mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-06-05 14:54:54 +00:00
add teacache implement for Wan2.1
This commit is contained in:
parent
e5a741309d
commit
a11333634c
623
generate.py
623
generate.py
@ -4,21 +4,32 @@ import logging
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
from tqdm import tqdm
|
||||
from datetime import datetime
|
||||
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
import random
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from PIL import Image
|
||||
import torchvision.transforms.functional as TF
|
||||
import torch.cuda.amp as amp
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
import wan
|
||||
from wan.configs import MAX_AREA_CONFIGS, SIZE_CONFIGS, SUPPORTED_SIZES, WAN_CONFIGS
|
||||
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
||||
from wan.utils.utils import cache_image, cache_video, str2bool
|
||||
|
||||
import gc
|
||||
from contextlib import contextmanager
|
||||
from wan.modules.model import sinusoidal_embedding_1d
|
||||
from wan.utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
|
||||
get_sampling_sigmas, retrieve_timesteps)
|
||||
from wan.utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
|
||||
|
||||
EXAMPLE_PROMPT = {
|
||||
"t2v-1.3B": {
|
||||
@ -60,6 +71,537 @@ EXAMPLE_PROMPT = {
|
||||
}
|
||||
}
|
||||
|
||||
def t2v_generate(self,
|
||||
input_prompt,
|
||||
size=(1280, 720),
|
||||
frame_num=81,
|
||||
shift=5.0,
|
||||
sample_solver='unipc',
|
||||
sampling_steps=50,
|
||||
guide_scale=5.0,
|
||||
n_prompt="",
|
||||
seed=-1,
|
||||
offload_model=True):
|
||||
r"""
|
||||
Generates video frames from text prompt using diffusion process.
|
||||
|
||||
Args:
|
||||
input_prompt (`str`):
|
||||
Text prompt for content generation
|
||||
size (tupele[`int`], *optional*, defaults to (1280,720)):
|
||||
Controls video resolution, (width,height).
|
||||
frame_num (`int`, *optional*, defaults to 81):
|
||||
How many frames to sample from a video. The number should be 4n+1
|
||||
shift (`float`, *optional*, defaults to 5.0):
|
||||
Noise schedule shift parameter. Affects temporal dynamics
|
||||
sample_solver (`str`, *optional*, defaults to 'unipc'):
|
||||
Solver used to sample the video.
|
||||
sampling_steps (`int`, *optional*, defaults to 40):
|
||||
Number of diffusion sampling steps. Higher values improve quality but slow generation
|
||||
guide_scale (`float`, *optional*, defaults 5.0):
|
||||
Classifier-free guidance scale. Controls prompt adherence vs. creativity
|
||||
n_prompt (`str`, *optional*, defaults to ""):
|
||||
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
|
||||
seed (`int`, *optional*, defaults to -1):
|
||||
Random seed for noise generation. If -1, use random seed.
|
||||
offload_model (`bool`, *optional*, defaults to True):
|
||||
If True, offloads models to CPU during generation to save VRAM
|
||||
|
||||
Returns:
|
||||
torch.Tensor:
|
||||
Generated video frames tensor. Dimensions: (C, N H, W) where:
|
||||
- C: Color channels (3 for RGB)
|
||||
- N: Number of frames (81)
|
||||
- H: Frame height (from size)
|
||||
- W: Frame width from size)
|
||||
"""
|
||||
# preprocess
|
||||
F = frame_num
|
||||
target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
|
||||
size[1] // self.vae_stride[1],
|
||||
size[0] // self.vae_stride[2])
|
||||
|
||||
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
|
||||
(self.patch_size[1] * self.patch_size[2]) *
|
||||
target_shape[1] / self.sp_size) * self.sp_size
|
||||
|
||||
if n_prompt == "":
|
||||
n_prompt = self.sample_neg_prompt
|
||||
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
||||
seed_g = torch.Generator(device=self.device)
|
||||
seed_g.manual_seed(seed)
|
||||
|
||||
if not self.t5_cpu:
|
||||
self.text_encoder.model.to(self.device)
|
||||
context = self.text_encoder([input_prompt], self.device)
|
||||
context_null = self.text_encoder([n_prompt], self.device)
|
||||
if offload_model:
|
||||
self.text_encoder.model.cpu()
|
||||
else:
|
||||
context = self.text_encoder([input_prompt], torch.device('cpu'))
|
||||
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
|
||||
context = [t.to(self.device) for t in context]
|
||||
context_null = [t.to(self.device) for t in context_null]
|
||||
|
||||
noise = [
|
||||
torch.randn(
|
||||
target_shape[0],
|
||||
target_shape[1],
|
||||
target_shape[2],
|
||||
target_shape[3],
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
generator=seed_g)
|
||||
]
|
||||
|
||||
@contextmanager
|
||||
def noop_no_sync():
|
||||
yield
|
||||
|
||||
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
|
||||
|
||||
# evaluation mode
|
||||
with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
|
||||
|
||||
if sample_solver == 'unipc':
|
||||
sample_scheduler = FlowUniPCMultistepScheduler(
|
||||
num_train_timesteps=self.num_train_timesteps,
|
||||
shift=1,
|
||||
use_dynamic_shifting=False)
|
||||
sample_scheduler.set_timesteps(
|
||||
sampling_steps, device=self.device, shift=shift)
|
||||
timesteps = sample_scheduler.timesteps
|
||||
elif sample_solver == 'dpm++':
|
||||
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
||||
num_train_timesteps=self.num_train_timesteps,
|
||||
shift=1,
|
||||
use_dynamic_shifting=False)
|
||||
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
||||
timesteps, _ = retrieve_timesteps(
|
||||
sample_scheduler,
|
||||
device=self.device,
|
||||
sigmas=sampling_sigmas)
|
||||
else:
|
||||
raise NotImplementedError("Unsupported solver.")
|
||||
|
||||
# sample videos
|
||||
latents = noise
|
||||
|
||||
arg_c = {'context': context, 'seq_len': seq_len}
|
||||
arg_null = {'context': context_null, 'seq_len': seq_len}
|
||||
|
||||
for _, t in enumerate(tqdm(timesteps)):
|
||||
latent_model_input = latents
|
||||
timestep = [t]
|
||||
|
||||
timestep = torch.stack(timestep)
|
||||
|
||||
self.model.to(self.device)
|
||||
noise_pred_cond = self.model(
|
||||
latent_model_input, t=timestep, **arg_c)[0]
|
||||
noise_pred_uncond = self.model(
|
||||
latent_model_input, t=timestep, **arg_null)[0]
|
||||
|
||||
noise_pred = noise_pred_uncond + guide_scale * (
|
||||
noise_pred_cond - noise_pred_uncond)
|
||||
|
||||
temp_x0 = sample_scheduler.step(
|
||||
noise_pred.unsqueeze(0),
|
||||
t,
|
||||
latents[0].unsqueeze(0),
|
||||
return_dict=False,
|
||||
generator=seed_g)[0]
|
||||
latents = [temp_x0.squeeze(0)]
|
||||
|
||||
x0 = latents
|
||||
if offload_model:
|
||||
self.model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
if self.rank == 0:
|
||||
videos = self.vae.decode(x0)
|
||||
|
||||
del noise, latents
|
||||
del sample_scheduler
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
|
||||
return videos[0] if self.rank == 0 else None
|
||||
|
||||
def i2v_generate(self,
|
||||
input_prompt,
|
||||
img,
|
||||
max_area=720 * 1280,
|
||||
frame_num=81,
|
||||
shift=5.0,
|
||||
sample_solver='unipc',
|
||||
sampling_steps=40,
|
||||
guide_scale=5.0,
|
||||
n_prompt="",
|
||||
seed=-1,
|
||||
offload_model=True):
|
||||
r"""
|
||||
Generates video frames from input image and text prompt using diffusion process.
|
||||
|
||||
Args:
|
||||
input_prompt (`str`):
|
||||
Text prompt for content generation.
|
||||
img (PIL.Image.Image):
|
||||
Input image tensor. Shape: [3, H, W]
|
||||
max_area (`int`, *optional*, defaults to 720*1280):
|
||||
Maximum pixel area for latent space calculation. Controls video resolution scaling
|
||||
frame_num (`int`, *optional*, defaults to 81):
|
||||
How many frames to sample from a video. The number should be 4n+1
|
||||
shift (`float`, *optional*, defaults to 5.0):
|
||||
Noise schedule shift parameter. Affects temporal dynamics
|
||||
[NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
|
||||
sample_solver (`str`, *optional*, defaults to 'unipc'):
|
||||
Solver used to sample the video.
|
||||
sampling_steps (`int`, *optional*, defaults to 40):
|
||||
Number of diffusion sampling steps. Higher values improve quality but slow generation
|
||||
guide_scale (`float`, *optional*, defaults 5.0):
|
||||
Classifier-free guidance scale. Controls prompt adherence vs. creativity
|
||||
n_prompt (`str`, *optional*, defaults to ""):
|
||||
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
|
||||
seed (`int`, *optional*, defaults to -1):
|
||||
Random seed for noise generation. If -1, use random seed
|
||||
offload_model (`bool`, *optional*, defaults to True):
|
||||
If True, offloads models to CPU during generation to save VRAM
|
||||
|
||||
Returns:
|
||||
torch.Tensor:
|
||||
Generated video frames tensor. Dimensions: (C, N H, W) where:
|
||||
- C: Color channels (3 for RGB)
|
||||
- N: Number of frames (81)
|
||||
- H: Frame height (from max_area)
|
||||
- W: Frame width from max_area)
|
||||
"""
|
||||
img = TF.to_tensor(img).sub_(0.5).div_(0.5).to(self.device)
|
||||
|
||||
F = frame_num
|
||||
h, w = img.shape[1:]
|
||||
aspect_ratio = h / w
|
||||
lat_h = round(
|
||||
np.sqrt(max_area * aspect_ratio) // self.vae_stride[1] //
|
||||
self.patch_size[1] * self.patch_size[1])
|
||||
lat_w = round(
|
||||
np.sqrt(max_area / aspect_ratio) // self.vae_stride[2] //
|
||||
self.patch_size[2] * self.patch_size[2])
|
||||
h = lat_h * self.vae_stride[1]
|
||||
w = lat_w * self.vae_stride[2]
|
||||
|
||||
max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
|
||||
self.patch_size[1] * self.patch_size[2])
|
||||
max_seq_len = int(math.ceil(max_seq_len / self.sp_size)) * self.sp_size
|
||||
|
||||
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
||||
seed_g = torch.Generator(device=self.device)
|
||||
seed_g.manual_seed(seed)
|
||||
noise = torch.randn(
|
||||
self.vae.model.z_dim,
|
||||
(F - 1) // self.vae_stride[0] + 1,
|
||||
lat_h,
|
||||
lat_w,
|
||||
dtype=torch.float32,
|
||||
generator=seed_g,
|
||||
device=self.device)
|
||||
|
||||
msk = torch.ones(1, F, lat_h, lat_w, device=self.device)
|
||||
msk[:, 1:] = 0
|
||||
msk = torch.concat([
|
||||
torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]
|
||||
],
|
||||
dim=1)
|
||||
msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
|
||||
msk = msk.transpose(1, 2)[0]
|
||||
|
||||
if n_prompt == "":
|
||||
n_prompt = self.sample_neg_prompt
|
||||
|
||||
# preprocess
|
||||
if not self.t5_cpu:
|
||||
self.text_encoder.model.to(self.device)
|
||||
context = self.text_encoder([input_prompt], self.device)
|
||||
context_null = self.text_encoder([n_prompt], self.device)
|
||||
if offload_model:
|
||||
self.text_encoder.model.cpu()
|
||||
else:
|
||||
context = self.text_encoder([input_prompt], torch.device('cpu'))
|
||||
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
|
||||
context = [t.to(self.device) for t in context]
|
||||
context_null = [t.to(self.device) for t in context_null]
|
||||
|
||||
self.clip.model.to(self.device)
|
||||
clip_context = self.clip.visual([img[:, None, :, :]])
|
||||
if offload_model:
|
||||
self.clip.model.cpu()
|
||||
|
||||
y = self.vae.encode([
|
||||
torch.concat([
|
||||
torch.nn.functional.interpolate(
|
||||
img[None].cpu(), size=(h, w), mode='bicubic').transpose(
|
||||
0, 1),
|
||||
torch.zeros(3, F-1, h, w)
|
||||
],
|
||||
dim=1).to(self.device)
|
||||
])[0]
|
||||
y = torch.concat([msk, y])
|
||||
|
||||
@contextmanager
|
||||
def noop_no_sync():
|
||||
yield
|
||||
|
||||
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
|
||||
|
||||
# evaluation mode
|
||||
with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
|
||||
|
||||
if sample_solver == 'unipc':
|
||||
sample_scheduler = FlowUniPCMultistepScheduler(
|
||||
num_train_timesteps=self.num_train_timesteps,
|
||||
shift=1,
|
||||
use_dynamic_shifting=False)
|
||||
sample_scheduler.set_timesteps(
|
||||
sampling_steps, device=self.device, shift=shift)
|
||||
timesteps = sample_scheduler.timesteps
|
||||
elif sample_solver == 'dpm++':
|
||||
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
||||
num_train_timesteps=self.num_train_timesteps,
|
||||
shift=1,
|
||||
use_dynamic_shifting=False)
|
||||
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
||||
timesteps, _ = retrieve_timesteps(
|
||||
sample_scheduler,
|
||||
device=self.device,
|
||||
sigmas=sampling_sigmas)
|
||||
else:
|
||||
raise NotImplementedError("Unsupported solver.")
|
||||
|
||||
# sample videos
|
||||
latent = noise
|
||||
|
||||
arg_c = {
|
||||
'context': [context[0]],
|
||||
'clip_fea': clip_context,
|
||||
'seq_len': max_seq_len,
|
||||
'y': [y],
|
||||
# 'cond_flag': True,
|
||||
}
|
||||
|
||||
arg_null = {
|
||||
'context': context_null,
|
||||
'clip_fea': clip_context,
|
||||
'seq_len': max_seq_len,
|
||||
'y': [y],
|
||||
# 'cond_flag': False,
|
||||
}
|
||||
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
self.model.to(self.device)
|
||||
for _, t in enumerate(tqdm(timesteps)):
|
||||
latent_model_input = [latent.to(self.device)]
|
||||
timestep = [t]
|
||||
|
||||
timestep = torch.stack(timestep).to(self.device)
|
||||
|
||||
noise_pred_cond = self.model(
|
||||
latent_model_input, t=timestep, **arg_c)[0].to(
|
||||
torch.device('cpu') if offload_model else self.device)
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
noise_pred_uncond = self.model(
|
||||
latent_model_input, t=timestep, **arg_null)[0].to(
|
||||
torch.device('cpu') if offload_model else self.device)
|
||||
if offload_model:
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
noise_pred = noise_pred_uncond + guide_scale * (
|
||||
noise_pred_cond - noise_pred_uncond)
|
||||
|
||||
latent = latent.to(
|
||||
torch.device('cpu') if offload_model else self.device)
|
||||
|
||||
temp_x0 = sample_scheduler.step(
|
||||
noise_pred.unsqueeze(0),
|
||||
t,
|
||||
latent.unsqueeze(0),
|
||||
return_dict=False,
|
||||
generator=seed_g)[0]
|
||||
latent = temp_x0.squeeze(0)
|
||||
|
||||
x0 = [latent.to(self.device)]
|
||||
del latent_model_input, timestep
|
||||
|
||||
if offload_model:
|
||||
self.model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
if self.rank == 0:
|
||||
videos = self.vae.decode(x0)
|
||||
|
||||
del noise, latent
|
||||
del sample_scheduler
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
|
||||
return videos[0] if self.rank == 0 else None
|
||||
|
||||
def teacache_forward(
|
||||
self,
|
||||
x,
|
||||
t,
|
||||
context,
|
||||
seq_len,
|
||||
clip_fea=None,
|
||||
y=None,
|
||||
):
|
||||
r"""
|
||||
Forward pass through the diffusion model
|
||||
|
||||
Args:
|
||||
x (List[Tensor]):
|
||||
List of input video tensors, each with shape [C_in, F, H, W]
|
||||
t (Tensor):
|
||||
Diffusion timesteps tensor of shape [B]
|
||||
context (List[Tensor]):
|
||||
List of text embeddings each with shape [L, C]
|
||||
seq_len (`int`):
|
||||
Maximum sequence length for positional encoding
|
||||
clip_fea (Tensor, *optional*):
|
||||
CLIP image features for image-to-video mode
|
||||
y (List[Tensor], *optional*):
|
||||
Conditional video inputs for image-to-video mode, same shape as x
|
||||
|
||||
Returns:
|
||||
List[Tensor]:
|
||||
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
||||
"""
|
||||
|
||||
logging.info("via teacache forward process")
|
||||
if self.model_type == 'i2v':
|
||||
assert clip_fea is not None and y is not None
|
||||
# params
|
||||
device = self.patch_embedding.weight.device
|
||||
if self.freqs.device != device:
|
||||
self.freqs = self.freqs.to(device)
|
||||
|
||||
if y is not None:
|
||||
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
||||
|
||||
# embeddings
|
||||
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
||||
grid_sizes = torch.stack(
|
||||
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
||||
x = [u.flatten(2).transpose(1, 2) for u in x]
|
||||
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
||||
assert seq_lens.max() <= seq_len
|
||||
x = torch.cat([
|
||||
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
|
||||
dim=1) for u in x
|
||||
])
|
||||
|
||||
# time embeddings
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t).float())
|
||||
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
||||
assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
||||
|
||||
# context
|
||||
context_lens = None
|
||||
context = self.text_embedding(
|
||||
torch.stack([
|
||||
torch.cat(
|
||||
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
||||
for u in context
|
||||
]))
|
||||
|
||||
if clip_fea is not None:
|
||||
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||||
context = torch.concat([context_clip, context], dim=1)
|
||||
|
||||
# arguments
|
||||
kwargs = dict(
|
||||
e=e0,
|
||||
seq_lens=seq_lens,
|
||||
grid_sizes=grid_sizes,
|
||||
freqs=self.freqs,
|
||||
context=context,
|
||||
context_lens=context_lens)
|
||||
|
||||
if self.enable_teacache:
|
||||
modulated_inp = e0 if self.use_ref_steps else e
|
||||
# teacache
|
||||
if self.cnt%2==0: # even -> conditon
|
||||
self.is_even = True
|
||||
if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps:
|
||||
should_calc_even = True
|
||||
self.accumulated_rel_l1_distance_even = 0
|
||||
else:
|
||||
rescale_func = np.poly1d(self.coefficients)
|
||||
self.accumulated_rel_l1_distance_even += rescale_func(((modulated_inp-self.previous_e0_even).abs().mean() / self.previous_e0_even.abs().mean()).cpu().item())
|
||||
if self.accumulated_rel_l1_distance_even < self.teacache_thresh:
|
||||
should_calc_even = False
|
||||
else:
|
||||
should_calc_even = True
|
||||
self.accumulated_rel_l1_distance_even = 0
|
||||
self.previous_e0_even = modulated_inp.clone()
|
||||
|
||||
else: # odd -> unconditon
|
||||
self.is_even = False
|
||||
if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps:
|
||||
should_calc_odd = True
|
||||
self.accumulated_rel_l1_distance_odd = 0
|
||||
else:
|
||||
rescale_func = np.poly1d(self.coefficients)
|
||||
self.accumulated_rel_l1_distance_odd += rescale_func(((modulated_inp-self.previous_e0_odd).abs().mean() / self.previous_e0_odd.abs().mean()).cpu().item())
|
||||
if self.accumulated_rel_l1_distance_odd < self.teacache_thresh:
|
||||
should_calc_odd = False
|
||||
else:
|
||||
should_calc_odd = True
|
||||
self.accumulated_rel_l1_distance_odd = 0
|
||||
self.previous_e0_odd = modulated_inp.clone()
|
||||
|
||||
if self.enable_teacache:
|
||||
if self.is_even:
|
||||
if not should_calc_even:
|
||||
logging.info("use residual estimation for this difusion step")
|
||||
x += self.previous_residual_even
|
||||
else:
|
||||
ori_x = x.clone()
|
||||
for block in self.blocks:
|
||||
x = block(x, **kwargs)
|
||||
self.previous_residual_even = x - ori_x
|
||||
else:
|
||||
if not should_calc_odd:
|
||||
logging.info("use residual estimation for thi8s difusion step")
|
||||
x += self.previous_residual_odd
|
||||
else:
|
||||
ori_x = x.clone()
|
||||
for block in self.blocks:
|
||||
x = block(x, **kwargs)
|
||||
self.previous_residual_odd = x - ori_x
|
||||
|
||||
else:
|
||||
for block in self.blocks:
|
||||
x = block(x, **kwargs)
|
||||
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
self.cnt += 1
|
||||
if self.cnt >= self.num_steps:
|
||||
self.cnt = 0
|
||||
return [u.float() for u in x]
|
||||
|
||||
def _validate_args(args):
|
||||
# Basic check
|
||||
@ -243,6 +785,25 @@ def _parse_args():
|
||||
type=float,
|
||||
default=5.0,
|
||||
help="Classifier free guidance scale.")
|
||||
|
||||
parser.add_argument(
|
||||
"--use_ret_steps",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help=" use ret_steps or not")
|
||||
|
||||
parser.add_argument(
|
||||
"--enable_teacache",
|
||||
action="store_true",
|
||||
default=False,
|
||||
help=" use ret_steps or not")
|
||||
|
||||
#teacache_thresh
|
||||
parser.add_argument(
|
||||
"--teacache_thresh",
|
||||
type=float,
|
||||
default= 0.2,
|
||||
help="tea_cache threshold")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@ -367,6 +928,35 @@ def generate(args):
|
||||
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
||||
t5_cpu=args.t5_cpu,
|
||||
)
|
||||
|
||||
if args.enable_teacache:
|
||||
wan_t2v.__class__.generate = t2v_generate
|
||||
wan_t2v.model.__class__.enable_teacache = True
|
||||
wan_t2v.model.__class__.forward = teacache_forward
|
||||
wan_t2v.model.__class__.cnt = 0
|
||||
wan_t2v.model.__class__.num_steps = args.sample_steps*2
|
||||
wan_t2v.model.__class__.teacache_thresh = args.teacache_thresh
|
||||
wan_t2v.model.__class__.accumulated_rel_l1_distance_even = 0
|
||||
wan_t2v.model.__class__.accumulated_rel_l1_distance_odd = 0
|
||||
wan_t2v.model.__class__.previous_e0_even = None
|
||||
wan_t2v.model.__class__.previous_e0_odd = None
|
||||
wan_t2v.model.__class__.previous_residual_even = None
|
||||
wan_t2v.model.__class__.previous_residual_odd = None
|
||||
wan_t2v.model.__class__.use_ref_steps = args.use_ret_steps
|
||||
if args.use_ret_steps:
|
||||
if '1.3B' in args.ckpt_dir:
|
||||
wan_t2v.model.__class__.coefficients = [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02]
|
||||
if '14B' in args.ckpt_dir:
|
||||
wan_t2v.model.__class__.coefficients = [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01]
|
||||
wan_t2v.model.__class__.ret_steps = 5*2
|
||||
wan_t2v.model.__class__.cutoff_steps = args.sample_steps*2
|
||||
else:
|
||||
if '1.3B' in args.ckpt_dir:
|
||||
wan_t2v.model.__class__.coefficients = [2.39676752e+03, -1.31110545e+03, 2.01331979e+02, -8.29855975e+00, 1.37887774e-01]
|
||||
if '14B' in args.ckpt_dir:
|
||||
wan_t2v.model.__class__.coefficients = [-5784.54975374, 5449.50911966, -1811.16591783, 256.27178429, -13.02252404]
|
||||
wan_t2v.model.__class__.ret_steps = 1*2
|
||||
wan_t2v.model.__class__.cutoff_steps = args.sample_steps*2 - 2
|
||||
|
||||
logging.info(
|
||||
f"Generating {'image' if 't2i' in args.task else 'video'} ...")
|
||||
@ -424,7 +1014,36 @@ def generate(args):
|
||||
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
||||
t5_cpu=args.t5_cpu,
|
||||
)
|
||||
|
||||
|
||||
if args.enable_teacache:
|
||||
wan_i2v.__class__.generate = i2v_generate
|
||||
wan_i2v.model.__class__.enable_teacache = True
|
||||
wan_i2v.model.__class__.forward = teacache_forward
|
||||
wan_i2v.model.__class__.cnt = 0
|
||||
wan_i2v.model.__class__.num_steps = args.sample_steps*2
|
||||
wan_i2v.model.__class__.teacache_thresh = args.teacache_thresh
|
||||
wan_i2v.model.__class__.accumulated_rel_l1_distance_even = 0
|
||||
wan_i2v.model.__class__.accumulated_rel_l1_distance_odd = 0
|
||||
wan_i2v.model.__class__.previous_e0_even = None
|
||||
wan_i2v.model.__class__.previous_e0_odd = None
|
||||
wan_i2v.model.__class__.previous_residual_even = None
|
||||
wan_i2v.model.__class__.previous_residual_odd = None
|
||||
wan_i2v.model.__class__.use_ref_steps = args.use_ret_steps
|
||||
if args.use_ret_steps:
|
||||
if '480P' in args.ckpt_dir:
|
||||
wan_i2v.model.__class__.coefficients = [ 2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01]
|
||||
if '720P' in args.ckpt_dir:
|
||||
wan_i2v.model.__class__.coefficients = [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02]
|
||||
wan_i2v.model.__class__.ret_steps = 5*2
|
||||
wan_i2v.model.__class__.cutoff_steps = args.sample_steps*2
|
||||
else:
|
||||
if '480P' in args.ckpt_dir:
|
||||
wan_i2v.model.__class__.coefficients = [-3.02331670e+02, 2.23948934e+02, -5.25463970e+01, 5.87348440e+00, -2.01973289e-01]
|
||||
if '720P' in args.ckpt_dir:
|
||||
wan_i2v.model.__class__.coefficients = [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683]
|
||||
wan_i2v.model.__class__.ret_steps = 1*2
|
||||
wan_i2v.model.__class__.cutoff_steps = args.sample_steps*2 - 2
|
||||
|
||||
logging.info("Generating video ...")
|
||||
video = wan_i2v.generate(
|
||||
args.prompt,
|
||||
|
Loading…
Reference in New Issue
Block a user