add queue saving/loading/clearing/autosaving/autoloading, fix empty prompt logic

This commit is contained in:
Chris Malone 2025-04-08 20:24:36 +10:00
parent fea835f21f
commit a15751892e

593
wgp.py
View File

@ -28,6 +28,12 @@ from wan.utils import prompt_parser
import base64
import io
from PIL import Image
import zipfile
import tempfile
import shutil
import atexit
global_queue_ref = []
AUTOSAVE_FILENAME = "queue.zip"
PROMPT_VARS_MAX = 10
target_mmgp_version = "3.3.4"
@ -98,10 +104,14 @@ def process_prompt_and_add_tasks(state, model_choice):
inputs["state"] = state
inputs.pop("lset_name")
if inputs == None:
return
gr.Warning("Internal state error: Could not retrieve inputs for the model.")
return update_queue_data(queue)
prompt = inputs["prompt"]
if len(prompt) ==0:
return
gr.Info("Prompt cannot be empty.")
gen = get_gen_info(state)
queue = gen.get("queue", [])
return get_queue_table(queue)
prompt, errors = prompt_parser.process_template(prompt)
if len(errors) > 0:
gr.Info("Error processing prompt template: " + errors)
@ -111,7 +121,10 @@ def process_prompt_and_add_tasks(state, model_choice):
prompts = prompt.replace("\r", "").split("\n")
prompts = [prompt.strip() for prompt in prompts if len(prompt.strip())>0 and not prompt.startswith("#")]
if len(prompts) ==0:
return
gr.Info("Prompt cannot be empty.")
gen = get_gen_info(state)
queue = gen.get("queue", [])
return get_queue_table(queue)
resolution = inputs["resolution"]
width, height = resolution.split("x")
@ -250,9 +263,6 @@ def process_prompt_and_add_tasks(state, model_choice):
queue= gen.get("queue", [])
return update_queue_data(queue)
def add_video_task(**inputs):
global task_id
state = inputs["state"]
@ -327,6 +337,444 @@ def remove_task(queue, selected_indices):
del queue[idx]
return update_queue_data(queue)
def update_global_queue_ref(queue):
global global_queue_ref
with lock:
global_queue_ref = queue[:]
def save_queue_action(state):
gen = get_gen_info(state)
queue = gen.get("queue", [])
if not queue or len(queue) <=1 : # Check if queue is empty or only has the placeholder
gr.Info("Queue is empty. Nothing to save.")
return None # Return None if nothing to save
# Use an in-memory buffer for the zip file
zip_buffer = io.BytesIO()
# Still use a temporary directory *only* for storing images before zipping
with tempfile.TemporaryDirectory() as tmpdir:
queue_manifest = []
image_paths_in_zip = {} # Tracks image PIL object ID -> filename in zip
for task_index, task in enumerate(queue):
# Skip the placeholder item if it exists
if task is None or not isinstance(task, dict) or task_index == 0: continue
params_copy = task.get('params', {}).copy()
task_id_s = task.get('id', f"task_{task_index}") # Use a different var name
image_keys = ["image_start", "image_end", "image_refs"]
for key in image_keys:
images_pil = params_copy.get(key)
if images_pil is None:
continue
# Ensure images_pil is always a list for processing
is_originally_list = isinstance(images_pil, list)
if not is_originally_list:
images_pil = [images_pil]
image_filenames_for_json = []
for img_index, pil_image in enumerate(images_pil):
# Ensure it's actually a PIL Image object before proceeding
if not isinstance(pil_image, Image.Image):
print(f"Warning: Expected PIL Image for key '{key}' in task {task_id_s}, got {type(pil_image)}. Skipping image.")
continue
# Use object ID to check if this specific image instance is already saved
img_id = id(pil_image)
if img_id in image_paths_in_zip:
# If already saved, just add its filename to the list
image_filenames_for_json.append(image_paths_in_zip[img_id])
continue # Move to the next image in the list
# Image not saved yet, create filename and save path
img_filename_in_zip = f"task{task_id_s}_{key}_{img_index}.png"
img_save_path = os.path.join(tmpdir, img_filename_in_zip)
try:
# Save the image to the temporary directory
pil_image.save(img_save_path, "PNG")
image_filenames_for_json.append(img_filename_in_zip)
# Store the mapping from image ID to its filename in the zip
image_paths_in_zip[img_id] = img_filename_in_zip
except Exception as e:
print(f"Error saving image {img_filename_in_zip} for task {task_id_s}: {e}")
# Optionally decide if you want to continue or fail here
# Update the params_copy with the list of filenames (or single filename)
if image_filenames_for_json:
params_copy[key] = image_filenames_for_json if is_originally_list else image_filenames_for_json[0]
else:
# If no images were successfully processed for this key, remove it
params_copy.pop(key, None)
# Clean up parameters before adding to manifest
params_copy.pop('state', None)
params_copy.pop('start_image_data_base64', None) # Don't need base64 in saved queue
params_copy.pop('end_image_data_base64', None)
# Also remove the actual PIL data if it somehow remained
params_copy.pop('start_image_data', None)
params_copy.pop('end_image_data', None)
manifest_entry = {
"id": task.get('id'),
"params": params_copy,
# Keep other necessary top-level task info if needed, like repeats etc.
# Example: "repeats": task.get('repeats', 1)
}
queue_manifest.append(manifest_entry)
# --- Create queue.json content ---
manifest_path = os.path.join(tmpdir, "queue.json")
try:
with open(manifest_path, 'w', encoding='utf-8') as f:
# Dump only the relevant manifest data
json.dump(queue_manifest, f, indent=4)
except Exception as e:
print(f"Error writing queue.json: {e}")
gr.Warning("Failed to create queue manifest.")
return None # Return None on failure
# --- Create the zip file in memory ---
try:
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zf:
# Add queue.json
zf.write(manifest_path, arcname="queue.json")
# Add all unique images that were saved to the temp dir
for saved_img_rel_path in image_paths_in_zip.values():
saved_img_abs_path = os.path.join(tmpdir, saved_img_rel_path)
if os.path.exists(saved_img_abs_path):
zf.write(saved_img_abs_path, arcname=saved_img_rel_path)
else:
# This shouldn't happen if saving was successful, but good to check
print(f"Warning: Image file {saved_img_rel_path} not found during zipping.")
# --- Prepare for return ---
# Move buffer position to the beginning
zip_buffer.seek(0)
# Read the binary content
zip_binary_content = zip_buffer.getvalue()
# Encode as base64 string
zip_base64 = base64.b64encode(zip_binary_content).decode('utf-8')
print(f"Queue successfully prepared as base64 string ({len(zip_base64)} chars).")
return zip_base64
except Exception as e:
print(f"Error creating zip file in memory: {e}")
gr.Warning("Failed to create zip data for download.")
return None # Return None on failure
finally:
zip_buffer.close()
def load_queue_action(filepath, state):
global task_id
gen = get_gen_info(state)
original_queue = gen.get("queue", []) # Store original queue for error case
if not filepath or not hasattr(filepath, 'name') or not Path(filepath.name).is_file():
print("[load_queue_action] Warning: No valid file selected or file not found.")
# Return the current state of the DataFrame
return update_queue_data(original_queue)
newly_loaded_queue = []
max_id_in_file = 0
error_message = ""
local_queue_copy_for_global_ref = None
try:
print(f"[load_queue_action] Attempting to load queue from: {filepath.name}")
with tempfile.TemporaryDirectory() as tmpdir:
with zipfile.ZipFile(filepath.name, 'r') as zf:
if "queue.json" not in zf.namelist(): raise ValueError("queue.json not found in zip file")
print(f"[load_queue_action] Extracting {filepath.name} to {tmpdir}")
zf.extractall(tmpdir)
print(f"[load_queue_action] Extraction complete.")
manifest_path = os.path.join(tmpdir, "queue.json")
print(f"[load_queue_action] Reading manifest: {manifest_path}")
with open(manifest_path, 'r', encoding='utf-8') as f:
loaded_manifest = json.load(f)
print(f"[load_queue_action] Manifest loaded. Processing {len(loaded_manifest)} tasks.")
for task_index, task_data in enumerate(loaded_manifest):
# (Keep the existing task processing logic here...)
if task_data is None or not isinstance(task_data, dict):
print(f"[load_queue_action] Skipping invalid task data at index {task_index}")
continue
params = task_data.get('params', {})
task_id_loaded = task_data.get('id', 0)
max_id_in_file = max(max_id_in_file, task_id_loaded)
loaded_pil_images = {}
image_keys = ["image_start", "image_end", "image_refs"]
params['state'] = state # Add state back temporarily for consistency if needed by internal logic, but it's removed before saving
for key in image_keys:
image_filenames = params.get(key)
if image_filenames is None: continue
is_list = isinstance(image_filenames, list)
if not is_list: image_filenames = [image_filenames]
loaded_pils = []
for img_filename_in_zip in image_filenames:
if not isinstance(img_filename_in_zip, str): continue
img_load_path = os.path.join(tmpdir, img_filename_in_zip)
if not os.path.exists(img_load_path):
print(f"[load_queue_action] Image file not found during load: {img_load_path}")
continue
try:
pil_image = Image.open(img_load_path)
# Ensure the image data is loaded into memory before the temp dir is cleaned up
pil_image.load()
# Convert image right after loading
converted_image = convert_image(pil_image)
loaded_pils.append(converted_image)
pil_image.close() # Close the file handle
except Exception as img_e:
print(f"[load_queue_action] Error loading image {img_filename_in_zip}: {img_e}")
if loaded_pils:
params[key] = loaded_pils if is_list else loaded_pils[0]
loaded_pil_images[key] = params[key] # Store loaded PILs for preview generation
else: params.pop(key, None)
# Generate preview base64 strings
primary_preview_pil, secondary_preview_pil = None, None
start_prev_pil_list = loaded_pil_images.get("image_start")
end_prev_pil_list = loaded_pil_images.get("image_end")
ref_prev_pil_list = loaded_pil_images.get("image_refs")
# Extract first image for preview if available
if start_prev_pil_list:
primary_preview_pil = start_prev_pil_list[0] if isinstance(start_prev_pil_list, list) and start_prev_pil_list else start_prev_pil_list if not isinstance(start_prev_pil_list, list) else None
if end_prev_pil_list:
secondary_preview_pil = end_prev_pil_list[0] if isinstance(end_prev_pil_list, list) and end_prev_pil_list else end_prev_pil_list if not isinstance(end_prev_pil_list, list) else None
elif ref_prev_pil_list and isinstance(ref_prev_pil_list, list) and ref_prev_pil_list:
primary_preview_pil = ref_prev_pil_list[0]
# Generate base64 only if PIL image exists
start_b64 = [pil_to_base64_uri(primary_preview_pil, format="jpeg", quality=70)] if primary_preview_pil else None
end_b64 = [pil_to_base64_uri(secondary_preview_pil, format="jpeg", quality=70)] if secondary_preview_pil else None
# Get top-level image data (PIL objects) for runtime task
top_level_start_image = loaded_pil_images.get("image_start")
top_level_end_image = loaded_pil_images.get("image_end")
# Construct the runtime task dictionary
runtime_task = {
"id": task_id_loaded,
"params": params.copy(), # Use a copy of params
# Extract necessary params for top level if they exist
"repeats": params.get('repeat_generation', 1),
"length": params.get('video_length'),
"steps": params.get('num_inference_steps'),
"prompt": params.get('prompt'),
# Store the actual loaded PIL image data here
"start_image_data": top_level_start_image,
"end_image_data": top_level_end_image,
# Store base64 previews generated above
"start_image_data_base64": start_b64,
"end_image_data_base64": end_b64,
}
newly_loaded_queue.append(runtime_task)
print(f"[load_queue_action] Processed task {task_index+1}/{len(loaded_manifest)}, ID: {task_id_loaded}")
# --- State Update ---
with lock:
print("[load_queue_action] Acquiring lock to update state...")
gen["queue"] = newly_loaded_queue[:] # Replace the queue in the state
local_queue_copy_for_global_ref = gen["queue"][:] # Copy for global ref update
current_max_id_in_new_queue = max([t['id'] for t in newly_loaded_queue if 'id' in t] + [0]) # Safer max ID calculation
# Update global task ID only if the loaded max ID is higher
if current_max_id_in_new_queue > task_id:
print(f"[load_queue_action] Updating global task_id from {task_id} to {current_max_id_in_new_queue + 1}")
task_id = current_max_id_in_new_queue + 1 # Ensure next ID is unique
else:
print(f"[load_queue_action] Global task_id ({task_id}) is >= max in file ({current_max_id_in_new_queue}). Not changing task_id.")
gen["prompts_max"] = len(newly_loaded_queue)
print("[load_queue_action] State update complete. Releasing lock.")
# --- Global Reference Update ---
if local_queue_copy_for_global_ref is not None:
print("[load_queue_action] Updating global queue reference...")
update_global_queue_ref(local_queue_copy_for_global_ref)
else:
# This case should ideally not be reached if state update happens
print("[load_queue_action] Warning: Skipping global ref update as local copy is None.")
print(f"[load_queue_action] Queue load successful. Returning DataFrame update for {len(newly_loaded_queue)} tasks.")
# *** Return the DataFrame update object ***
return update_queue_data(newly_loaded_queue)
except (ValueError, zipfile.BadZipFile, FileNotFoundError, Exception) as e:
error_message = f"Error during queue load: {e}"
print(f"[load_queue_action] Caught error: {error_message}")
traceback.print_exc()
# Optionally show a Gradio warning/error to the user
gr.Warning(f"Failed to load queue: {error_message[:200]}") # Show truncated error
# *** Return the DataFrame update for the original queue ***
print("[load_queue_action] Load failed. Returning DataFrame update for original queue.")
return update_queue_data(original_queue)
finally:
# Clean up the uploaded file object if it exists and has a path
if filepath and hasattr(filepath, 'name') and filepath.name and os.path.exists(filepath.name):
try:
# Gradio often uses temp files, attempting removal is good practice
# os.remove(filepath.name)
# print(f"[load_queue_action] Cleaned up temporary upload file: {filepath.name}")
pass # Let Gradio manage its temp files unless specifically needed
except OSError as e:
# Ignore errors like "file not found" if already cleaned up
print(f"[load_queue_action] Info: Could not remove temp file {filepath.name}: {e}")
pass
def clear_queue_action(state):
gen = get_gen_info(state)
queue = gen.get("queue", [])
if not queue:
gr.Info("Queue is already empty.")
return update_queue_data([])
with lock:
queue.clear()
gen["prompts_max"] = 0
gr.Info("Queue cleared.")
return update_queue_data([])
def autosave_queue():
global global_queue_ref
if not global_queue_ref:
print("Autosave: Queue is empty, nothing to save.")
return
print(f"Autosaving queue ({len(global_queue_ref)} items) to {AUTOSAVE_FILENAME}...")
temp_state_for_save = {"gen": {"queue": global_queue_ref}}
zip_file_path = None
try:
def _save_queue_to_file(queue_to_save, output_filename):
if not queue_to_save: return None
with tempfile.TemporaryDirectory() as tmpdir:
queue_manifest = []
image_paths_in_zip = {}
for task_index, task in enumerate(queue_to_save):
if task is None or not isinstance(task, dict): continue
params_copy = task.get('params', {}).copy()
task_id_s = task.get('id', f"task_{task_index}")
image_keys = ["image_start", "image_end", "image_refs"]
for key in image_keys:
images_pil = params_copy.get(key)
if images_pil is None: continue
is_list = isinstance(images_pil, list)
if not is_list: images_pil = [images_pil]
image_filenames_for_json = []
for img_index, pil_image in enumerate(images_pil):
if not isinstance(pil_image, Image.Image): continue
img_id = id(pil_image)
if img_id in image_paths_in_zip:
image_filenames_for_json.append(image_paths_in_zip[img_id])
continue
img_filename_in_zip = f"task{task_id_s}_{key}_{img_index}.png"
img_save_path = os.path.join(tmpdir, img_filename_in_zip)
try:
pil_image.save(img_save_path, "PNG")
image_filenames_for_json.append(img_filename_in_zip)
image_paths_in_zip[img_id] = img_filename_in_zip
except Exception as e:
print(f"Autosave error saving image {img_filename_in_zip}: {e}")
if image_filenames_for_json:
params_copy[key] = image_filenames_for_json if is_list else image_filenames_for_json[0]
else:
params_copy.pop(key, None)
params_copy.pop('state', None)
params_copy.pop('start_image_data_base64', None)
params_copy.pop('end_image_data_base64', None)
manifest_entry = {
"id": task.get('id'), "params": params_copy,
}
queue_manifest.append(manifest_entry)
manifest_path = os.path.join(tmpdir, "queue.json")
with open(manifest_path, 'w', encoding='utf-8') as f: json.dump(queue_manifest, f, indent=4)
with zipfile.ZipFile(output_filename, 'w', zipfile.ZIP_DEFLATED) as zf:
zf.write(manifest_path, arcname="queue.json")
for saved_img_rel_path in image_paths_in_zip.values():
saved_img_abs_path = os.path.join(tmpdir, saved_img_rel_path)
if os.path.exists(saved_img_abs_path):
zf.write(saved_img_abs_path, arcname=saved_img_rel_path)
return output_filename
return None # Should not happen if queue has items
saved_path = _save_queue_to_file(global_queue_ref, AUTOSAVE_FILENAME)
if saved_path:
print(f"Queue autosaved successfully to {saved_path}")
else:
print("Autosave failed.")
except Exception as e:
print(f"Error during autosave: {e}")
traceback.print_exc()
def autoload_queue(state):
global task_id
# Initial check using the original state
try:
gen = get_gen_info(state) # Make sure initial state is a dict
original_queue = gen.get("queue", [])
except AttributeError:
print("[autoload_queue] Error: Initial state is not a dictionary. Cannot autoload.")
# Return default values indicating no load occurred and the state is unchanged
return gr.update(visible=False), False, state # Return an empty DF update
loaded_flag = False
dataframe_update = update_queue_data(original_queue) # Default update is the original queue
if not original_queue and Path(AUTOSAVE_FILENAME).is_file():
print(f"Autoloading queue from {AUTOSAVE_FILENAME}...")
class MockFile:
def __init__(self, name):
self.name = name
mock_filepath = MockFile(AUTOSAVE_FILENAME)
# Call load_queue_action, it modifies 'state' internally and returns a DataFrame update
dataframe_update = load_queue_action(mock_filepath, state)
# Now check the 'state' dictionary which should have been modified by load_queue_action
gen = get_gen_info(state) # Use the (potentially) modified state dictionary
loaded_queue_after_action = gen.get("queue", [])
if loaded_queue_after_action: # Check if the queue in the state is now populated
print(f"Autoload successful. Loaded {len(loaded_queue_after_action)} tasks into state.")
loaded_flag = True
# Global ref update was already done inside load_queue_action if successful
else:
print("Autoload attempted but queue in state remains empty (file might be empty or invalid).")
# Ensure state reflects empty queue if load failed but file existed
with lock:
gen["queue"] = []
gen["prompts_max"] = 0
update_global_queue_ref([])
dataframe_update = update_queue_data([]) # Ensure UI shows empty queue
else: # Handle cases where autoload shouldn't happen
if original_queue:
print("Autoload skipped: Queue is not empty.")
update_global_queue_ref(original_queue) # Ensure global ref matches current state
dataframe_update = update_queue_data(original_queue) # UI should show current queue
else:
print(f"Autoload skipped: {AUTOSAVE_FILENAME} not found.")
update_global_queue_ref([]) # Ensure global ref is empty
dataframe_update = update_queue_data([]) # UI should show empty queue
# Return the DataFrame update needed for the UI, the flag, and the final state dictionary
return dataframe_update, loaded_flag, state
def get_queue_table(queue):
@ -390,7 +838,7 @@ def get_queue_table(queue):
])
return data
def update_queue_data(queue):
update_global_queue_ref(queue)
data = get_queue_table(queue)
# if len(data) == 0:
@ -1993,6 +2441,7 @@ def process_tasks(state, progress=gr.Progress()):
yield status
queue[:] = [item for item in queue if item['id'] != task['id']]
update_global_queue_ref(queue)
gen["prompts_max"] = 0
gen["prompt"] = ""
@ -2716,7 +3165,7 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
wizard_variables = "\n".join(variables)
for _ in range( PROMPT_VARS_MAX - len(prompt_vars)):
prompt_vars.append(gr.Textbox(visible= False, min_width=80, show_label= False))
with gr.Column(not advanced_prompt) as prompt_column_wizard:
wizard_prompt = gr.Textbox(visible = not advanced_prompt, label="Prompts (each new line of prompt will generate a new video, # lines = comments)", value=default_wizard_prompt, lines=3)
wizard_prompt_activated_var = gr.Text(wizard_prompt_activated, visible= False)
@ -2902,7 +3351,7 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
queue_df = gr.DataFrame(
headers=["Qty","Prompt", "Length","Steps","", "", "", "", ""],
datatype=[ "str","markdown","str", "markdown", "markdown", "markdown", "str", "str", "str"],
column_widths= ["50","", "65","55", "60", "60", "30", "30", "35"],
column_widths= ["5%", None, "7%", "7%", "10%", "10%", "3%", "3%", "3%"],
interactive=False,
col_count=(9, "fixed"),
wrap=True,
@ -2911,6 +3360,72 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
visible= False,
elem_id="queue_df"
)
with gr.Row():
queue_zip_base64_output = gr.Text(visible=False)
save_queue_btn = gr.DownloadButton("Save Queue", size="sm")
load_queue_btn = gr.UploadButton("Load Queue", file_types=[".zip"], size="sm")
clear_queue_btn = gr.Button("Clear Queue", size="sm", variant="stop")
trigger_zip_download_js = """
(base64String) => {
if (!base64String) {
console.log("No base64 zip data received, skipping download.");
return;
}
try {
const byteCharacters = atob(base64String);
const byteNumbers = new Array(byteCharacters.length);
for (let i = 0; i < byteCharacters.length; i++) {
byteNumbers[i] = byteCharacters.charCodeAt(i);
}
const byteArray = new Uint8Array(byteNumbers);
const blob = new Blob([byteArray], { type: 'application/zip' });
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.style.display = 'none';
a.href = url;
a.download = 'queue.zip';
document.body.appendChild(a);
a.click();
window.URL.revokeObjectURL(url);
document.body.removeChild(a);
console.log("Zip download triggered.");
} catch (e) {
console.error("Error processing base64 data or triggering download:", e);
}
}
"""
save_queue_btn.click(
fn=save_queue_action,
inputs=[state],
outputs=[queue_zip_base64_output]
).then(
fn=None,
inputs=[queue_zip_base64_output],
outputs=None,
js=trigger_zip_download_js
)
load_queue_btn.upload(
fn=load_queue_action,
inputs=[load_queue_btn, state],
outputs=[queue_df]
).then(
fn=lambda s: gr.update(visible=bool(get_gen_info(s).get("queue",[]))),
inputs=[state],
outputs=[current_gen_column]
)
clear_queue_btn.click(
fn=clear_queue_action,
inputs=[state],
outputs=[queue_df]
).then(
fn=lambda: gr.update(visible=False),
inputs=None,
outputs=[current_gen_column]
)
extra_inputs = prompt_vars + [wizard_prompt, wizard_variables_var, wizard_prompt_activated_var, video_prompt_column, image_prompt_column,
prompt_column_advanced, prompt_column_wizard_vars, prompt_column_wizard, lset_name, advanced_row] # show_advanced presets_column,
@ -3014,7 +3529,16 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
outputs=[modal_container]
)
return loras_choices, lset_name, state
return (
loras_choices, lset_name, state, queue_df, current_gen_column,
gen_status, output, abort_btn, generate_btn, add_to_queue_btn,
gen_info,
prompt, wizard_prompt, wizard_prompt_activated_var, wizard_variables_var,
prompt_column_advanced, prompt_column_wizard, prompt_column_wizard_vars,
advanced_row, image_prompt_column, video_prompt_column,
*prompt_vars
)
def generate_download_tab(lset_name,loras_choices, state):
with gr.Row():
@ -3479,8 +4003,15 @@ def create_demo():
with gr.Row():
header = gr.Markdown(generate_header(transformer_filename, compile, attention_mode), visible= True)
with gr.Row():
loras_choices, lset_name, state = generate_video_tab(model_choice = model_choice, header = header)
(
loras_choices, lset_name, state, queue_df, current_gen_column,
gen_status, output, abort_btn, generate_btn, add_to_queue_btn,
gen_info,
prompt, wizard_prompt, wizard_prompt_activated_var, wizard_variables_var,
prompt_column_advanced, prompt_column_wizard, prompt_column_wizard_vars,
advanced_row, image_prompt_column, video_prompt_column,
*prompt_vars_outputs
) = generate_video_tab(model_choice=model_choice, header=header)
with gr.Tab("Informations"):
generate_info_tab()
if not args.lock_config:
@ -3491,9 +4022,47 @@ def create_demo():
with gr.Tab("About"):
generate_about_tab()
should_start_flag = gr.State(False)
def run_autoload_and_prepare_ui(current_state):
df_update, loaded_flag, modified_state = autoload_queue(current_state)
should_start_processing = loaded_flag
return df_update, gr.update(visible=loaded_flag), should_start_processing, modified_state
def start_processing_if_needed(should_start, current_state):
if not isinstance(current_state, dict) or 'gen' not in current_state:
yield "Error: Invalid state received before processing."
return
if should_start:
yield from process_tasks(current_state)
else:
yield "Autoload complete. Processing not started."
def finalize_generation_with_state(current_state):
if not isinstance(current_state, dict) or 'gen' not in current_state:
return gr.update(), gr.update(interactive=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False, value=""), current_state
gallery_update, abort_btn_update, gen_btn_update, add_queue_btn_update, current_gen_col_update, gen_info_update = finalize_generation(current_state)
return gallery_update, abort_btn_update, gen_btn_update, add_queue_btn_update, current_gen_col_update, gen_info_update, current_state
demo.load(
fn=run_autoload_and_prepare_ui,
inputs=[state],
outputs=[queue_df, current_gen_column, should_start_flag, state]
).then(
fn=start_processing_if_needed,
inputs=[should_start_flag, state],
outputs=[gen_status],
trigger_mode="once"
).then(
fn=finalize_generation_with_state,
inputs=[state],
outputs=[output, abort_btn, generate_btn, add_to_queue_btn, current_gen_column, gen_info, state],
trigger_mode="always_last"
)
return demo
if __name__ == "__main__":
atexit.register(autosave_queue)
# threading.Thread(target=runner, daemon=True).start()
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
server_port = int(args.server_port)