mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 22:26:36 +00:00
add queue saving/loading/clearing/autosaving/autoloading, fix empty prompt logic
This commit is contained in:
parent
fea835f21f
commit
a15751892e
593
wgp.py
593
wgp.py
@ -28,6 +28,12 @@ from wan.utils import prompt_parser
|
|||||||
import base64
|
import base64
|
||||||
import io
|
import io
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
|
import zipfile
|
||||||
|
import tempfile
|
||||||
|
import shutil
|
||||||
|
import atexit
|
||||||
|
global_queue_ref = []
|
||||||
|
AUTOSAVE_FILENAME = "queue.zip"
|
||||||
PROMPT_VARS_MAX = 10
|
PROMPT_VARS_MAX = 10
|
||||||
|
|
||||||
target_mmgp_version = "3.3.4"
|
target_mmgp_version = "3.3.4"
|
||||||
@ -98,10 +104,14 @@ def process_prompt_and_add_tasks(state, model_choice):
|
|||||||
inputs["state"] = state
|
inputs["state"] = state
|
||||||
inputs.pop("lset_name")
|
inputs.pop("lset_name")
|
||||||
if inputs == None:
|
if inputs == None:
|
||||||
return
|
gr.Warning("Internal state error: Could not retrieve inputs for the model.")
|
||||||
|
return update_queue_data(queue)
|
||||||
prompt = inputs["prompt"]
|
prompt = inputs["prompt"]
|
||||||
if len(prompt) ==0:
|
if len(prompt) ==0:
|
||||||
return
|
gr.Info("Prompt cannot be empty.")
|
||||||
|
gen = get_gen_info(state)
|
||||||
|
queue = gen.get("queue", [])
|
||||||
|
return get_queue_table(queue)
|
||||||
prompt, errors = prompt_parser.process_template(prompt)
|
prompt, errors = prompt_parser.process_template(prompt)
|
||||||
if len(errors) > 0:
|
if len(errors) > 0:
|
||||||
gr.Info("Error processing prompt template: " + errors)
|
gr.Info("Error processing prompt template: " + errors)
|
||||||
@ -111,7 +121,10 @@ def process_prompt_and_add_tasks(state, model_choice):
|
|||||||
prompts = prompt.replace("\r", "").split("\n")
|
prompts = prompt.replace("\r", "").split("\n")
|
||||||
prompts = [prompt.strip() for prompt in prompts if len(prompt.strip())>0 and not prompt.startswith("#")]
|
prompts = [prompt.strip() for prompt in prompts if len(prompt.strip())>0 and not prompt.startswith("#")]
|
||||||
if len(prompts) ==0:
|
if len(prompts) ==0:
|
||||||
return
|
gr.Info("Prompt cannot be empty.")
|
||||||
|
gen = get_gen_info(state)
|
||||||
|
queue = gen.get("queue", [])
|
||||||
|
return get_queue_table(queue)
|
||||||
|
|
||||||
resolution = inputs["resolution"]
|
resolution = inputs["resolution"]
|
||||||
width, height = resolution.split("x")
|
width, height = resolution.split("x")
|
||||||
@ -250,9 +263,6 @@ def process_prompt_and_add_tasks(state, model_choice):
|
|||||||
queue= gen.get("queue", [])
|
queue= gen.get("queue", [])
|
||||||
return update_queue_data(queue)
|
return update_queue_data(queue)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def add_video_task(**inputs):
|
def add_video_task(**inputs):
|
||||||
global task_id
|
global task_id
|
||||||
state = inputs["state"]
|
state = inputs["state"]
|
||||||
@ -327,6 +337,444 @@ def remove_task(queue, selected_indices):
|
|||||||
del queue[idx]
|
del queue[idx]
|
||||||
return update_queue_data(queue)
|
return update_queue_data(queue)
|
||||||
|
|
||||||
|
def update_global_queue_ref(queue):
|
||||||
|
global global_queue_ref
|
||||||
|
with lock:
|
||||||
|
global_queue_ref = queue[:]
|
||||||
|
|
||||||
|
def save_queue_action(state):
|
||||||
|
gen = get_gen_info(state)
|
||||||
|
queue = gen.get("queue", [])
|
||||||
|
|
||||||
|
if not queue or len(queue) <=1 : # Check if queue is empty or only has the placeholder
|
||||||
|
gr.Info("Queue is empty. Nothing to save.")
|
||||||
|
return None # Return None if nothing to save
|
||||||
|
|
||||||
|
# Use an in-memory buffer for the zip file
|
||||||
|
zip_buffer = io.BytesIO()
|
||||||
|
|
||||||
|
# Still use a temporary directory *only* for storing images before zipping
|
||||||
|
with tempfile.TemporaryDirectory() as tmpdir:
|
||||||
|
queue_manifest = []
|
||||||
|
image_paths_in_zip = {} # Tracks image PIL object ID -> filename in zip
|
||||||
|
|
||||||
|
for task_index, task in enumerate(queue):
|
||||||
|
# Skip the placeholder item if it exists
|
||||||
|
if task is None or not isinstance(task, dict) or task_index == 0: continue
|
||||||
|
|
||||||
|
params_copy = task.get('params', {}).copy()
|
||||||
|
task_id_s = task.get('id', f"task_{task_index}") # Use a different var name
|
||||||
|
|
||||||
|
image_keys = ["image_start", "image_end", "image_refs"]
|
||||||
|
for key in image_keys:
|
||||||
|
images_pil = params_copy.get(key)
|
||||||
|
if images_pil is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Ensure images_pil is always a list for processing
|
||||||
|
is_originally_list = isinstance(images_pil, list)
|
||||||
|
if not is_originally_list:
|
||||||
|
images_pil = [images_pil]
|
||||||
|
|
||||||
|
image_filenames_for_json = []
|
||||||
|
for img_index, pil_image in enumerate(images_pil):
|
||||||
|
# Ensure it's actually a PIL Image object before proceeding
|
||||||
|
if not isinstance(pil_image, Image.Image):
|
||||||
|
print(f"Warning: Expected PIL Image for key '{key}' in task {task_id_s}, got {type(pil_image)}. Skipping image.")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Use object ID to check if this specific image instance is already saved
|
||||||
|
img_id = id(pil_image)
|
||||||
|
if img_id in image_paths_in_zip:
|
||||||
|
# If already saved, just add its filename to the list
|
||||||
|
image_filenames_for_json.append(image_paths_in_zip[img_id])
|
||||||
|
continue # Move to the next image in the list
|
||||||
|
|
||||||
|
# Image not saved yet, create filename and save path
|
||||||
|
img_filename_in_zip = f"task{task_id_s}_{key}_{img_index}.png"
|
||||||
|
img_save_path = os.path.join(tmpdir, img_filename_in_zip)
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Save the image to the temporary directory
|
||||||
|
pil_image.save(img_save_path, "PNG")
|
||||||
|
image_filenames_for_json.append(img_filename_in_zip)
|
||||||
|
# Store the mapping from image ID to its filename in the zip
|
||||||
|
image_paths_in_zip[img_id] = img_filename_in_zip
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error saving image {img_filename_in_zip} for task {task_id_s}: {e}")
|
||||||
|
# Optionally decide if you want to continue or fail here
|
||||||
|
|
||||||
|
# Update the params_copy with the list of filenames (or single filename)
|
||||||
|
if image_filenames_for_json:
|
||||||
|
params_copy[key] = image_filenames_for_json if is_originally_list else image_filenames_for_json[0]
|
||||||
|
else:
|
||||||
|
# If no images were successfully processed for this key, remove it
|
||||||
|
params_copy.pop(key, None)
|
||||||
|
|
||||||
|
|
||||||
|
# Clean up parameters before adding to manifest
|
||||||
|
params_copy.pop('state', None)
|
||||||
|
params_copy.pop('start_image_data_base64', None) # Don't need base64 in saved queue
|
||||||
|
params_copy.pop('end_image_data_base64', None)
|
||||||
|
# Also remove the actual PIL data if it somehow remained
|
||||||
|
params_copy.pop('start_image_data', None)
|
||||||
|
params_copy.pop('end_image_data', None)
|
||||||
|
|
||||||
|
manifest_entry = {
|
||||||
|
"id": task.get('id'),
|
||||||
|
"params": params_copy,
|
||||||
|
# Keep other necessary top-level task info if needed, like repeats etc.
|
||||||
|
# Example: "repeats": task.get('repeats', 1)
|
||||||
|
}
|
||||||
|
queue_manifest.append(manifest_entry)
|
||||||
|
|
||||||
|
# --- Create queue.json content ---
|
||||||
|
manifest_path = os.path.join(tmpdir, "queue.json")
|
||||||
|
try:
|
||||||
|
with open(manifest_path, 'w', encoding='utf-8') as f:
|
||||||
|
# Dump only the relevant manifest data
|
||||||
|
json.dump(queue_manifest, f, indent=4)
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error writing queue.json: {e}")
|
||||||
|
gr.Warning("Failed to create queue manifest.")
|
||||||
|
return None # Return None on failure
|
||||||
|
|
||||||
|
# --- Create the zip file in memory ---
|
||||||
|
try:
|
||||||
|
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zf:
|
||||||
|
# Add queue.json
|
||||||
|
zf.write(manifest_path, arcname="queue.json")
|
||||||
|
|
||||||
|
# Add all unique images that were saved to the temp dir
|
||||||
|
for saved_img_rel_path in image_paths_in_zip.values():
|
||||||
|
saved_img_abs_path = os.path.join(tmpdir, saved_img_rel_path)
|
||||||
|
if os.path.exists(saved_img_abs_path):
|
||||||
|
zf.write(saved_img_abs_path, arcname=saved_img_rel_path)
|
||||||
|
else:
|
||||||
|
# This shouldn't happen if saving was successful, but good to check
|
||||||
|
print(f"Warning: Image file {saved_img_rel_path} not found during zipping.")
|
||||||
|
|
||||||
|
# --- Prepare for return ---
|
||||||
|
# Move buffer position to the beginning
|
||||||
|
zip_buffer.seek(0)
|
||||||
|
# Read the binary content
|
||||||
|
zip_binary_content = zip_buffer.getvalue()
|
||||||
|
# Encode as base64 string
|
||||||
|
zip_base64 = base64.b64encode(zip_binary_content).decode('utf-8')
|
||||||
|
print(f"Queue successfully prepared as base64 string ({len(zip_base64)} chars).")
|
||||||
|
return zip_base64
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error creating zip file in memory: {e}")
|
||||||
|
gr.Warning("Failed to create zip data for download.")
|
||||||
|
return None # Return None on failure
|
||||||
|
finally:
|
||||||
|
zip_buffer.close()
|
||||||
|
|
||||||
|
def load_queue_action(filepath, state):
|
||||||
|
global task_id
|
||||||
|
gen = get_gen_info(state)
|
||||||
|
original_queue = gen.get("queue", []) # Store original queue for error case
|
||||||
|
|
||||||
|
if not filepath or not hasattr(filepath, 'name') or not Path(filepath.name).is_file():
|
||||||
|
print("[load_queue_action] Warning: No valid file selected or file not found.")
|
||||||
|
# Return the current state of the DataFrame
|
||||||
|
return update_queue_data(original_queue)
|
||||||
|
|
||||||
|
newly_loaded_queue = []
|
||||||
|
max_id_in_file = 0
|
||||||
|
error_message = ""
|
||||||
|
local_queue_copy_for_global_ref = None
|
||||||
|
|
||||||
|
try:
|
||||||
|
print(f"[load_queue_action] Attempting to load queue from: {filepath.name}")
|
||||||
|
with tempfile.TemporaryDirectory() as tmpdir:
|
||||||
|
with zipfile.ZipFile(filepath.name, 'r') as zf:
|
||||||
|
if "queue.json" not in zf.namelist(): raise ValueError("queue.json not found in zip file")
|
||||||
|
print(f"[load_queue_action] Extracting {filepath.name} to {tmpdir}")
|
||||||
|
zf.extractall(tmpdir)
|
||||||
|
print(f"[load_queue_action] Extraction complete.")
|
||||||
|
|
||||||
|
manifest_path = os.path.join(tmpdir, "queue.json")
|
||||||
|
print(f"[load_queue_action] Reading manifest: {manifest_path}")
|
||||||
|
with open(manifest_path, 'r', encoding='utf-8') as f:
|
||||||
|
loaded_manifest = json.load(f)
|
||||||
|
print(f"[load_queue_action] Manifest loaded. Processing {len(loaded_manifest)} tasks.")
|
||||||
|
|
||||||
|
for task_index, task_data in enumerate(loaded_manifest):
|
||||||
|
# (Keep the existing task processing logic here...)
|
||||||
|
if task_data is None or not isinstance(task_data, dict):
|
||||||
|
print(f"[load_queue_action] Skipping invalid task data at index {task_index}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
params = task_data.get('params', {})
|
||||||
|
task_id_loaded = task_data.get('id', 0)
|
||||||
|
max_id_in_file = max(max_id_in_file, task_id_loaded)
|
||||||
|
loaded_pil_images = {}
|
||||||
|
image_keys = ["image_start", "image_end", "image_refs"]
|
||||||
|
params['state'] = state # Add state back temporarily for consistency if needed by internal logic, but it's removed before saving
|
||||||
|
|
||||||
|
for key in image_keys:
|
||||||
|
image_filenames = params.get(key)
|
||||||
|
if image_filenames is None: continue
|
||||||
|
is_list = isinstance(image_filenames, list)
|
||||||
|
if not is_list: image_filenames = [image_filenames]
|
||||||
|
loaded_pils = []
|
||||||
|
for img_filename_in_zip in image_filenames:
|
||||||
|
if not isinstance(img_filename_in_zip, str): continue
|
||||||
|
img_load_path = os.path.join(tmpdir, img_filename_in_zip)
|
||||||
|
if not os.path.exists(img_load_path):
|
||||||
|
print(f"[load_queue_action] Image file not found during load: {img_load_path}")
|
||||||
|
continue
|
||||||
|
try:
|
||||||
|
pil_image = Image.open(img_load_path)
|
||||||
|
# Ensure the image data is loaded into memory before the temp dir is cleaned up
|
||||||
|
pil_image.load()
|
||||||
|
# Convert image right after loading
|
||||||
|
converted_image = convert_image(pil_image)
|
||||||
|
loaded_pils.append(converted_image)
|
||||||
|
pil_image.close() # Close the file handle
|
||||||
|
except Exception as img_e:
|
||||||
|
print(f"[load_queue_action] Error loading image {img_filename_in_zip}: {img_e}")
|
||||||
|
if loaded_pils:
|
||||||
|
params[key] = loaded_pils if is_list else loaded_pils[0]
|
||||||
|
loaded_pil_images[key] = params[key] # Store loaded PILs for preview generation
|
||||||
|
else: params.pop(key, None)
|
||||||
|
|
||||||
|
# Generate preview base64 strings
|
||||||
|
primary_preview_pil, secondary_preview_pil = None, None
|
||||||
|
start_prev_pil_list = loaded_pil_images.get("image_start")
|
||||||
|
end_prev_pil_list = loaded_pil_images.get("image_end")
|
||||||
|
ref_prev_pil_list = loaded_pil_images.get("image_refs")
|
||||||
|
|
||||||
|
# Extract first image for preview if available
|
||||||
|
if start_prev_pil_list:
|
||||||
|
primary_preview_pil = start_prev_pil_list[0] if isinstance(start_prev_pil_list, list) and start_prev_pil_list else start_prev_pil_list if not isinstance(start_prev_pil_list, list) else None
|
||||||
|
if end_prev_pil_list:
|
||||||
|
secondary_preview_pil = end_prev_pil_list[0] if isinstance(end_prev_pil_list, list) and end_prev_pil_list else end_prev_pil_list if not isinstance(end_prev_pil_list, list) else None
|
||||||
|
elif ref_prev_pil_list and isinstance(ref_prev_pil_list, list) and ref_prev_pil_list:
|
||||||
|
primary_preview_pil = ref_prev_pil_list[0]
|
||||||
|
|
||||||
|
# Generate base64 only if PIL image exists
|
||||||
|
start_b64 = [pil_to_base64_uri(primary_preview_pil, format="jpeg", quality=70)] if primary_preview_pil else None
|
||||||
|
end_b64 = [pil_to_base64_uri(secondary_preview_pil, format="jpeg", quality=70)] if secondary_preview_pil else None
|
||||||
|
|
||||||
|
# Get top-level image data (PIL objects) for runtime task
|
||||||
|
top_level_start_image = loaded_pil_images.get("image_start")
|
||||||
|
top_level_end_image = loaded_pil_images.get("image_end")
|
||||||
|
|
||||||
|
# Construct the runtime task dictionary
|
||||||
|
runtime_task = {
|
||||||
|
"id": task_id_loaded,
|
||||||
|
"params": params.copy(), # Use a copy of params
|
||||||
|
# Extract necessary params for top level if they exist
|
||||||
|
"repeats": params.get('repeat_generation', 1),
|
||||||
|
"length": params.get('video_length'),
|
||||||
|
"steps": params.get('num_inference_steps'),
|
||||||
|
"prompt": params.get('prompt'),
|
||||||
|
# Store the actual loaded PIL image data here
|
||||||
|
"start_image_data": top_level_start_image,
|
||||||
|
"end_image_data": top_level_end_image,
|
||||||
|
# Store base64 previews generated above
|
||||||
|
"start_image_data_base64": start_b64,
|
||||||
|
"end_image_data_base64": end_b64,
|
||||||
|
}
|
||||||
|
newly_loaded_queue.append(runtime_task)
|
||||||
|
print(f"[load_queue_action] Processed task {task_index+1}/{len(loaded_manifest)}, ID: {task_id_loaded}")
|
||||||
|
|
||||||
|
# --- State Update ---
|
||||||
|
with lock:
|
||||||
|
print("[load_queue_action] Acquiring lock to update state...")
|
||||||
|
gen["queue"] = newly_loaded_queue[:] # Replace the queue in the state
|
||||||
|
local_queue_copy_for_global_ref = gen["queue"][:] # Copy for global ref update
|
||||||
|
current_max_id_in_new_queue = max([t['id'] for t in newly_loaded_queue if 'id' in t] + [0]) # Safer max ID calculation
|
||||||
|
|
||||||
|
# Update global task ID only if the loaded max ID is higher
|
||||||
|
if current_max_id_in_new_queue > task_id:
|
||||||
|
print(f"[load_queue_action] Updating global task_id from {task_id} to {current_max_id_in_new_queue + 1}")
|
||||||
|
task_id = current_max_id_in_new_queue + 1 # Ensure next ID is unique
|
||||||
|
else:
|
||||||
|
print(f"[load_queue_action] Global task_id ({task_id}) is >= max in file ({current_max_id_in_new_queue}). Not changing task_id.")
|
||||||
|
|
||||||
|
gen["prompts_max"] = len(newly_loaded_queue)
|
||||||
|
print("[load_queue_action] State update complete. Releasing lock.")
|
||||||
|
|
||||||
|
# --- Global Reference Update ---
|
||||||
|
if local_queue_copy_for_global_ref is not None:
|
||||||
|
print("[load_queue_action] Updating global queue reference...")
|
||||||
|
update_global_queue_ref(local_queue_copy_for_global_ref)
|
||||||
|
else:
|
||||||
|
# This case should ideally not be reached if state update happens
|
||||||
|
print("[load_queue_action] Warning: Skipping global ref update as local copy is None.")
|
||||||
|
|
||||||
|
print(f"[load_queue_action] Queue load successful. Returning DataFrame update for {len(newly_loaded_queue)} tasks.")
|
||||||
|
# *** Return the DataFrame update object ***
|
||||||
|
return update_queue_data(newly_loaded_queue)
|
||||||
|
|
||||||
|
except (ValueError, zipfile.BadZipFile, FileNotFoundError, Exception) as e:
|
||||||
|
error_message = f"Error during queue load: {e}"
|
||||||
|
print(f"[load_queue_action] Caught error: {error_message}")
|
||||||
|
traceback.print_exc()
|
||||||
|
# Optionally show a Gradio warning/error to the user
|
||||||
|
gr.Warning(f"Failed to load queue: {error_message[:200]}") # Show truncated error
|
||||||
|
|
||||||
|
# *** Return the DataFrame update for the original queue ***
|
||||||
|
print("[load_queue_action] Load failed. Returning DataFrame update for original queue.")
|
||||||
|
return update_queue_data(original_queue)
|
||||||
|
finally:
|
||||||
|
# Clean up the uploaded file object if it exists and has a path
|
||||||
|
if filepath and hasattr(filepath, 'name') and filepath.name and os.path.exists(filepath.name):
|
||||||
|
try:
|
||||||
|
# Gradio often uses temp files, attempting removal is good practice
|
||||||
|
# os.remove(filepath.name)
|
||||||
|
# print(f"[load_queue_action] Cleaned up temporary upload file: {filepath.name}")
|
||||||
|
pass # Let Gradio manage its temp files unless specifically needed
|
||||||
|
except OSError as e:
|
||||||
|
# Ignore errors like "file not found" if already cleaned up
|
||||||
|
print(f"[load_queue_action] Info: Could not remove temp file {filepath.name}: {e}")
|
||||||
|
pass
|
||||||
|
|
||||||
|
def clear_queue_action(state):
|
||||||
|
gen = get_gen_info(state)
|
||||||
|
queue = gen.get("queue", [])
|
||||||
|
if not queue:
|
||||||
|
gr.Info("Queue is already empty.")
|
||||||
|
return update_queue_data([])
|
||||||
|
|
||||||
|
with lock:
|
||||||
|
queue.clear()
|
||||||
|
gen["prompts_max"] = 0
|
||||||
|
|
||||||
|
gr.Info("Queue cleared.")
|
||||||
|
return update_queue_data([])
|
||||||
|
|
||||||
|
def autosave_queue():
|
||||||
|
global global_queue_ref
|
||||||
|
if not global_queue_ref:
|
||||||
|
print("Autosave: Queue is empty, nothing to save.")
|
||||||
|
return
|
||||||
|
|
||||||
|
print(f"Autosaving queue ({len(global_queue_ref)} items) to {AUTOSAVE_FILENAME}...")
|
||||||
|
temp_state_for_save = {"gen": {"queue": global_queue_ref}}
|
||||||
|
zip_file_path = None
|
||||||
|
try:
|
||||||
|
|
||||||
|
def _save_queue_to_file(queue_to_save, output_filename):
|
||||||
|
if not queue_to_save: return None
|
||||||
|
with tempfile.TemporaryDirectory() as tmpdir:
|
||||||
|
queue_manifest = []
|
||||||
|
image_paths_in_zip = {}
|
||||||
|
for task_index, task in enumerate(queue_to_save):
|
||||||
|
if task is None or not isinstance(task, dict): continue
|
||||||
|
params_copy = task.get('params', {}).copy()
|
||||||
|
task_id_s = task.get('id', f"task_{task_index}")
|
||||||
|
image_keys = ["image_start", "image_end", "image_refs"]
|
||||||
|
for key in image_keys:
|
||||||
|
images_pil = params_copy.get(key)
|
||||||
|
if images_pil is None: continue
|
||||||
|
is_list = isinstance(images_pil, list)
|
||||||
|
if not is_list: images_pil = [images_pil]
|
||||||
|
image_filenames_for_json = []
|
||||||
|
for img_index, pil_image in enumerate(images_pil):
|
||||||
|
if not isinstance(pil_image, Image.Image): continue
|
||||||
|
img_id = id(pil_image)
|
||||||
|
if img_id in image_paths_in_zip:
|
||||||
|
image_filenames_for_json.append(image_paths_in_zip[img_id])
|
||||||
|
continue
|
||||||
|
img_filename_in_zip = f"task{task_id_s}_{key}_{img_index}.png"
|
||||||
|
img_save_path = os.path.join(tmpdir, img_filename_in_zip)
|
||||||
|
try:
|
||||||
|
pil_image.save(img_save_path, "PNG")
|
||||||
|
image_filenames_for_json.append(img_filename_in_zip)
|
||||||
|
image_paths_in_zip[img_id] = img_filename_in_zip
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Autosave error saving image {img_filename_in_zip}: {e}")
|
||||||
|
if image_filenames_for_json:
|
||||||
|
params_copy[key] = image_filenames_for_json if is_list else image_filenames_for_json[0]
|
||||||
|
else:
|
||||||
|
params_copy.pop(key, None)
|
||||||
|
params_copy.pop('state', None)
|
||||||
|
params_copy.pop('start_image_data_base64', None)
|
||||||
|
params_copy.pop('end_image_data_base64', None)
|
||||||
|
manifest_entry = {
|
||||||
|
"id": task.get('id'), "params": params_copy,
|
||||||
|
}
|
||||||
|
queue_manifest.append(manifest_entry)
|
||||||
|
manifest_path = os.path.join(tmpdir, "queue.json")
|
||||||
|
with open(manifest_path, 'w', encoding='utf-8') as f: json.dump(queue_manifest, f, indent=4)
|
||||||
|
with zipfile.ZipFile(output_filename, 'w', zipfile.ZIP_DEFLATED) as zf:
|
||||||
|
zf.write(manifest_path, arcname="queue.json")
|
||||||
|
for saved_img_rel_path in image_paths_in_zip.values():
|
||||||
|
saved_img_abs_path = os.path.join(tmpdir, saved_img_rel_path)
|
||||||
|
if os.path.exists(saved_img_abs_path):
|
||||||
|
zf.write(saved_img_abs_path, arcname=saved_img_rel_path)
|
||||||
|
return output_filename
|
||||||
|
return None # Should not happen if queue has items
|
||||||
|
|
||||||
|
saved_path = _save_queue_to_file(global_queue_ref, AUTOSAVE_FILENAME)
|
||||||
|
|
||||||
|
if saved_path:
|
||||||
|
print(f"Queue autosaved successfully to {saved_path}")
|
||||||
|
else:
|
||||||
|
print("Autosave failed.")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error during autosave: {e}")
|
||||||
|
traceback.print_exc()
|
||||||
|
|
||||||
|
|
||||||
|
def autoload_queue(state):
|
||||||
|
global task_id
|
||||||
|
# Initial check using the original state
|
||||||
|
try:
|
||||||
|
gen = get_gen_info(state) # Make sure initial state is a dict
|
||||||
|
original_queue = gen.get("queue", [])
|
||||||
|
except AttributeError:
|
||||||
|
print("[autoload_queue] Error: Initial state is not a dictionary. Cannot autoload.")
|
||||||
|
# Return default values indicating no load occurred and the state is unchanged
|
||||||
|
return gr.update(visible=False), False, state # Return an empty DF update
|
||||||
|
|
||||||
|
loaded_flag = False
|
||||||
|
dataframe_update = update_queue_data(original_queue) # Default update is the original queue
|
||||||
|
|
||||||
|
if not original_queue and Path(AUTOSAVE_FILENAME).is_file():
|
||||||
|
print(f"Autoloading queue from {AUTOSAVE_FILENAME}...")
|
||||||
|
class MockFile:
|
||||||
|
def __init__(self, name):
|
||||||
|
self.name = name
|
||||||
|
mock_filepath = MockFile(AUTOSAVE_FILENAME)
|
||||||
|
|
||||||
|
# Call load_queue_action, it modifies 'state' internally and returns a DataFrame update
|
||||||
|
dataframe_update = load_queue_action(mock_filepath, state)
|
||||||
|
|
||||||
|
# Now check the 'state' dictionary which should have been modified by load_queue_action
|
||||||
|
gen = get_gen_info(state) # Use the (potentially) modified state dictionary
|
||||||
|
loaded_queue_after_action = gen.get("queue", [])
|
||||||
|
|
||||||
|
if loaded_queue_after_action: # Check if the queue in the state is now populated
|
||||||
|
print(f"Autoload successful. Loaded {len(loaded_queue_after_action)} tasks into state.")
|
||||||
|
loaded_flag = True
|
||||||
|
# Global ref update was already done inside load_queue_action if successful
|
||||||
|
else:
|
||||||
|
print("Autoload attempted but queue in state remains empty (file might be empty or invalid).")
|
||||||
|
# Ensure state reflects empty queue if load failed but file existed
|
||||||
|
with lock:
|
||||||
|
gen["queue"] = []
|
||||||
|
gen["prompts_max"] = 0
|
||||||
|
update_global_queue_ref([])
|
||||||
|
dataframe_update = update_queue_data([]) # Ensure UI shows empty queue
|
||||||
|
|
||||||
|
else: # Handle cases where autoload shouldn't happen
|
||||||
|
if original_queue:
|
||||||
|
print("Autoload skipped: Queue is not empty.")
|
||||||
|
update_global_queue_ref(original_queue) # Ensure global ref matches current state
|
||||||
|
dataframe_update = update_queue_data(original_queue) # UI should show current queue
|
||||||
|
else:
|
||||||
|
print(f"Autoload skipped: {AUTOSAVE_FILENAME} not found.")
|
||||||
|
update_global_queue_ref([]) # Ensure global ref is empty
|
||||||
|
dataframe_update = update_queue_data([]) # UI should show empty queue
|
||||||
|
|
||||||
|
# Return the DataFrame update needed for the UI, the flag, and the final state dictionary
|
||||||
|
return dataframe_update, loaded_flag, state
|
||||||
|
|
||||||
|
|
||||||
def get_queue_table(queue):
|
def get_queue_table(queue):
|
||||||
@ -390,7 +838,7 @@ def get_queue_table(queue):
|
|||||||
])
|
])
|
||||||
return data
|
return data
|
||||||
def update_queue_data(queue):
|
def update_queue_data(queue):
|
||||||
|
update_global_queue_ref(queue)
|
||||||
data = get_queue_table(queue)
|
data = get_queue_table(queue)
|
||||||
|
|
||||||
# if len(data) == 0:
|
# if len(data) == 0:
|
||||||
@ -1993,6 +2441,7 @@ def process_tasks(state, progress=gr.Progress()):
|
|||||||
yield status
|
yield status
|
||||||
|
|
||||||
queue[:] = [item for item in queue if item['id'] != task['id']]
|
queue[:] = [item for item in queue if item['id'] != task['id']]
|
||||||
|
update_global_queue_ref(queue)
|
||||||
|
|
||||||
gen["prompts_max"] = 0
|
gen["prompts_max"] = 0
|
||||||
gen["prompt"] = ""
|
gen["prompt"] = ""
|
||||||
@ -2716,7 +3165,7 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
|
|||||||
wizard_variables = "\n".join(variables)
|
wizard_variables = "\n".join(variables)
|
||||||
for _ in range( PROMPT_VARS_MAX - len(prompt_vars)):
|
for _ in range( PROMPT_VARS_MAX - len(prompt_vars)):
|
||||||
prompt_vars.append(gr.Textbox(visible= False, min_width=80, show_label= False))
|
prompt_vars.append(gr.Textbox(visible= False, min_width=80, show_label= False))
|
||||||
|
|
||||||
with gr.Column(not advanced_prompt) as prompt_column_wizard:
|
with gr.Column(not advanced_prompt) as prompt_column_wizard:
|
||||||
wizard_prompt = gr.Textbox(visible = not advanced_prompt, label="Prompts (each new line of prompt will generate a new video, # lines = comments)", value=default_wizard_prompt, lines=3)
|
wizard_prompt = gr.Textbox(visible = not advanced_prompt, label="Prompts (each new line of prompt will generate a new video, # lines = comments)", value=default_wizard_prompt, lines=3)
|
||||||
wizard_prompt_activated_var = gr.Text(wizard_prompt_activated, visible= False)
|
wizard_prompt_activated_var = gr.Text(wizard_prompt_activated, visible= False)
|
||||||
@ -2902,7 +3351,7 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
|
|||||||
queue_df = gr.DataFrame(
|
queue_df = gr.DataFrame(
|
||||||
headers=["Qty","Prompt", "Length","Steps","", "", "", "", ""],
|
headers=["Qty","Prompt", "Length","Steps","", "", "", "", ""],
|
||||||
datatype=[ "str","markdown","str", "markdown", "markdown", "markdown", "str", "str", "str"],
|
datatype=[ "str","markdown","str", "markdown", "markdown", "markdown", "str", "str", "str"],
|
||||||
column_widths= ["50","", "65","55", "60", "60", "30", "30", "35"],
|
column_widths= ["5%", None, "7%", "7%", "10%", "10%", "3%", "3%", "3%"],
|
||||||
interactive=False,
|
interactive=False,
|
||||||
col_count=(9, "fixed"),
|
col_count=(9, "fixed"),
|
||||||
wrap=True,
|
wrap=True,
|
||||||
@ -2911,6 +3360,72 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
|
|||||||
visible= False,
|
visible= False,
|
||||||
elem_id="queue_df"
|
elem_id="queue_df"
|
||||||
)
|
)
|
||||||
|
with gr.Row():
|
||||||
|
queue_zip_base64_output = gr.Text(visible=False)
|
||||||
|
save_queue_btn = gr.DownloadButton("Save Queue", size="sm")
|
||||||
|
load_queue_btn = gr.UploadButton("Load Queue", file_types=[".zip"], size="sm")
|
||||||
|
clear_queue_btn = gr.Button("Clear Queue", size="sm", variant="stop")
|
||||||
|
trigger_zip_download_js = """
|
||||||
|
(base64String) => {
|
||||||
|
if (!base64String) {
|
||||||
|
console.log("No base64 zip data received, skipping download.");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
try {
|
||||||
|
const byteCharacters = atob(base64String);
|
||||||
|
const byteNumbers = new Array(byteCharacters.length);
|
||||||
|
for (let i = 0; i < byteCharacters.length; i++) {
|
||||||
|
byteNumbers[i] = byteCharacters.charCodeAt(i);
|
||||||
|
}
|
||||||
|
const byteArray = new Uint8Array(byteNumbers);
|
||||||
|
const blob = new Blob([byteArray], { type: 'application/zip' });
|
||||||
|
|
||||||
|
const url = URL.createObjectURL(blob);
|
||||||
|
const a = document.createElement('a');
|
||||||
|
a.style.display = 'none';
|
||||||
|
a.href = url;
|
||||||
|
a.download = 'queue.zip';
|
||||||
|
document.body.appendChild(a);
|
||||||
|
a.click();
|
||||||
|
|
||||||
|
window.URL.revokeObjectURL(url);
|
||||||
|
document.body.removeChild(a);
|
||||||
|
console.log("Zip download triggered.");
|
||||||
|
} catch (e) {
|
||||||
|
console.error("Error processing base64 data or triggering download:", e);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
"""
|
||||||
|
save_queue_btn.click(
|
||||||
|
fn=save_queue_action,
|
||||||
|
inputs=[state],
|
||||||
|
outputs=[queue_zip_base64_output]
|
||||||
|
).then(
|
||||||
|
fn=None,
|
||||||
|
inputs=[queue_zip_base64_output],
|
||||||
|
outputs=None,
|
||||||
|
js=trigger_zip_download_js
|
||||||
|
)
|
||||||
|
|
||||||
|
load_queue_btn.upload(
|
||||||
|
fn=load_queue_action,
|
||||||
|
inputs=[load_queue_btn, state],
|
||||||
|
outputs=[queue_df]
|
||||||
|
).then(
|
||||||
|
fn=lambda s: gr.update(visible=bool(get_gen_info(s).get("queue",[]))),
|
||||||
|
inputs=[state],
|
||||||
|
outputs=[current_gen_column]
|
||||||
|
)
|
||||||
|
|
||||||
|
clear_queue_btn.click(
|
||||||
|
fn=clear_queue_action,
|
||||||
|
inputs=[state],
|
||||||
|
outputs=[queue_df]
|
||||||
|
).then(
|
||||||
|
fn=lambda: gr.update(visible=False),
|
||||||
|
inputs=None,
|
||||||
|
outputs=[current_gen_column]
|
||||||
|
)
|
||||||
|
|
||||||
extra_inputs = prompt_vars + [wizard_prompt, wizard_variables_var, wizard_prompt_activated_var, video_prompt_column, image_prompt_column,
|
extra_inputs = prompt_vars + [wizard_prompt, wizard_variables_var, wizard_prompt_activated_var, video_prompt_column, image_prompt_column,
|
||||||
prompt_column_advanced, prompt_column_wizard_vars, prompt_column_wizard, lset_name, advanced_row] # show_advanced presets_column,
|
prompt_column_advanced, prompt_column_wizard_vars, prompt_column_wizard, lset_name, advanced_row] # show_advanced presets_column,
|
||||||
@ -3014,7 +3529,16 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
|
|||||||
outputs=[modal_container]
|
outputs=[modal_container]
|
||||||
)
|
)
|
||||||
|
|
||||||
return loras_choices, lset_name, state
|
return (
|
||||||
|
loras_choices, lset_name, state, queue_df, current_gen_column,
|
||||||
|
gen_status, output, abort_btn, generate_btn, add_to_queue_btn,
|
||||||
|
gen_info,
|
||||||
|
prompt, wizard_prompt, wizard_prompt_activated_var, wizard_variables_var,
|
||||||
|
prompt_column_advanced, prompt_column_wizard, prompt_column_wizard_vars,
|
||||||
|
advanced_row, image_prompt_column, video_prompt_column,
|
||||||
|
*prompt_vars
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def generate_download_tab(lset_name,loras_choices, state):
|
def generate_download_tab(lset_name,loras_choices, state):
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
@ -3479,8 +4003,15 @@ def create_demo():
|
|||||||
with gr.Row():
|
with gr.Row():
|
||||||
header = gr.Markdown(generate_header(transformer_filename, compile, attention_mode), visible= True)
|
header = gr.Markdown(generate_header(transformer_filename, compile, attention_mode), visible= True)
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
|
(
|
||||||
loras_choices, lset_name, state = generate_video_tab(model_choice = model_choice, header = header)
|
loras_choices, lset_name, state, queue_df, current_gen_column,
|
||||||
|
gen_status, output, abort_btn, generate_btn, add_to_queue_btn,
|
||||||
|
gen_info,
|
||||||
|
prompt, wizard_prompt, wizard_prompt_activated_var, wizard_variables_var,
|
||||||
|
prompt_column_advanced, prompt_column_wizard, prompt_column_wizard_vars,
|
||||||
|
advanced_row, image_prompt_column, video_prompt_column,
|
||||||
|
*prompt_vars_outputs
|
||||||
|
) = generate_video_tab(model_choice=model_choice, header=header)
|
||||||
with gr.Tab("Informations"):
|
with gr.Tab("Informations"):
|
||||||
generate_info_tab()
|
generate_info_tab()
|
||||||
if not args.lock_config:
|
if not args.lock_config:
|
||||||
@ -3491,9 +4022,47 @@ def create_demo():
|
|||||||
with gr.Tab("About"):
|
with gr.Tab("About"):
|
||||||
generate_about_tab()
|
generate_about_tab()
|
||||||
|
|
||||||
|
should_start_flag = gr.State(False)
|
||||||
|
def run_autoload_and_prepare_ui(current_state):
|
||||||
|
df_update, loaded_flag, modified_state = autoload_queue(current_state)
|
||||||
|
should_start_processing = loaded_flag
|
||||||
|
return df_update, gr.update(visible=loaded_flag), should_start_processing, modified_state
|
||||||
|
|
||||||
|
def start_processing_if_needed(should_start, current_state):
|
||||||
|
if not isinstance(current_state, dict) or 'gen' not in current_state:
|
||||||
|
yield "Error: Invalid state received before processing."
|
||||||
|
return
|
||||||
|
if should_start:
|
||||||
|
yield from process_tasks(current_state)
|
||||||
|
else:
|
||||||
|
yield "Autoload complete. Processing not started."
|
||||||
|
|
||||||
|
def finalize_generation_with_state(current_state):
|
||||||
|
if not isinstance(current_state, dict) or 'gen' not in current_state:
|
||||||
|
return gr.update(), gr.update(interactive=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False, value=""), current_state
|
||||||
|
gallery_update, abort_btn_update, gen_btn_update, add_queue_btn_update, current_gen_col_update, gen_info_update = finalize_generation(current_state)
|
||||||
|
return gallery_update, abort_btn_update, gen_btn_update, add_queue_btn_update, current_gen_col_update, gen_info_update, current_state
|
||||||
|
|
||||||
|
demo.load(
|
||||||
|
fn=run_autoload_and_prepare_ui,
|
||||||
|
inputs=[state],
|
||||||
|
outputs=[queue_df, current_gen_column, should_start_flag, state]
|
||||||
|
).then(
|
||||||
|
fn=start_processing_if_needed,
|
||||||
|
inputs=[should_start_flag, state],
|
||||||
|
outputs=[gen_status],
|
||||||
|
trigger_mode="once"
|
||||||
|
).then(
|
||||||
|
fn=finalize_generation_with_state,
|
||||||
|
inputs=[state],
|
||||||
|
outputs=[output, abort_btn, generate_btn, add_to_queue_btn, current_gen_column, gen_info, state],
|
||||||
|
trigger_mode="always_last"
|
||||||
|
)
|
||||||
|
|
||||||
return demo
|
return demo
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
atexit.register(autosave_queue)
|
||||||
# threading.Thread(target=runner, daemon=True).start()
|
# threading.Thread(target=runner, daemon=True).start()
|
||||||
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
||||||
server_port = int(args.server_port)
|
server_port = int(args.server_port)
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user