img_rel_path) zf.write(saved_img_abs_path, arcname=saved_img_rel_path)
return output_filename return output_filename
return None # Should not happen if queue has items return None
saved_path = _save_queue_to_file(global_queue_ref, AUTOSAVE_FILENAME) saved_path = _save_queue_to_file(global_queue_ref, AUTOSAVE_FILENAME)
@ -740,17 +712,15 @@ def autosave_queue():
def autoload_queue(state): def autoload_queue(state):
global task_id global task_id
# Initial check using the original state
try: try:
gen = get_gen_info(state) # Make sure initial state is a dict gen = get_gen_info(state)
original_queue = gen.get("queue", []) original_queue = gen.get("queue", [])
except AttributeError: except AttributeError:
print("[autoload_queue] Error: Initial state is not a dictionary. Cannot autoload.") print("[autoload_queue] Error: Initial state is not a dictionary. Cannot autoload.")
# Return default values indicating no load occurred and the state is unchanged return gr.update(visible=False), False, state
return gr.update(visible=False), False, state # Return an empty DF update
loaded_flag = False loaded_flag = False
dataframe_update = update_queue_data(original_queue) # Default update is the original queue dataframe_update = update_queue_data(original_queue)
if not original_queue and Path(AUTOSAVE_FILENAME).is_file(): if not original_queue and Path(AUTOSAVE_FILENAME).is_file():
print(f"Autoloading queue from {AUTOSAVE_FILENAME}...") print(f"Autoloading queue from {AUTOSAVE_FILENAME}...")
@ -758,38 +728,32 @@ def autoload_queue(state):
def __init__(self, name): def __init__(self, name):
self.name = name self.name = name
mock_filepath = MockFile(AUTOSAVE_FILENAME) mock_filepath = MockFile(AUTOSAVE_FILENAME)
# Call load_queue_action, it modifies 'state' internally and returns a DataFrame update
dataframe_update = load_queue_action(mock_filepath, state) dataframe_update = load_queue_action(mock_filepath, state)
# Now check the 'state' dictionary which should have been modified by load_queue_action gen = get_gen_info(state)
gen = get_gen_info(state) # Use the (potentially) modified state dictionary
loaded_queue_after_action = gen.get("queue", []) loaded_queue_after_action = gen.get("queue", [])
if loaded_queue_after_action: # Check if the queue in the state is now populated if loaded_queue_after_action:
print(f"Autoload successful. Loaded {len(loaded_queue_after_action)} tasks into state.") print(f"Autoload successful. Loaded {len(loaded_queue_after_action)} tasks into state.")
loaded_flag = True loaded_flag = True
# Global ref update was already done inside load_queue_action if successful
else: else:
print("Autoload attempted but queue in state remains empty (file might be empty or invalid).") print("Autoload attempted but queue in state remains empty (file might be empty or invalid).")
# Ensure state reflects empty queue if load failed but file existed
with lock: with lock:
gen["queue"] = [] gen["queue"] = []
gen["prompts_max"] = 0 gen["prompts_max"] = 0
update_global_queue_ref([]) update_global_queue_ref([])
dataframe_update = update_queue_data([]) # Ensure UI shows empty queue dataframe_update = update_queue_data([])
else: # Handle cases where autoload shouldn't happen else:
if original_queue: if original_queue:
print("Autoload skipped: Queue is not empty.") print("Autoload skipped: Queue is not empty.")
update_global_queue_ref(original_queue) # Ensure global ref matches current state update_global_queue_ref(original_queue)
dataframe_update = update_queue_data(original_queue) # UI should show current queue dataframe_update = update_queue_data(original_queue)
else: else:
print(f"Autoload skipped: {AUTOSAVE_FILENAME} not found.") print(f"Autoload skipped: {AUTOSAVE_FILENAME} not found.")
update_global_queue_ref([]) # Ensure global ref is empty update_global_queue_ref([])
dataframe_update = update_queue_data([]) # UI should show empty queue dataframe_update = update_queue_data([])
# Return the DataFrame update needed for the UI, the flag, and the final state dictionary
return dataframe_update, loaded_flag, state return dataframe_update, loaded_flag, state