diff --git a/gradio_server.py b/gradio_server.py index d2dde1b..668bbcf 100644 --- a/gradio_server.py +++ b/gradio_server.py @@ -97,6 +97,8 @@ def process_prompt_and_add_tasks( image_to_end, video_to_continue, max_frames, + temporal_upsampling, + spatial_upsampling, RIFLEx_setting, slg_switch, slg_layers, @@ -230,6 +232,8 @@ def process_prompt_and_add_tasks( "image_to_end" : image_end, "video_to_continue" : video_to_continue , "max_frames" : max_frames, + "temporal_upsampling" : temporal_upsampling, + "spatial_upsampling" : spatial_upsampling, "RIFLEx_setting" : RIFLEx_setting, "slg_switch" : slg_switch, "slg_layers" : slg_layers, @@ -852,48 +856,63 @@ model_filename = "" # compile = "transformer" def preprocess_loras(sd): + if wan_model == None: + return sd + model_filename = wan_model._model_file_name + first = next(iter(sd), None) if first == None: return sd - if not first.startswith("lora_unet_"): - return sd - new_sd = {} - print("Converting Lora Safetensors format to Lora Diffusers format") - alphas = {} - repl_list = ["cross_attn", "self_attn", "ffn"] - src_list = ["_" + k + "_" for k in repl_list] - tgt_list = ["." + k + "." for k in repl_list] + + if first.startswith("lora_unet_"): + new_sd = {} + print("Converting Lora Safetensors format to Lora Diffusers format") + alphas = {} + repl_list = ["cross_attn", "self_attn", "ffn"] + src_list = ["_" + k + "_" for k in repl_list] + tgt_list = ["." + k + "." for k in repl_list] - for k,v in sd.items(): - k = k.replace("lora_unet_blocks_","diffusion_model.blocks.") + for k,v in sd.items(): + k = k.replace("lora_unet_blocks_","diffusion_model.blocks.") - for s,t in zip(src_list, tgt_list): - k = k.replace(s,t) + for s,t in zip(src_list, tgt_list): + k = k.replace(s,t) - k = k.replace("lora_up","lora_B") - k = k.replace("lora_down","lora_A") + k = k.replace("lora_up","lora_B") + k = k.replace("lora_down","lora_A") - if "alpha" in k: - alphas[k] = v - else: + if "alpha" in k: + alphas[k] = v + else: + new_sd[k] = v + + new_alphas = {} + for k,v in new_sd.items(): + if "lora_B" in k: + dim = v.shape[1] + elif "lora_A" in k: + dim = v.shape[0] + else: + continue + alpha_key = k[:-len("lora_X.weight")] +"alpha" + if alpha_key in alphas: + scale = alphas[alpha_key] / dim + new_alphas[alpha_key] = scale + else: + print(f"Lora alpha'{alpha_key}' is missing") + new_sd.update(new_alphas) + sd = new_sd + + if "text2video" in model_filename: + new_sd = {} + # convert loras for i2v to t2v + for k,v in sd.items(): + if any(layer in k for layer in ["cross_attn.k_img", "cross_attn.v_img"]): + continue new_sd[k] = v + sd = new_sd - new_alphas = {} - for k,v in new_sd.items(): - if "lora_B" in k: - dim = v.shape[1] - elif "lora_A" in k: - dim = v.shape[0] - else: - continue - alpha_key = k[:-len("lora_X.weight")] +"alpha" - if alpha_key in alphas: - scale = alphas[alpha_key] / dim - new_alphas[alpha_key] = scale - else: - print(f"Lora alpha'{alpha_key}' is missing") - new_sd.update(new_alphas) - return new_sd + return sd def download_models(transformer_filename, text_encoder_filename): @@ -905,7 +924,7 @@ def download_models(transformer_filename, text_encoder_filename): from huggingface_hub import hf_hub_download, snapshot_download repoId = "DeepBeepMeep/Wan2.1" sourceFolderList = ["xlm-roberta-large", "", ] - fileList = [ [], ["Wan2.1_VAE_bf16.safetensors", "models_clip_open-clip-xlm-roberta-large-vit-huge-14-bf16.safetensors" ] + computeList(text_encoder_filename) + computeList(transformer_filename) ] + fileList = [ [], ["Wan2.1_VAE_bf16.safetensors", "models_clip_open-clip-xlm-roberta-large-vit-huge-14-bf16.safetensors", "flownet.pkl" ] + computeList(text_encoder_filename) + computeList(transformer_filename) ] targetRoot = "ckpts/" for sourceFolder, files in zip(sourceFolderList,fileList ): if len(files)==0: @@ -1094,6 +1113,7 @@ def load_models(i2v): wan_model, pipe = load_i2v_model(model_filename, "720P" if res720P else "480P") else: wan_model, pipe = load_t2v_model(model_filename, "") + wan_model._model_file_name = model_filename kwargs = { "extraModelsToQuantize": None} if profile == 2 or profile == 4: kwargs["budgets"] = { "transformer" : 100 if preload == 0 else preload, "text_encoder" : 100, "*" : 1000 } @@ -1441,6 +1461,8 @@ def generate_video( image_to_end, video_to_continue, max_frames, + temporal_upsampling, + spatial_upsampling, RIFLEx_setting, slg_switch, slg_layers, @@ -1693,6 +1715,7 @@ def generate_video( cfg_star_switch = cfg_star_switch, cfg_zero_step = cfg_zero_step, ) + # samples = torch.empty( (1,2)) #for testing except Exception as e: if temp_filename!= None and os.path.isfile(temp_filename): os.remove(temp_filename) @@ -1717,8 +1740,6 @@ def generate_video( VRAM_crash = True break - _ , exc_value, exc_traceback = sys.exc_info() - state["prompt"] = "" if VRAM_crash: new_error = "The generation of the video has encountered an error: it is likely that you have unsufficient VRAM and you should therefore reduce the video resolution or its number of frames." @@ -1759,17 +1780,61 @@ def generate_video( file_name = f"{time_flag}_seed{seed}_{sanitize_file_name(prompt[:50]).strip()}.mp4" else: file_name = f"{time_flag}_seed{seed}_{sanitize_file_name(prompt[:100]).strip()}.mp4" - video_path = os.path.join(save_path, file_name) + video_path = os.path.join(save_path, file_name) + # if False: # for testing + # torch.save(sample, "ouput.pt") + # else: + # sample =torch.load("ouput.pt") + exp = 0 + fps = 16 + + if len(temporal_upsampling) > 0 or len(spatial_upsampling) > 0: + progress_args = [0, status + " - Upsampling"] + progress(*progress_args ) + gen["progress_args"] = progress_args + + if temporal_upsampling == "rife2": + exp = 1 + elif temporal_upsampling == "rife4": + exp = 2 + + if exp > 0: + from rife.inference import temporal_interpolation + sample = temporal_interpolation( os.path.join("ckpts", "flownet.pkl"), sample, exp, device="cuda") + fps = fps * 2**exp + + if len(spatial_upsampling) > 0: + from wan.utils.utils import resize_lanczos + if spatial_upsampling == "lanczos1.5": + scale = 1.5 + else: + scale = 2 + sample = (sample + 1) / 2 + h, w = sample.shape[-2:] + h *= scale + w *= scale + new_frames =[] + for i in range( sample.shape[1] ): + frame = sample[:, i] + frame = resize_lanczos(frame, h, w) + frame = frame.unsqueeze(1) + new_frames.append(frame) + sample = torch.cat(new_frames, dim=1) + new_frames = None + sample = sample * 2 - 1 + + cache_video( tensor=sample[None], save_file=video_path, - fps=16, + fps=fps, nrow=1, normalize=True, value_range=(-1, 1)) + configs = get_settings_dict(state, image2video, prompt, 0 if image_to_end == None else 1 , video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices, - loras_mult_choices, tea_cache , tea_cache_start_step_perc, RIFLEx_setting, slg_switch, slg_layers, slg_start, slg_end, cfg_star_switch, cfg_zero_step) + loras_mult_choices, tea_cache , tea_cache_start_step_perc, temporal_upsampling, spatial_upsampling, RIFLEx_setting, slg_switch, slg_layers, slg_start, slg_end, cfg_star_switch, cfg_zero_step) metadata_choice = server_config.get("metadata_choice","metadata") if metadata_choice == "json": @@ -2231,7 +2296,7 @@ def switch_advanced(state, new_advanced, lset_name): def get_settings_dict(state, i2v, prompt, image_prompt_type, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices, - loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, RIFLEx_setting, slg_switch, slg_layers, slg_start_perc, slg_end_perc, cfg_star_switch, cfg_zero_step): + loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, temporal_upsampling, spatial_upsampling, RIFLEx_setting, slg_switch, slg_layers, slg_start_perc, slg_end_perc, cfg_star_switch, cfg_zero_step): loras = state["loras"] activated_loras = [Path( loras[int(no)]).parts[-1] for no in loras_choices ] @@ -2251,6 +2316,8 @@ def get_settings_dict(state, i2v, prompt, image_prompt_type, video_length, resol "loras_multipliers": loras_mult_choices, "tea_cache": tea_cache_setting, "tea_cache_start_step_perc": tea_cache_start_step_perc, + "temporal_upsampling" : temporal_upsampling, + "spatial_upsampling" : spatial_upsampling, "RIFLEx_setting": RIFLEx_setting, "slg_switch": slg_switch, "slg_layers": slg_layers, @@ -2269,14 +2336,14 @@ def get_settings_dict(state, i2v, prompt, image_prompt_type, video_length, resol return ui_settings def save_settings(state, prompt, image_prompt_type, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices, - loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, RIFLEx_setting, slg_switch, slg_layers, slg_start_perc, slg_end_perc, cfg_star_switch, cfg_zero_step): + loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, temporal_upsampling, spatial_upsampling, RIFLEx_setting, slg_switch, slg_layers, slg_start_perc, slg_end_perc, cfg_star_switch, cfg_zero_step): if state.get("validate_success",0) != 1: return image2video = state["image2video"] ui_defaults = get_settings_dict(state, image2video, prompt, image_prompt_type, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices, - loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, RIFLEx_setting, slg_switch, slg_layers, slg_start_perc, slg_end_perc, cfg_star_switch, cfg_zero_step) + loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, temporal_upsampling, spatial_upsampling, RIFLEx_setting, slg_switch, slg_layers, slg_start_perc, slg_end_perc, cfg_star_switch, cfg_zero_step) defaults_filename = get_settings_file_name(image2video) @@ -2538,6 +2605,32 @@ def generate_video_tab(image2video=False): ) tea_cache_start_step_perc = gr.Slider(0, 100, value=ui_defaults["tea_cache_start_step_perc"], step=1, label="Tea Cache starting moment in % of generation") + with gr.Row(): + gr.Markdown("Upsampling") + with gr.Row(): + temporal_upsampling_choice = gr.Dropdown( + choices=[ + ("Disabled", ""), + ("Rife x2 (32 frames/s)", "rife2"), + ("Rife x4 (64 frames/s)", "rife4"), + ], + value=ui_defaults.get("temporal_upsampling", ""), + visible=True, + scale = 1, + label="Temporal Upsampling" + ) + spatial_upsampling_choice = gr.Dropdown( + choices=[ + ("Disabled", ""), + ("Lanczos x1.5", "lanczos1.5"), + ("Lanczos x2.0", "lanczos2"), + ], + value=ui_defaults.get("spatial_upsampling", ""), + visible=True, + scale = 1, + label="Spatial Upsampling" + ) + gr.Markdown("With Riflex you can generate videos longer than 5s which is the default duration of videos used to train the model") RIFLEx_setting = gr.Dropdown( choices=[ @@ -2699,7 +2792,7 @@ def generate_video_tab(image2video=False): ) save_settings_btn.click( fn=validate_wizard_prompt, inputs =[state, wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, *prompt_vars] , outputs= [prompt]).then( save_settings, inputs = [state, prompt, image_prompt_type_radio, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, - loras_choices, loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, RIFLEx_setting, slg_switch, slg_layers, + loras_choices, loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, temporal_upsampling_choice, spatial_upsampling_choice, RIFLEx_setting, slg_switch, slg_layers, slg_start_perc, slg_end_perc, cfg_star_switch, cfg_zero_step ], outputs = []) save_lset_btn.click(validate_save_lset, inputs=[lset_name], outputs=[apply_lset_btn, refresh_lora_btn, delete_lset_btn, save_lset_btn,confirm_save_lset_btn, cancel_lset_btn, save_lset_prompt_drop]) confirm_save_lset_btn.click(fn=validate_wizard_prompt, inputs =[state, wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, *prompt_vars] , outputs= [prompt]).then( @@ -2758,6 +2851,8 @@ def generate_video_tab(image2video=False): image_to_end, video_to_continue, max_frames, + temporal_upsampling_choice, + spatial_upsampling_choice, RIFLEx_setting, slg_switch, slg_layers, diff --git a/rife/IFNet_HDv3.py b/rife/IFNet_HDv3.py new file mode 100644 index 0000000..53e512b --- /dev/null +++ b/rife/IFNet_HDv3.py @@ -0,0 +1,133 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +# from ..model.warplayer import warp + +# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + +backwarp_tenGrid = {} + +def warp(tenInput, tenFlow, device): + k = (str(tenFlow.device), str(tenFlow.size())) + if k not in backwarp_tenGrid: + tenHorizontal = torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device).view( + 1, 1, 1, tenFlow.shape[3]).expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1) + tenVertical = torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device).view( + 1, 1, tenFlow.shape[2], 1).expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3]) + backwarp_tenGrid[k] = torch.cat( + [tenHorizontal, tenVertical], 1).to(device) + + tenFlow = torch.cat([tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0), + tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0)], 1) + + g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1) + return torch.nn.functional.grid_sample(input=tenInput, grid=g, mode='bilinear', padding_mode='border', align_corners=True) + +def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): + return nn.Sequential( + nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, + padding=padding, dilation=dilation, bias=True), + nn.PReLU(out_planes) + ) + +def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1): + return nn.Sequential( + nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, + padding=padding, dilation=dilation, bias=False), + nn.BatchNorm2d(out_planes), + nn.PReLU(out_planes) + ) + +class IFBlock(nn.Module): + def __init__(self, in_planes, c=64): + super(IFBlock, self).__init__() + self.conv0 = nn.Sequential( + conv(in_planes, c//2, 3, 2, 1), + conv(c//2, c, 3, 2, 1), + ) + self.convblock0 = nn.Sequential( + conv(c, c), + conv(c, c) + ) + self.convblock1 = nn.Sequential( + conv(c, c), + conv(c, c) + ) + self.convblock2 = nn.Sequential( + conv(c, c), + conv(c, c) + ) + self.convblock3 = nn.Sequential( + conv(c, c), + conv(c, c) + ) + self.conv1 = nn.Sequential( + nn.ConvTranspose2d(c, c//2, 4, 2, 1), + nn.PReLU(c//2), + nn.ConvTranspose2d(c//2, 4, 4, 2, 1), + ) + self.conv2 = nn.Sequential( + nn.ConvTranspose2d(c, c//2, 4, 2, 1), + nn.PReLU(c//2), + nn.ConvTranspose2d(c//2, 1, 4, 2, 1), + ) + + def forward(self, x, flow, scale=1): + x = F.interpolate(x, scale_factor= 1. / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) + flow = F.interpolate(flow, scale_factor= 1. / scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 1. / scale + feat = self.conv0(torch.cat((x, flow), 1)) + feat = self.convblock0(feat) + feat + feat = self.convblock1(feat) + feat + feat = self.convblock2(feat) + feat + feat = self.convblock3(feat) + feat + flow = self.conv1(feat) + mask = self.conv2(feat) + flow = F.interpolate(flow, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) * scale + mask = F.interpolate(mask, scale_factor=scale, mode="bilinear", align_corners=False, recompute_scale_factor=False) + return flow, mask + +class IFNet(nn.Module): + def __init__(self): + super(IFNet, self).__init__() + self.block0 = IFBlock(7+4, c=90) + self.block1 = IFBlock(7+4, c=90) + self.block2 = IFBlock(7+4, c=90) + self.block_tea = IFBlock(10+4, c=90) + # self.contextnet = Contextnet() + # self.unet = Unet() + + def forward(self, x, scale_list=[4, 2, 1], training=False): + if training == False: + channel = x.shape[1] // 2 + img0 = x[:, :channel] + img1 = x[:, channel:] + flow_list = [] + merged = [] + mask_list = [] + warped_img0 = img0 + warped_img1 = img1 + flow = (x[:, :4]).detach() * 0 + mask = (x[:, :1]).detach() * 0 + loss_cons = 0 + block = [self.block0, self.block1, self.block2] + for i in range(3): + f0, m0 = block[i](torch.cat((warped_img0[:, :3], warped_img1[:, :3], mask), 1), flow, scale=scale_list[i]) + f1, m1 = block[i](torch.cat((warped_img1[:, :3], warped_img0[:, :3], -mask), 1), torch.cat((flow[:, 2:4], flow[:, :2]), 1), scale=scale_list[i]) + flow = flow + (f0 + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2 + mask = mask + (m0 + (-m1)) / 2 + mask_list.append(mask) + flow_list.append(flow) + warped_img0 = warp(img0, flow[:, :2], device= flow.device) + warped_img1 = warp(img1, flow[:, 2:4], device= flow.device) + merged.append((warped_img0, warped_img1)) + ''' + c0 = self.contextnet(img0, flow[:, :2]) + c1 = self.contextnet(img1, flow[:, 2:4]) + tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1) + res = tmp[:, 1:4] * 2 - 1 + ''' + for i in range(3): + mask_list[i] = torch.sigmoid(mask_list[i]) + merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i]) + # merged[i] = torch.clamp(merged[i] + res, 0, 1) + return flow_list, mask_list[2], merged diff --git a/rife/RIFE_HDv3.py b/rife/RIFE_HDv3.py new file mode 100644 index 0000000..75c672d --- /dev/null +++ b/rife/RIFE_HDv3.py @@ -0,0 +1,84 @@ +import torch +import torch.nn as nn +import numpy as np +from torch.optim import AdamW +import torch.optim as optim +import itertools +from torch.nn.parallel import DistributedDataParallel as DDP +from .IFNet_HDv3 import * +import torch.nn.functional as F +# from ..model.loss import * + +# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + +class Model: + def __init__(self, local_rank=-1): + self.flownet = IFNet() + # self.device() + # self.optimG = AdamW(self.flownet.parameters(), lr=1e-6, weight_decay=1e-4) + # self.epe = EPE() + # self.vgg = VGGPerceptualLoss().to(device) + # self.sobel = SOBEL() + if local_rank != -1: + self.flownet = DDP(self.flownet, device_ids=[local_rank], output_device=local_rank) + + def train(self): + self.flownet.train() + + def eval(self): + self.flownet.eval() + + def to(self, device): + self.flownet.to(device) + + def load_model(self, path, rank=0, device = "cuda"): + self.device = device + def convert(param): + if rank == -1: + return { + k.replace("module.", ""): v + for k, v in param.items() + if "module." in k + } + else: + return param + self.flownet.load_state_dict(convert(torch.load(path, map_location=device))) + + def save_model(self, path, rank=0): + if rank == 0: + torch.save(self.flownet.state_dict(),'{}/flownet.pkl'.format(path)) + + def inference(self, img0, img1, scale=1.0): + imgs = torch.cat((img0, img1), 1) + scale_list = [4/scale, 2/scale, 1/scale] + flow, mask, merged = self.flownet(imgs, scale_list) + return merged[2] + + def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None): + for param_group in self.optimG.param_groups: + param_group['lr'] = learning_rate + img0 = imgs[:, :3] + img1 = imgs[:, 3:] + if training: + self.train() + else: + self.eval() + scale = [4, 2, 1] + flow, mask, merged = self.flownet(torch.cat((imgs, gt), 1), scale=scale, training=training) + loss_l1 = (merged[2] - gt).abs().mean() + loss_smooth = self.sobel(flow[2], flow[2]*0).mean() + # loss_vgg = self.vgg(merged[2], gt) + if training: + self.optimG.zero_grad() + loss_G = loss_cons + loss_smooth * 0.1 + loss_G.backward() + self.optimG.step() + else: + flow_teacher = flow[2] + return merged[2], { + 'mask': mask, + 'flow': flow[2][:, :2], + 'loss_l1': loss_l1, + 'loss_cons': loss_cons, + 'loss_smooth': loss_smooth, + } diff --git a/rife/inference.py b/rife/inference.py new file mode 100644 index 0000000..24a2bdd --- /dev/null +++ b/rife/inference.py @@ -0,0 +1,119 @@ +import os +import torch +from torch.nn import functional as F +# from .model.pytorch_msssim import ssim_matlab +from .ssim import ssim_matlab + +from .RIFE_HDv3 import Model + +def get_frame(frames, frame_no): + if frame_no >= frames.shape[1]: + return None + frame = (frames[:, frame_no] + 1) /2 + frame = frame.clip(0., 1.) + return frame + +def add_frame(frames, frame, h, w): + frame = (frame * 2) - 1 + frame = frame.clip(-1., 1.) + frame = frame.squeeze(0) + frame = frame[:, :h, :w] + frame = frame.unsqueeze(1) + frames.append(frame.cpu()) + +def process_frames(model, device, frames, exp): + pos = 0 + output_frames = [] + + lastframe = get_frame(frames, 0) + _, h, w = lastframe.shape + scale = 1 + fp16 = False + + def make_inference(I0, I1, n): + middle = model.inference(I0, I1, scale) + if n == 1: + return [middle] + first_half = make_inference(I0, middle, n=n//2) + second_half = make_inference(middle, I1, n=n//2) + if n%2: + return [*first_half, middle, *second_half] + else: + return [*first_half, *second_half] + + tmp = max(32, int(32 / scale)) + ph = ((h - 1) // tmp + 1) * tmp + pw = ((w - 1) // tmp + 1) * tmp + padding = (0, pw - w, 0, ph - h) + + def pad_image(img): + if(fp16): + return F.pad(img, padding).half() + else: + return F.pad(img, padding) + + I1 = lastframe.to(device, non_blocking=True).unsqueeze(0) + I1 = pad_image(I1) + temp = None # save lastframe when processing static frame + + while True: + if temp is not None: + frame = temp + temp = None + else: + pos += 1 + frame = get_frame(frames, pos) + if frame is None: + break + I0 = I1 + I1 = frame.to(device, non_blocking=True).unsqueeze(0) + I1 = pad_image(I1) + I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False) + I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False) + ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) + + break_flag = False + if ssim > 0.996: + pos += 1 + frame = get_frame(frames, pos) + if frame is None: + break_flag = True + frame = lastframe + else: + temp = frame + I1 = frame.to(device, non_blocking=True).unsqueeze(0) + I1 = pad_image(I1) + I1 = model.inference(I0, I1, scale) + I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False) + ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3]) + frame = I1[0] + + if ssim < 0.2: + output = [] + for _ in range((2 ** exp) - 1): + output.append(I0) + else: + output = make_inference(I0, I1, 2**exp-1) if exp else [] + + add_frame(output_frames, lastframe, h, w) + for mid in output: + add_frame(output_frames, mid, h, w) + lastframe = frame + if break_flag: + break + + add_frame(output_frames, lastframe, h, w) + return torch.cat( output_frames, dim=1) + +def temporal_interpolation(model_path, frames, exp, device ="cuda"): + + model = Model() + model.load_model(model_path, -1, device=device) + + model.eval() + model.to(device=device) + + with torch.no_grad(): + output = process_frames(model, device, frames, exp) + + return output diff --git a/rife/ssim.py b/rife/ssim.py new file mode 100644 index 0000000..a4d3032 --- /dev/null +++ b/rife/ssim.py @@ -0,0 +1,200 @@ +import torch +import torch.nn.functional as F +from math import exp +import numpy as np + +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + +def gaussian(window_size, sigma): + gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)]) + return gauss/gauss.sum() + + +def create_window(window_size, channel=1): + _1D_window = gaussian(window_size, 1.5).unsqueeze(1) + _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0).to(device) + window = _2D_window.expand(channel, 1, window_size, window_size).contiguous() + return window + +def create_window_3d(window_size, channel=1): + _1D_window = gaussian(window_size, 1.5).unsqueeze(1) + _2D_window = _1D_window.mm(_1D_window.t()) + _3D_window = _2D_window.unsqueeze(2) @ (_1D_window.t()) + window = _3D_window.expand(1, channel, window_size, window_size, window_size).contiguous().to(device) + return window + + +def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None): + # Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh). + if val_range is None: + if torch.max(img1) > 128: + max_val = 255 + else: + max_val = 1 + + if torch.min(img1) < -0.5: + min_val = -1 + else: + min_val = 0 + L = max_val - min_val + else: + L = val_range + + padd = 0 + (_, channel, height, width) = img1.size() + if window is None: + real_size = min(window_size, height, width) + window = create_window(real_size, channel=channel).to(img1.device) + + # mu1 = F.conv2d(img1, window, padding=padd, groups=channel) + # mu2 = F.conv2d(img2, window, padding=padd, groups=channel) + mu1 = F.conv2d(F.pad(img1, (5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=channel) + mu2 = F.conv2d(F.pad(img2, (5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=channel) + + mu1_sq = mu1.pow(2) + mu2_sq = mu2.pow(2) + mu1_mu2 = mu1 * mu2 + + sigma1_sq = F.conv2d(F.pad(img1 * img1, (5, 5, 5, 5), 'replicate'), window, padding=padd, groups=channel) - mu1_sq + sigma2_sq = F.conv2d(F.pad(img2 * img2, (5, 5, 5, 5), 'replicate'), window, padding=padd, groups=channel) - mu2_sq + sigma12 = F.conv2d(F.pad(img1 * img2, (5, 5, 5, 5), 'replicate'), window, padding=padd, groups=channel) - mu1_mu2 + + C1 = (0.01 * L) ** 2 + C2 = (0.03 * L) ** 2 + + v1 = 2.0 * sigma12 + C2 + v2 = sigma1_sq + sigma2_sq + C2 + cs = torch.mean(v1 / v2) # contrast sensitivity + + ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2) + + if size_average: + ret = ssim_map.mean() + else: + ret = ssim_map.mean(1).mean(1).mean(1) + + if full: + return ret, cs + return ret + + +def ssim_matlab(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None): + # Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh). + if val_range is None: + if torch.max(img1) > 128: + max_val = 255 + else: + max_val = 1 + + if torch.min(img1) < -0.5: + min_val = -1 + else: + min_val = 0 + L = max_val - min_val + else: + L = val_range + + padd = 0 + (_, _, height, width) = img1.size() + if window is None: + real_size = min(window_size, height, width) + window = create_window_3d(real_size, channel=1).to(img1.device) + # Channel is set to 1 since we consider color images as volumetric images + + img1 = img1.unsqueeze(1) + img2 = img2.unsqueeze(1) + + mu1 = F.conv3d(F.pad(img1, (5, 5, 5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=1) + mu2 = F.conv3d(F.pad(img2, (5, 5, 5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=1) + + mu1_sq = mu1.pow(2) + mu2_sq = mu2.pow(2) + mu1_mu2 = mu1 * mu2 + + sigma1_sq = F.conv3d(F.pad(img1 * img1, (5, 5, 5, 5, 5, 5), 'replicate'), window, padding=padd, groups=1) - mu1_sq + sigma2_sq = F.conv3d(F.pad(img2 * img2, (5, 5, 5, 5, 5, 5), 'replicate'), window, padding=padd, groups=1) - mu2_sq + sigma12 = F.conv3d(F.pad(img1 * img2, (5, 5, 5, 5, 5, 5), 'replicate'), window, padding=padd, groups=1) - mu1_mu2 + + C1 = (0.01 * L) ** 2 + C2 = (0.03 * L) ** 2 + + v1 = 2.0 * sigma12 + C2 + v2 = sigma1_sq + sigma2_sq + C2 + cs = torch.mean(v1 / v2) # contrast sensitivity + + ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2) + + if size_average: + ret = ssim_map.mean() + else: + ret = ssim_map.mean(1).mean(1).mean(1) + + if full: + return ret, cs + return ret + + +def msssim(img1, img2, window_size=11, size_average=True, val_range=None, normalize=False): + device = img1.device + weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(device) + levels = weights.size()[0] + mssim = [] + mcs = [] + for _ in range(levels): + sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range) + mssim.append(sim) + mcs.append(cs) + + img1 = F.avg_pool2d(img1, (2, 2)) + img2 = F.avg_pool2d(img2, (2, 2)) + + mssim = torch.stack(mssim) + mcs = torch.stack(mcs) + + # Normalize (to avoid NaNs during training unstable models, not compliant with original definition) + if normalize: + mssim = (mssim + 1) / 2 + mcs = (mcs + 1) / 2 + + pow1 = mcs ** weights + pow2 = mssim ** weights + # From Matlab implementation https://ece.uwaterloo.ca/~z70wang/research/iwssim/ + output = torch.prod(pow1[:-1] * pow2[-1]) + return output + + +# Classes to re-use window +class SSIM(torch.nn.Module): + def __init__(self, window_size=11, size_average=True, val_range=None): + super(SSIM, self).__init__() + self.window_size = window_size + self.size_average = size_average + self.val_range = val_range + + # Assume 3 channel for SSIM + self.channel = 3 + self.window = create_window(window_size, channel=self.channel) + + def forward(self, img1, img2): + (_, channel, _, _) = img1.size() + + if channel == self.channel and self.window.dtype == img1.dtype: + window = self.window + else: + window = create_window(self.window_size, channel).to(img1.device).type(img1.dtype) + self.window = window + self.channel = channel + + _ssim = ssim(img1, img2, window=window, window_size=self.window_size, size_average=self.size_average) + dssim = (1 - _ssim) / 2 + return dssim + +class MSSSIM(torch.nn.Module): + def __init__(self, window_size=11, size_average=True, channel=3): + super(MSSSIM, self).__init__() + self.window_size = window_size + self.size_average = size_average + self.channel = channel + + def forward(self, img1, img2): + return msssim(img1, img2, window_size=self.window_size, size_average=self.size_average) diff --git a/wan/image2video.py b/wan/image2video.py index a71e9d4..ed08d44 100644 --- a/wan/image2video.py +++ b/wan/image2video.py @@ -25,8 +25,7 @@ from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler, get_sampling_sigmas, retrieve_timesteps) from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler from wan.modules.posemb_layers import get_rotary_pos_embed - -from PIL import Image +from wan.utils.utils import resize_lanczos def optimized_scale(positive_flat, negative_flat): @@ -41,10 +40,6 @@ def optimized_scale(positive_flat, negative_flat): return st_star -def resize_lanczos(img, h, w): - img = Image.fromarray(np.clip(255. * img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) - img = img.resize((w,h), resample=Image.Resampling.LANCZOS) - return torch.from_numpy(np.array(img).astype(np.float32) / 255.0).movedim(-1, 0) class WanI2V: @@ -285,21 +280,6 @@ class WanI2V: self.clip.model.cpu() from mmgp import offload - - - # img_interpolated.save('aaa.png') - - # img_interpolated = torch.from_numpy(np.array(img_interpolated).astype(np.float32) / 255.0).movedim(-1, 0) - - # img_interpolated = torch.nn.functional.interpolate(img[None].cpu(), size=(h, w), mode='lanczos') - # img_interpolated = img_interpolated.squeeze(0).transpose(0,2).transpose(1,0) - # img_interpolated = img_interpolated.clamp(-1, 1) - # img_interpolated = (img_interpolated + 1)/2 - # img_interpolated = (img_interpolated*255).type(torch.uint8) - # img_interpolated = img_interpolated.cpu().numpy() - # xxx = Image.fromarray(img_interpolated, 'RGB') - # xxx.save('my.png') - offload.last_offload_obj.unload_all() if any_end_frame: mean2 = 0 diff --git a/wan/utils/utils.py b/wan/utils/utils.py index d725999..e19c298 100644 --- a/wan/utils/utils.py +++ b/wan/utils/utils.py @@ -7,9 +7,16 @@ import os.path as osp import imageio import torch import torchvision +from PIL import Image +import numpy as np __all__ = ['cache_video', 'cache_image', 'str2bool'] +def resize_lanczos(img, h, w): + img = Image.fromarray(np.clip(255. * img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) + img = img.resize((w,h), resample=Image.Resampling.LANCZOS) + return torch.from_numpy(np.array(img).astype(np.float32) / 255.0).movedim(-1, 0) + def rand_name(length=8, suffix=''): name = binascii.b2a_hex(os.urandom(length)).decode('utf-8')