mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
clear queue aborts currently generating item
This commit is contained in:
parent
452d246c88
commit
965267d740
150
wgp.py
150
wgp.py
@ -362,24 +362,21 @@ def save_queue_action(state):
|
||||
gen = get_gen_info(state)
|
||||
queue = gen.get("queue", [])
|
||||
|
||||
if not queue or len(queue) <=1 : # Check if queue is empty or only has the placeholder
|
||||
if not queue or len(queue) <=1 :
|
||||
gr.Info("Queue is empty. Nothing to save.")
|
||||
return None # Return None if nothing to save
|
||||
return None
|
||||
|
||||
# Use an in-memory buffer for the zip file
|
||||
zip_buffer = io.BytesIO()
|
||||
|
||||
# Still use a temporary directory *only* for storing images before zipping
|
||||
with tempfile.TemporaryDirectory() as tmpdir:
|
||||
queue_manifest = []
|
||||
image_paths_in_zip = {} # Tracks image PIL object ID -> filename in zip
|
||||
image_paths_in_zip = {}
|
||||
|
||||
for task_index, task in enumerate(queue):
|
||||
# Skip the placeholder item if it exists
|
||||
if task is None or not isinstance(task, dict) or task_index == 0: continue
|
||||
|
||||
params_copy = task.get('params', {}).copy()
|
||||
task_id_s = task.get('id', f"task_{task_index}") # Use a different var name
|
||||
task_id_s = task.get('id', f"task_{task_index}")
|
||||
|
||||
image_keys = ["image_start", "image_end", "image_refs"]
|
||||
for key in image_keys:
|
||||
@ -387,95 +384,71 @@ def save_queue_action(state):
|
||||
if images_pil is None:
|
||||
continue
|
||||
|
||||
# Ensure images_pil is always a list for processing
|
||||
is_originally_list = isinstance(images_pil, list)
|
||||
if not is_originally_list:
|
||||
images_pil = [images_pil]
|
||||
|
||||
image_filenames_for_json = []
|
||||
for img_index, pil_image in enumerate(images_pil):
|
||||
# Ensure it's actually a PIL Image object before proceeding
|
||||
if not isinstance(pil_image, Image.Image):
|
||||
print(f"Warning: Expected PIL Image for key '{key}' in task {task_id_s}, got {type(pil_image)}. Skipping image.")
|
||||
continue
|
||||
|
||||
# Use object ID to check if this specific image instance is already saved
|
||||
img_id = id(pil_image)
|
||||
if img_id in image_paths_in_zip:
|
||||
# If already saved, just add its filename to the list
|
||||
image_filenames_for_json.append(image_paths_in_zip[img_id])
|
||||
continue # Move to the next image in the list
|
||||
continue
|
||||
|
||||
# Image not saved yet, create filename and save path
|
||||
img_filename_in_zip = f"task{task_id_s}_{key}_{img_index}.png"
|
||||
img_save_path = os.path.join(tmpdir, img_filename_in_zip)
|
||||
|
||||
try:
|
||||
# Save the image to the temporary directory
|
||||
pil_image.save(img_save_path, "PNG")
|
||||
image_filenames_for_json.append(img_filename_in_zip)
|
||||
# Store the mapping from image ID to its filename in the zip
|
||||
image_paths_in_zip[img_id] = img_filename_in_zip
|
||||
except Exception as e:
|
||||
print(f"Error saving image {img_filename_in_zip} for task {task_id_s}: {e}")
|
||||
# Optionally decide if you want to continue or fail here
|
||||
|
||||
# Update the params_copy with the list of filenames (or single filename)
|
||||
if image_filenames_for_json:
|
||||
params_copy[key] = image_filenames_for_json if is_originally_list else image_filenames_for_json[0]
|
||||
else:
|
||||
# If no images were successfully processed for this key, remove it
|
||||
params_copy.pop(key, None)
|
||||
|
||||
|
||||
# Clean up parameters before adding to manifest
|
||||
params_copy.pop('state', None)
|
||||
params_copy.pop('start_image_data_base64', None) # Don't need base64 in saved queue
|
||||
params_copy.pop('start_image_data_base64', None)
|
||||
params_copy.pop('end_image_data_base64', None)
|
||||
# Also remove the actual PIL data if it somehow remained
|
||||
params_copy.pop('start_image_data', None)
|
||||
params_copy.pop('end_image_data', None)
|
||||
|
||||
manifest_entry = {
|
||||
"id": task.get('id'),
|
||||
"params": params_copy,
|
||||
# Keep other necessary top-level task info if needed, like repeats etc.
|
||||
# Example: "repeats": task.get('repeats', 1)
|
||||
}
|
||||
queue_manifest.append(manifest_entry)
|
||||
|
||||
# --- Create queue.json content ---
|
||||
manifest_path = os.path.join(tmpdir, "queue.json")
|
||||
try:
|
||||
with open(manifest_path, 'w', encoding='utf-8') as f:
|
||||
# Dump only the relevant manifest data
|
||||
json.dump(queue_manifest, f, indent=4)
|
||||
except Exception as e:
|
||||
print(f"Error writing queue.json: {e}")
|
||||
gr.Warning("Failed to create queue manifest.")
|
||||
return None # Return None on failure
|
||||
return None
|
||||
|
||||
# --- Create the zip file in memory ---
|
||||
try:
|
||||
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zf:
|
||||
# Add queue.json
|
||||
zf.write(manifest_path, arcname="queue.json")
|
||||
|
||||
# Add all unique images that were saved to the temp dir
|
||||
for saved_img_rel_path in image_paths_in_zip.values():
|
||||
saved_img_abs_path = os.path.join(tmpdir, saved_img_rel_path)
|
||||
if os.path.exists(saved_img_abs_path):
|
||||
zf.write(saved_img_abs_path, arcname=saved_img_rel_path)
|
||||
else:
|
||||
# This shouldn't happen if saving was successful, but good to check
|
||||
print(f"Warning: Image file {saved_img_rel_path} not found during zipping.")
|
||||
|
||||
# --- Prepare for return ---
|
||||
# Move buffer position to the beginning
|
||||
zip_buffer.seek(0)
|
||||
# Read the binary content
|
||||
zip_binary_content = zip_buffer.getvalue()
|
||||
# Encode as base64 string
|
||||
zip_base64 = base64.b64encode(zip_binary_content).decode('utf-8')
|
||||
print(f"Queue successfully prepared as base64 string ({len(zip_base64)} chars).")
|
||||
return zip_base64
|
||||
@ -483,18 +456,17 @@ def save_queue_action(state):
|
||||
except Exception as e:
|
||||
print(f"Error creating zip file in memory: {e}")
|
||||
gr.Warning("Failed to create zip data for download.")
|
||||
return None # Return None on failure
|
||||
return None
|
||||
finally:
|
||||
zip_buffer.close()
|
||||
|
||||
def load_queue_action(filepath, state):
|
||||
global task_id
|
||||
gen = get_gen_info(state)
|
||||
original_queue = gen.get("queue", []) # Store original queue for error case
|
||||
original_queue = gen.get("queue", [])
|
||||
|
||||
if not filepath or not hasattr(filepath, 'name') or not Path(filepath.name).is_file():
|
||||
print("[load_queue_action] Warning: No valid file selected or file not found.")
|
||||
# Return the current state of the DataFrame
|
||||
return update_queue_data(original_queue)
|
||||
|
||||
newly_loaded_queue = []
|
||||
@ -518,7 +490,6 @@ def load_queue_action(filepath, state):
|
||||
print(f"[load_queue_action] Manifest loaded. Processing {len(loaded_manifest)} tasks.")
|
||||
|
||||
for task_index, task_data in enumerate(loaded_manifest):
|
||||
# (Keep the existing task processing logic here...)
|
||||
if task_data is None or not isinstance(task_data, dict):
|
||||
print(f"[load_queue_action] Skipping invalid task data at index {task_index}")
|
||||
continue
|
||||
@ -528,7 +499,7 @@ def load_queue_action(filepath, state):
|
||||
max_id_in_file = max(max_id_in_file, task_id_loaded)
|
||||
loaded_pil_images = {}
|
||||
image_keys = ["image_start", "image_end", "image_refs"]
|
||||
params['state'] = state # Add state back temporarily for consistency if needed by internal logic, but it's removed before saving
|
||||
params['state'] = state
|
||||
|
||||
for key in image_keys:
|
||||
image_filenames = params.get(key)
|
||||
@ -544,26 +515,22 @@ def load_queue_action(filepath, state):
|
||||
continue
|
||||
try:
|
||||
pil_image = Image.open(img_load_path)
|
||||
# Ensure the image data is loaded into memory before the temp dir is cleaned up
|
||||
pil_image.load()
|
||||
# Convert image right after loading
|
||||
converted_image = convert_image(pil_image)
|
||||
loaded_pils.append(converted_image)
|
||||
pil_image.close() # Close the file handle
|
||||
pil_image.close()
|
||||
except Exception as img_e:
|
||||
print(f"[load_queue_action] Error loading image {img_filename_in_zip}: {img_e}")
|
||||
if loaded_pils:
|
||||
params[key] = loaded_pils if is_list else loaded_pils[0]
|
||||
loaded_pil_images[key] = params[key] # Store loaded PILs for preview generation
|
||||
loaded_pil_images[key] = params[key]
|
||||
else: params.pop(key, None)
|
||||
|
||||
# Generate preview base64 strings
|
||||
primary_preview_pil, secondary_preview_pil = None, None
|
||||
start_prev_pil_list = loaded_pil_images.get("image_start")
|
||||
end_prev_pil_list = loaded_pil_images.get("image_end")
|
||||
ref_prev_pil_list = loaded_pil_images.get("image_refs")
|
||||
|
||||
# Extract first image for preview if available
|
||||
if start_prev_pil_list:
|
||||
primary_preview_pil = start_prev_pil_list[0] if isinstance(start_prev_pil_list, list) and start_prev_pil_list else start_prev_pil_list if not isinstance(start_prev_pil_list, list) else None
|
||||
if end_prev_pil_list:
|
||||
@ -571,97 +538,102 @@ def load_queue_action(filepath, state):
|
||||
elif ref_prev_pil_list and isinstance(ref_prev_pil_list, list) and ref_prev_pil_list:
|
||||
primary_preview_pil = ref_prev_pil_list[0]
|
||||
|
||||
# Generate base64 only if PIL image exists
|
||||
start_b64 = [pil_to_base64_uri(primary_preview_pil, format="jpeg", quality=70)] if primary_preview_pil else None
|
||||
end_b64 = [pil_to_base64_uri(secondary_preview_pil, format="jpeg", quality=70)] if secondary_preview_pil else None
|
||||
|
||||
# Get top-level image data (PIL objects) for runtime task
|
||||
top_level_start_image = loaded_pil_images.get("image_start")
|
||||
top_level_end_image = loaded_pil_images.get("image_end")
|
||||
|
||||
# Construct the runtime task dictionary
|
||||
runtime_task = {
|
||||
"id": task_id_loaded,
|
||||
"params": params.copy(), # Use a copy of params
|
||||
# Extract necessary params for top level if they exist
|
||||
"params": params.copy(),
|
||||
"repeats": params.get('repeat_generation', 1),
|
||||
"length": params.get('video_length'),
|
||||
"steps": params.get('num_inference_steps'),
|
||||
"prompt": params.get('prompt'),
|
||||
# Store the actual loaded PIL image data here
|
||||
"start_image_data": top_level_start_image,
|
||||
"end_image_data": top_level_end_image,
|
||||
# Store base64 previews generated above
|
||||
"start_image_data_base64": start_b64,
|
||||
"end_image_data_base64": end_b64,
|
||||
}
|
||||
newly_loaded_queue.append(runtime_task)
|
||||
print(f"[load_queue_action] Processed task {task_index+1}/{len(loaded_manifest)}, ID: {task_id_loaded}")
|
||||
|
||||
# --- State Update ---
|
||||
with lock:
|
||||
print("[load_queue_action] Acquiring lock to update state...")
|
||||
gen["queue"] = newly_loaded_queue[:] # Replace the queue in the state
|
||||
local_queue_copy_for_global_ref = gen["queue"][:] # Copy for global ref update
|
||||
current_max_id_in_new_queue = max([t['id'] for t in newly_loaded_queue if 'id' in t] + [0]) # Safer max ID calculation
|
||||
gen["queue"] = newly_loaded_queue[:]
|
||||
local_queue_copy_for_global_ref = gen["queue"][:]
|
||||
current_max_id_in_new_queue = max([t['id'] for t in newly_loaded_queue if 'id' in t] + [0])
|
||||
|
||||
# Update global task ID only if the loaded max ID is higher
|
||||
if current_max_id_in_new_queue > task_id:
|
||||
print(f"[load_queue_action] Updating global task_id from {task_id} to {current_max_id_in_new_queue + 1}")
|
||||
task_id = current_max_id_in_new_queue + 1 # Ensure next ID is unique
|
||||
task_id = current_max_id_in_new_queue + 1
|
||||
else:
|
||||
print(f"[load_queue_action] Global task_id ({task_id}) is >= max in file ({current_max_id_in_new_queue}). Not changing task_id.")
|
||||
|
||||
gen["prompts_max"] = len(newly_loaded_queue)
|
||||
print("[load_queue_action] State update complete. Releasing lock.")
|
||||
|
||||
# --- Global Reference Update ---
|
||||
if local_queue_copy_for_global_ref is not None:
|
||||
print("[load_queue_action] Updating global queue reference...")
|
||||
update_global_queue_ref(local_queue_copy_for_global_ref)
|
||||
else:
|
||||
# This case should ideally not be reached if state update happens
|
||||
print("[load_queue_action] Warning: Skipping global ref update as local copy is None.")
|
||||
|
||||
print(f"[load_queue_action] Queue load successful. Returning DataFrame update for {len(newly_loaded_queue)} tasks.")
|
||||
# *** Return the DataFrame update object ***
|
||||
return update_queue_data(newly_loaded_queue)
|
||||
|
||||
except (ValueError, zipfile.BadZipFile, FileNotFoundError, Exception) as e:
|
||||
error_message = f"Error during queue load: {e}"
|
||||
print(f"[load_queue_action] Caught error: {error_message}")
|
||||
traceback.print_exc()
|
||||
# Optionally show a Gradio warning/error to the user
|
||||
gr.Warning(f"Failed to load queue: {error_message[:200]}") # Show truncated error
|
||||
gr.Warning(f"Failed to load queue: {error_message[:200]}")
|
||||
|
||||
# *** Return the DataFrame update for the original queue ***
|
||||
print("[load_queue_action] Load failed. Returning DataFrame update for original queue.")
|
||||
return update_queue_data(original_queue)
|
||||
finally:
|
||||
# Clean up the uploaded file object if it exists and has a path
|
||||
if filepath and hasattr(filepath, 'name') and filepath.name and os.path.exists(filepath.name):
|
||||
try:
|
||||
# Gradio often uses temp files, attempting removal is good practice
|
||||
# os.remove(filepath.name)
|
||||
# print(f"[load_queue_action] Cleaned up temporary upload file: {filepath.name}")
|
||||
pass # Let Gradio manage its temp files unless specifically needed
|
||||
pass
|
||||
except OSError as e:
|
||||
# Ignore errors like "file not found" if already cleaned up
|
||||
print(f"[load_queue_action] Info: Could not remove temp file {filepath.name}: {e}")
|
||||
pass
|
||||
|
||||
def clear_queue_action(state):
|
||||
gen = get_gen_info(state)
|
||||
queue = gen.get("queue", [])
|
||||
if not queue:
|
||||
gr.Info("Queue is already empty.")
|
||||
return update_queue_data([])
|
||||
aborted_current = False
|
||||
cleared_pending = False
|
||||
|
||||
with lock:
|
||||
if "in_progress" in gen and gen["in_progress"]:
|
||||
print("Clear Queue: Signalling abort for in-progress task.")
|
||||
gen["abort"] = True
|
||||
gen["extra_orders"] = 0
|
||||
if wan_model is not None:
|
||||
wan_model._interrupt = True
|
||||
aborted_current = True
|
||||
|
||||
if queue:
|
||||
if len(queue) > 1 or (len(queue) == 1 and queue[0] is not None and queue[0].get('id') is not None):
|
||||
print(f"Clear Queue: Clearing {len(queue)} tasks from queue.")
|
||||
queue.clear()
|
||||
cleared_pending = True
|
||||
else:
|
||||
pass
|
||||
|
||||
if aborted_current or cleared_pending:
|
||||
gen["prompts_max"] = 0
|
||||
|
||||
if aborted_current and cleared_pending:
|
||||
gr.Info("Queue cleared and current generation aborted.")
|
||||
elif aborted_current:
|
||||
gr.Info("Current generation aborted.")
|
||||
elif cleared_pending:
|
||||
gr.Info("Queue cleared.")
|
||||
else:
|
||||
gr.Info("Queue is already empty or only contains the active task (which wasn't aborted now).")
|
||||
|
||||
return update_queue_data([])
|
||||
|
||||
def autosave_queue():
|
||||
@ -725,7 +697,7 @@ def autosave_queue():
|
||||
if os.path.exists(saved_img_abs_path):
|
||||
zf.write(saved_img_abs_path, arcname=saved_img_rel_path)
|
||||
return output_filename
|
||||
return None # Should not happen if queue has items
|
||||
return None
|
||||
|
||||
saved_path = _save_queue_to_file(global_queue_ref, AUTOSAVE_FILENAME)
|
||||
|
||||
@ -740,17 +712,15 @@ def autosave_queue():
|
||||
|
||||
def autoload_queue(state):
|
||||
global task_id
|
||||
# Initial check using the original state
|
||||
try:
|
||||
gen = get_gen_info(state) # Make sure initial state is a dict
|
||||
gen = get_gen_info(state)
|
||||
original_queue = gen.get("queue", [])
|
||||
except AttributeError:
|
||||
print("[autoload_queue] Error: Initial state is not a dictionary. Cannot autoload.")
|
||||
# Return default values indicating no load occurred and the state is unchanged
|
||||
return gr.update(visible=False), False, state # Return an empty DF update
|
||||
return gr.update(visible=False), False, state
|
||||
|
||||
loaded_flag = False
|
||||
dataframe_update = update_queue_data(original_queue) # Default update is the original queue
|
||||
dataframe_update = update_queue_data(original_queue)
|
||||
|
||||
if not original_queue and Path(AUTOSAVE_FILENAME).is_file():
|
||||
print(f"Autoloading queue from {AUTOSAVE_FILENAME}...")
|
||||
@ -758,38 +728,32 @@ def autoload_queue(state):
|
||||
def __init__(self, name):
|
||||
self.name = name
|
||||
mock_filepath = MockFile(AUTOSAVE_FILENAME)
|
||||
|
||||
# Call load_queue_action, it modifies 'state' internally and returns a DataFrame update
|
||||
dataframe_update = load_queue_action(mock_filepath, state)
|
||||
|
||||
# Now check the 'state' dictionary which should have been modified by load_queue_action
|
||||
gen = get_gen_info(state) # Use the (potentially) modified state dictionary
|
||||
gen = get_gen_info(state)
|
||||
loaded_queue_after_action = gen.get("queue", [])
|
||||
|
||||
if loaded_queue_after_action: # Check if the queue in the state is now populated
|
||||
if loaded_queue_after_action:
|
||||
print(f"Autoload successful. Loaded {len(loaded_queue_after_action)} tasks into state.")
|
||||
loaded_flag = True
|
||||
# Global ref update was already done inside load_queue_action if successful
|
||||
else:
|
||||
print("Autoload attempted but queue in state remains empty (file might be empty or invalid).")
|
||||
# Ensure state reflects empty queue if load failed but file existed
|
||||
with lock:
|
||||
gen["queue"] = []
|
||||
gen["prompts_max"] = 0
|
||||
update_global_queue_ref([])
|
||||
dataframe_update = update_queue_data([]) # Ensure UI shows empty queue
|
||||
dataframe_update = update_queue_data([])
|
||||
|
||||
else: # Handle cases where autoload shouldn't happen
|
||||
else:
|
||||
if original_queue:
|
||||
print("Autoload skipped: Queue is not empty.")
|
||||
update_global_queue_ref(original_queue) # Ensure global ref matches current state
|
||||
dataframe_update = update_queue_data(original_queue) # UI should show current queue
|
||||
update_global_queue_ref(original_queue)
|
||||
dataframe_update = update_queue_data(original_queue)
|
||||
else:
|
||||
print(f"Autoload skipped: {AUTOSAVE_FILENAME} not found.")
|
||||
update_global_queue_ref([]) # Ensure global ref is empty
|
||||
dataframe_update = update_queue_data([]) # UI should show empty queue
|
||||
update_global_queue_ref([])
|
||||
dataframe_update = update_queue_data([])
|
||||
|
||||
# Return the DataFrame update needed for the UI, the flag, and the final state dictionary
|
||||
return dataframe_update, loaded_flag, state
|
||||
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user