diff --git a/gradio_server.py b/gradio_server.py
index e85f67b..bcc0164 100644
--- a/gradio_server.py
+++ b/gradio_server.py
@@ -14,7 +14,7 @@ import gradio as gr
import random
import json
import wan
-from wan.configs import MAX_AREA_CONFIGS, WAN_CONFIGS, SUPPORTED_SIZES
+from wan.configs import MAX_AREA_CONFIGS, WAN_CONFIGS, SUPPORTED_SIZES, VACE_SIZE_CONFIGS
from wan.utils.utils import cache_video
from wan.modules.attention import get_attention_modes, get_supported_attention_modes
import torch
@@ -55,6 +55,11 @@ def format_time(seconds):
def pil_to_base64_uri(pil_image, format="png", quality=75):
if pil_image is None:
return None
+
+ if isinstance(pil_image, str):
+ from wan.utils.utils import get_video_frame
+ pil_image = get_video_frame(pil_image, 0)
+
buffer = io.BytesIO()
try:
img_to_save = pil_image
@@ -93,10 +98,11 @@ def process_prompt_and_add_tasks(
loras_choices,
loras_mult_choices,
image_prompt_type,
- image_to_continue,
- image_to_end,
- video_to_continue,
+ image_source1,
+ image_source2,
+ image_source3,
max_frames,
+ remove_background_image_ref,
temporal_upsampling,
spatial_upsampling,
RIFLEx_setting,
@@ -127,9 +133,9 @@ def process_prompt_and_add_tasks(
return
file_model_needed = model_needed(image2video)
+ width, height = resolution.split("x")
+ width, height = int(width), int(height)
if image2video:
- width, height = resolution.split("x")
- width, height = int(width), int(height)
if "480p" in file_model_needed and not "Fun" in file_model_needed and width * height > 848*480:
gr.Info("You must use the 720P image to video model to generate videos with a resolution equivalent to 720P")
@@ -143,74 +149,94 @@ def process_prompt_and_add_tasks(
gr.Info("You must use the 14B model to generate videos with a resolution equivalent to 720P")
return
- if image2video:
- if image_to_continue == None or isinstance(image_to_continue, list) and len(image_to_continue) == 0:
+ if not image2video:
+ if "Vace" in file_model_needed and "1.3B" in file_model_needed :
+ resolution_reformated = str(height) + "*" + str(width)
+ if not resolution_reformated in VACE_SIZE_CONFIGS:
+ res = VACE_SIZE_CONFIGS.keys().join(" and ")
+ gr.Info(f"Video Resolution for Vace model is not supported. Only {res} resolutions are allowed.")
+ return
+
+ if not "I" in image_prompt_type:
+ image_source1 = None
+ if not "V" in image_prompt_type:
+ image_source2 = None
+ if not "M" in image_prompt_type:
+ image_source3 = None
+
+ if isinstance(image_source1, list):
+ image_source1 = [ convert_image(tup[0]) for tup in image_source1 ]
+
+ from wan.utils.utils import resize_and_remove_background
+ image_source1 = resize_and_remove_background(image_source1, width, height, remove_background_image_ref ==1)
+
+ image_source1 = [ image_source1 ] * len(prompts)
+ image_source2 = [ image_source2 ] * len(prompts)
+ image_source3 = [ image_source3 ] * len(prompts)
+
+ else:
+ if image_source1 == None or isinstance(image_source1, list) and len(image_source1) == 0:
return
if image_prompt_type == 0:
- image_to_end = None
- if isinstance(image_to_continue, list):
- image_to_continue = [ convert_image(tup[0]) for tup in image_to_continue ]
+ image_source2 = None
+ if isinstance(image_source1, list):
+ image_source1 = [ convert_image(tup[0]) for tup in image_source1 ]
else:
- image_to_continue = [convert_image(image_to_continue)]
- if image_to_end != None:
- if isinstance(image_to_end , list):
- image_to_end = [ convert_image(tup[0]) for tup in image_to_end ]
+ image_source1 = [convert_image(image_source1)]
+ if image_source2 != None:
+ if isinstance(image_source2 , list):
+ image_source2 = [ convert_image(tup[0]) for tup in image_source2 ]
else:
- image_to_end = [convert_image(image_to_end) ]
- if len(image_to_continue) != len(image_to_end):
+ image_source2 = [convert_image(image_source2) ]
+ if len(image_source1) != len(image_source2):
gr.Info("The number of start and end images should be the same ")
return
if multi_images_gen_type == 0:
new_prompts = []
- new_image_to_continue = []
- new_image_to_end = []
- for i in range(len(prompts) * len(image_to_continue) ):
+ new_image_source1 = []
+ new_image_source2 = []
+ for i in range(len(prompts) * len(image_source1) ):
new_prompts.append( prompts[ i % len(prompts)] )
- new_image_to_continue.append(image_to_continue[i // len(prompts)] )
- if image_to_end != None:
- new_image_to_end.append(image_to_end[i // len(prompts)] )
+ new_image_source1.append(image_source1[i // len(prompts)] )
+ if image_source2 != None:
+ new_image_source2.append(image_source2[i // len(prompts)] )
prompts = new_prompts
- image_to_continue = new_image_to_continue
- if image_to_end != None:
- image_to_end = new_image_to_end
+ image_source1 = new_image_source1
+ if image_source2 != None:
+ image_source2 = new_image_source2
else:
- if len(prompts) >= len(image_to_continue):
- if len(prompts) % len(image_to_continue) !=0:
+ if len(prompts) >= len(image_source1):
+ if len(prompts) % len(image_source1) !=0:
raise gr.Error("If there are more text prompts than input images the number of text prompts should be dividable by the number of images")
- rep = len(prompts) // len(image_to_continue)
- new_image_to_continue = []
- new_image_to_end = []
+ rep = len(prompts) // len(image_source1)
+ new_image_source1 = []
+ new_image_source2 = []
for i, _ in enumerate(prompts):
- new_image_to_continue.append(image_to_continue[i//rep] )
- if image_to_end != None:
- new_image_to_end.append(image_to_end[i//rep] )
- image_to_continue = new_image_to_continue
- if image_to_end != None:
- image_to_end = new_image_to_end
+ new_image_source1.append(image_source1[i//rep] )
+ if image_source2 != None:
+ new_image_source2.append(image_source2[i//rep] )
+ image_source1 = new_image_source1
+ if image_source2 != None:
+ image_source2 = new_image_source2
else:
- if len(image_to_continue) % len(prompts) !=0:
+ if len(image_source1) % len(prompts) !=0:
raise gr.Error("If there are more input images than text prompts the number of images should be dividable by the number of text prompts")
- rep = len(image_to_continue) // len(prompts)
+ rep = len(image_source1) // len(prompts)
new_prompts = []
- for i, _ in enumerate(image_to_continue):
+ for i, _ in enumerate(image_source1):
new_prompts.append( prompts[ i//rep] )
prompts = new_prompts
- # elif video_to_continue != None and len(video_to_continue) >0 :
- # input_image_or_video_path = video_to_continue
- # # pipeline.num_input_frames = max_frames
- # # pipeline.max_frames = max_frames
- # else:
- # return
- # else:
- # input_image_or_video_path = None
- if image_to_continue == None:
- image_to_continue = [None] * len(prompts)
- if image_to_end == None:
- image_to_end = [None] * len(prompts)
+
+ if image_source1 == None:
+ image_source1 = [None] * len(prompts)
+ if image_source2 == None:
+ image_source2 = [None] * len(prompts)
+ if image_source3 == None:
+ image_source3 = [None] * len(prompts)
- for single_prompt, image_start, image_end in zip(prompts, image_to_continue, image_to_end) :
+ for single_prompt, image_source1, image_source2, image_source3 in zip(prompts, image_source1, image_source2, image_source3) :
kwargs = {
"prompt" : single_prompt,
"negative_prompt" : negative_prompt,
@@ -228,10 +254,11 @@ def process_prompt_and_add_tasks(
"loras_choices" : loras_choices,
"loras_mult_choices" : loras_mult_choices,
"image_prompt_type" : image_prompt_type,
- "image_to_continue": image_start,
- "image_to_end" : image_end,
- "video_to_continue" : video_to_continue ,
+ "image_source1": image_source1,
+ "image_source2" : image_source2,
+ "image_source3" : image_source3 ,
"max_frames" : max_frames,
+ "remove_background_image_ref" : remove_background_image_ref,
"temporal_upsampling" : temporal_upsampling,
"spatial_upsampling" : spatial_upsampling,
"RIFLEx_setting" : RIFLEx_setting,
@@ -262,8 +289,9 @@ def add_video_task(**kwargs):
queue = gen["queue"]
task_id += 1
current_task_id = task_id
- start_image_data = kwargs["image_to_continue"]
- end_image_data = kwargs["image_to_end"]
+ start_image_data = kwargs["image_source1"]
+ start_image_data = [start_image_data] if not isinstance(start_image_data, list) else start_image_data
+ end_image_data = kwargs["image_source2"]
queue.append({
"id": current_task_id,
@@ -275,7 +303,7 @@ def add_video_task(**kwargs):
"prompt": kwargs["prompt"],
"start_image_data": start_image_data,
"end_image_data": end_image_data,
- "start_image_data_base64": pil_to_base64_uri(start_image_data, format="jpeg", quality=70),
+ "start_image_data_base64": [pil_to_base64_uri(img, format="jpeg", quality=70) for img in start_image_data],
"end_image_data_base64": pil_to_base64_uri(end_image_data, format="jpeg", quality=70)
})
return update_queue_data(queue)
@@ -342,6 +370,7 @@ def get_queue_table(queue):
full_prompt = item['prompt'].replace('"', '"')
prompt_cell = f'{truncated_prompt}'
start_img_uri =item.get('start_image_data_base64')
+ start_img_uri = start_img_uri[0] if start_img_uri !=None else None
end_img_uri = item.get('end_image_data_base64')
thumbnail_size = "50px"
num_steps = item.get('steps')
@@ -694,6 +723,9 @@ attention_modes_installed = get_attention_modes()
attention_modes_supported = get_supported_attention_modes()
args = _parse_args()
args.flow_reverse = True
+processing_device = args.gpu
+if len(processing_device) == 0:
+ processing_device ="cuda"
# torch.backends.cuda.matmul.allow_fp16_accumulation = True
lock_ui_attention = False
lock_ui_transformer = False
@@ -706,7 +738,7 @@ quantizeTransformer = args.quantize_transformer
check_loras = args.check_loras ==1
advanced = args.advanced
-transformer_choices_t2v=["ckpts/wan2.1_text2video_1.3B_bf16.safetensors", "ckpts/wan2.1_text2video_14B_bf16.safetensors", "ckpts/wan2.1_text2video_14B_quanto_int8.safetensors"]
+transformer_choices_t2v=["ckpts/wan2.1_text2video_1.3B_bf16.safetensors", "ckpts/wan2.1_text2video_14B_bf16.safetensors", "ckpts/wan2.1_text2video_14B_quanto_int8.safetensors", "ckpts/wan2.1_Vace_1.3B_preview_bf16.safetensors"]
transformer_choices_i2v=["ckpts/wan2.1_image2video_480p_14B_bf16.safetensors", "ckpts/wan2.1_image2video_480p_14B_quanto_int8.safetensors", "ckpts/wan2.1_image2video_720p_14B_bf16.safetensors", "ckpts/wan2.1_image2video_720p_14B_quanto_int8.safetensors", "ckpts/wan2.1_Fun_InP_1.3B_bf16.safetensors", "ckpts/wan2.1_Fun_InP_14B_bf16.safetensors", "ckpts/wan2.1_Fun_InP_14B_quanto_int8.safetensors", ]
text_encoder_choices = ["ckpts/models_t5_umt5-xxl-enc-bf16.safetensors", "ckpts/models_t5_umt5-xxl-enc-quanto_int8.safetensors"]
@@ -750,7 +782,7 @@ def get_default_settings(filename, i2v):
"prompts": get_default_prompt(i2v),
"resolution": "832x480",
"video_length": 81,
- "image_prompt_type" : 0,
+ "image_prompt_type" : 0 if i2v else "",
"num_inference_steps": 30,
"seed": -1,
"repeat_generation": 1,
@@ -1149,6 +1181,9 @@ def get_model_name(model_filename):
if "Fun" in model_filename:
model_name = "Fun InP image2video"
model_name += " 14B" if "14B" in model_filename else " 1.3B"
+ elif "Vace" in model_filename:
+ model_name = "Vace ControlNet text2video"
+ model_name += " 14B" if "14B" in model_filename else " 1.3B"
elif "image" in model_filename:
model_name = "Wan2.1 image2video"
model_name += " 720p" if "720p" in model_filename else " 480p"
@@ -1353,22 +1388,22 @@ def refresh_gallery(state, msg):
end_img_md = ""
prompt = task["prompt"]
- if task.get('image2video'):
- start_img_uri = task.get('start_image_data_base64')
- end_img_uri = task.get('end_image_data_base64')
- thumbnail_size = "100px"
- if start_img_uri:
- start_img_md = f'
'
- if end_img_uri:
- end_img_md = f'
'
+ start_img_uri = task.get('start_image_data_base64')
+ start_img_uri = start_img_uri[0] if start_img_uri !=None else None
+ end_img_uri = task.get('end_image_data_base64')
+ thumbnail_size = "100px"
+ if start_img_uri:
+ start_img_md = f'
'
+ if end_img_uri:
+ end_img_md = f'
'
label = f"Prompt of Video being Generated"
html = "
| " + prompt + " | "
if start_img_md != "":
html += "" + start_img_md + " | "
- if end_img_md != "":
- html += "" + end_img_md + " | "
+ if end_img_md != "":
+ html += "" + end_img_md + " | "
html += "
"
html_output = gr.HTML(html, visible= True)
@@ -1419,24 +1454,26 @@ def expand_slist(slist, num_inference_steps ):
new_slist.append(slist[ int(pos)])
pos += inc
return new_slist
-
def convert_image(image):
- from PIL import ExifTags
- image = image.convert('RGB')
- for orientation in ExifTags.TAGS.keys():
- if ExifTags.TAGS[orientation]=='Orientation':
- break
- exif = image.getexif()
- if not orientation in exif:
- return image
- if exif[orientation] == 3:
- image=image.rotate(180, expand=True)
- elif exif[orientation] == 6:
- image=image.rotate(270, expand=True)
- elif exif[orientation] == 8:
- image=image.rotate(90, expand=True)
- return image
+ from PIL import ExifTags, ImageOps
+ from typing import cast
+
+ return cast(Image, ImageOps.exif_transpose(image))
+ # image = image.convert('RGB')
+ # for orientation in ExifTags.TAGS.keys():
+ # if ExifTags.TAGS[orientation]=='Orientation':
+ # break
+ # exif = image.getexif()
+ # return image
+ # if not orientation in exif:
+ # if exif[orientation] == 3:
+ # image=image.rotate(180, expand=True)
+ # elif exif[orientation] == 6:
+ # image=image.rotate(270, expand=True)
+ # elif exif[orientation] == 8:
+ # image=image.rotate(90, expand=True)
+ # return image
def generate_video(
task_id,
@@ -1457,10 +1494,11 @@ def generate_video(
loras_choices,
loras_mult_choices,
image_prompt_type,
- image_to_continue,
- image_to_end,
- video_to_continue,
+ image_source1,
+ image_source2,
+ image_source3,
max_frames,
+ remove_background_image_ref,
temporal_upsampling,
spatial_upsampling,
RIFLEx_setting,
@@ -1507,7 +1545,6 @@ def generate_video(
gr.Info(f"You have selected attention mode '{attention_mode}'. However it is not installed or supported on your system. You should either install it or switch to the default 'sdpa' attention.")
return
-
if not image2video:
width, height = resolution.split("x")
@@ -1586,7 +1623,7 @@ def generate_video(
enable_RIFLEx = RIFLEx_setting == 0 and video_length > (6* 16) or RIFLEx_setting == 1
# VAE Tiling
- device_mem_capacity = torch.cuda.get_device_properties(0).total_memory / 1048576
+ device_mem_capacity = torch.cuda.get_device_properties(None).total_memory / 1048576
joint_pass = boost ==1 #and profile != 1 and profile != 3
# TeaCache
@@ -1615,6 +1652,17 @@ def generate_video(
else:
raise gr.Error("Teacache not supported for this model")
+ if "Vace" in model_filename:
+ resolution_reformated = str(height) + "*" + str(width)
+ src_video, src_mask, src_ref_images = wan_model.prepare_source([image_source2],
+ [image_source3],
+ [image_source1],
+ video_length, VACE_SIZE_CONFIGS[resolution_reformated], "cpu",
+ trim_video=max_frames)
+ else:
+ src_video, src_mask, src_ref_images = None, None, None
+
+
import random
if seed == None or seed <0:
seed = random.randint(0, 999999999)
@@ -1673,8 +1721,8 @@ def generate_video(
if image2video:
samples = wan_model.generate(
prompt,
- image_to_continue,
- image_to_end if image_to_end != None else None,
+ image_source1,
+ image_source2 if image_source2 != None else None,
frame_num=(video_length // 4)* 4 + 1,
max_area=MAX_AREA_CONFIGS[resolution],
shift=flow_shift,
@@ -1697,6 +1745,9 @@ def generate_video(
else:
samples = wan_model.generate(
prompt,
+ input_frames = src_video,
+ input_ref_images= src_ref_images,
+ input_masks = src_mask,
frame_num=(video_length // 4)* 4 + 1,
size=(width, height),
shift=flow_shift,
@@ -1745,7 +1796,7 @@ def generate_video(
new_error = "The generation of the video has encountered an error: it is likely that you have unsufficient VRAM and you should therefore reduce the video resolution or its number of frames."
else:
new_error = gr.Error(f"The generation of the video has encountered an error, please check your terminal for more information. '{s}'")
- tb = traceback.format_exc().split('\n')[:-2]
+ tb = traceback.format_exc().split('\n')[:-1]
print('\n'.join(tb))
raise gr.Error(new_error, print_exception= False)
@@ -1799,7 +1850,7 @@ def generate_video(
if exp > 0:
from rife.inference import temporal_interpolation
- sample = temporal_interpolation( os.path.join("ckpts", "flownet.pkl"), sample, exp, device="cuda")
+ sample = temporal_interpolation( os.path.join("ckpts", "flownet.pkl"), sample, exp, device=processing_device)
fps = fps * 2**exp
if len(spatial_upsampling) > 0:
@@ -1831,8 +1882,7 @@ def generate_video(
normalize=True,
value_range=(-1, 1))
-
- configs = get_settings_dict(state, image2video, prompt, 0 if image_to_end == None else 1 , video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices,
+ configs = get_settings_dict(state, image2video, True, prompt, image_prompt_type, max_frames , remove_background_image_ref, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices,
loras_mult_choices, tea_cache , tea_cache_start_step_perc, temporal_upsampling, spatial_upsampling, RIFLEx_setting, slg_switch, slg_layers, slg_start, slg_end, cfg_star_switch, cfg_zero_step)
metadata_choice = server_config.get("metadata_choice","metadata")
@@ -2294,7 +2344,7 @@ def switch_advanced(state, new_advanced, lset_name):
return gr.Row(visible=new_advanced), gr.Row(visible=True), gr.Button(visible=True), gr.Row(visible= False), gr.Dropdown(choices=lset_choices, value= lset_name)
-def get_settings_dict(state, i2v, prompt, image_prompt_type, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices,
+def get_settings_dict(state, i2v, image_metadata, prompt, image_prompt_type, max_frames, remove_background_image_ref, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices,
loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, temporal_upsampling, spatial_upsampling, RIFLEx_setting, slg_switch, slg_layers, slg_start_perc, slg_end_perc, cfg_star_switch, cfg_zero_step):
loras = state["loras"]
@@ -2330,18 +2380,22 @@ def get_settings_dict(state, i2v, prompt, image_prompt_type, video_length, resol
ui_settings["type"] = "Wan2.1GP by DeepBeepMeep - image2video"
ui_settings["image_prompt_type"] = image_prompt_type
else:
+ if "Vace" in transformer_filename_t2v or not image_metadata:
+ ui_settings["image_prompt_type"] = image_prompt_type
+ ui_settings["max_frames"] = max_frames
+ ui_settings["remove_background_image_ref"] = remove_background_image_ref
ui_settings["type"] = "Wan2.1GP by DeepBeepMeep - text2video"
return ui_settings
-def save_settings(state, prompt, image_prompt_type, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices,
+def save_settings(state, prompt, image_prompt_type, max_frames, remove_background_image_ref, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices,
loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, temporal_upsampling, spatial_upsampling, RIFLEx_setting, slg_switch, slg_layers, slg_start_perc, slg_end_perc, cfg_star_switch, cfg_zero_step):
if state.get("validate_success",0) != 1:
return
image2video = state["image2video"]
- ui_defaults = get_settings_dict(state, image2video, prompt, image_prompt_type, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices,
+ ui_defaults = get_settings_dict(state, image2video, False, prompt, image_prompt_type, max_frames, remove_background_image_ref, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt, loras_choices,
loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, temporal_upsampling, spatial_upsampling, RIFLEx_setting, slg_switch, slg_layers, slg_start_perc, slg_end_perc, cfg_star_switch, cfg_zero_step)
defaults_filename = get_settings_file_name(image2video)
@@ -2379,6 +2433,25 @@ def download_loras():
writer.write(f"Loras downloaded on the {dt} at {time.time()} on the {time.time()}")
return
+def refresh_i2v_image_prompt_type_radio(state, image_prompt_type_radio):
+ if args.multiple_images:
+ return gr.Gallery(visible = (image_prompt_type_radio == 1) )
+ else:
+ return gr.Image(visible = (image_prompt_type_radio == 1) )
+
+def refresh_t2v_image_prompt_type_radio(state, image_prompt_type_radio):
+ vace_model = "Vace" in state["image_input_type_model"] and not state["image2video"]
+ return gr.Column(visible= vace_model), gr.Radio(value= image_prompt_type_radio), gr.Gallery(visible = "I" in image_prompt_type_radio), gr.Video(visible= "V" in image_prompt_type_radio),gr.Video(visible= "M" in image_prompt_type_radio ), gr.Text(visible= "V" in image_prompt_type_radio) , gr.Checkbox(visible= "I" in image_prompt_type_radio)
+
+def check_refresh_input_type(state):
+ if not state["image2video"]:
+ model_file_name = state["image_input_type_model"]
+ model_file_needed= model_needed(False)
+ if model_file_name != model_file_needed:
+ state["image_input_type_model"] = model_file_needed
+ return gr.Text(value= str(time.time()))
+ return gr.Text()
+
def generate_video_tab(image2video=False):
filename = transformer_filename_i2v if image2video else transformer_filename_t2v
ui_defaults= get_default_settings(filename, image2video)
@@ -2387,6 +2460,7 @@ def generate_video_tab(image2video=False):
state_dict["advanced"] = advanced
state_dict["loras_model"] = filename
+ state_dict["image_input_type_model"] = filename
state_dict["image2video"] = image2video
gen = dict()
gen["queue"] = []
@@ -2461,31 +2535,51 @@ def generate_video_tab(image2video=False):
save_lset_btn = gr.Button("Save", size="sm", min_width= 1)
delete_lset_btn = gr.Button("Delete", size="sm", min_width= 1)
cancel_lset_btn = gr.Button("Don't do it !", size="sm", min_width= 1 , visible=False)
- video_to_continue = gr.Video(label= "Video to continue", visible= image2video and False) #######
- image_prompt_type= ui_defaults.get("image_prompt_type",0)
- image_prompt_type_radio = gr.Radio( [("Use only a Start Image", 0),("Use both a Start and an End Image", 1)], value =image_prompt_type, label="Location", show_label= False, scale= 3, visible=image2video)
- if args.multiple_images:
- image_to_continue = gr.Gallery(
- label="Images as starting points for new videos", type ="pil", #file_types= "image",
- columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, visible=image2video)
- else:
- image_to_continue = gr.Image(label= "Image as a starting point for a new video", type ="pil", visible=image2video)
+ state = gr.State(state_dict)
+ vace_model = "Vace" in filename and not image2video
+ trigger_refresh_input_type = gr.Text(interactive= False, visible= False)
+ with gr.Column(visible= image2video or vace_model) as image_prompt_column:
+ if image2video:
+ image_source3 = gr.Video(label= "Placeholder", visible= image2video and False)
- if args.multiple_images:
- image_to_end = gr.Gallery(
- label="Images as ending points for new videos", type ="pil", #file_types= "image",
- columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, visible=image_prompt_type==1)
- else:
- image_to_end = gr.Image(label= "Last Image for a new video", type ="pil", visible=image_prompt_type==1)
+ image_prompt_type= ui_defaults.get("image_prompt_type",0)
+ image_prompt_type_radio = gr.Radio( [("Use only a Start Image", 0),("Use both a Start and an End Image", 1)], value =image_prompt_type, label="Location", show_label= False, scale= 3)
- def switch_image_prompt_type_radio(image_prompt_type_radio):
- if args.multiple_images:
- return gr.Gallery(visible = (image_prompt_type_radio == 1) )
+ if args.multiple_images:
+ image_source1 = gr.Gallery(
+ label="Images as starting points for new videos", type ="pil", #file_types= "image",
+ columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True)
+ else:
+ image_source1 = gr.Image(label= "Image as a starting point for a new video", type ="pil")
+
+ if args.multiple_images:
+ image_source2 = gr.Gallery(
+ label="Images as ending points for new videos", type ="pil", #file_types= "image",
+ columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, visible=image_prompt_type==1)
+ else:
+ image_source2 = gr.Image(label= "Last Image for a new video", type ="pil", visible=image_prompt_type==1)
+
+
+ image_prompt_type_radio.change(fn=refresh_i2v_image_prompt_type_radio, inputs=[state, image_prompt_type_radio], outputs=[image_source2])
+ max_frames = gr.Slider(1, 100,step=1, visible = False)
+ remove_background_image_ref = gr.Text(visible = False)
else:
- return gr.Image(visible = (image_prompt_type_radio == 1) )
+ image_prompt_type= ui_defaults.get("image_prompt_type","I")
+ image_prompt_type_radio = gr.Radio( [("Use Images Ref", "I"),("a Video", "V"), ("Images + a Video", "IV"), ("Video + Video Mask", "VM"), ("Images + Video + Mask", "IVM")], value =image_prompt_type, label="Location", show_label= False, scale= 3, visible = vace_model)
+ image_source1 = gr.Gallery(
+ label="Reference Images of Faces and / or Object to be found in the Video", type ="pil",
+ columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, visible= "I" in image_prompt_type )
- image_prompt_type_radio.change(fn=switch_image_prompt_type_radio, inputs=[image_prompt_type_radio], outputs=[image_to_end])
+ image_source2 = gr.Video(label= "Reference Video", visible= "V" in image_prompt_type )
+ with gr.Row():
+ max_frames = gr.Slider(0, 100, value=ui_defaults.get("max_frames",0), step=1, label="Nb of frames in Reference Video to use in Video (0 for as many as possible)", visible= "V" in image_prompt_type, scale = 2 )
+ remove_background_image_ref = gr.Checkbox(value=ui_defaults.get("remove_background_image_ref",1), label= "Remove Images Ref. Background", visible= "I" in image_prompt_type, scale =1 )
+
+ image_source3 = gr.Video(label= "Video Mask (white pixels = Mask)", visible= "M" in image_prompt_type )
+
+
+ gr.on(triggers=[image_prompt_type_radio.change, trigger_refresh_input_type.change], fn=refresh_t2v_image_prompt_type_radio, inputs=[state, image_prompt_type_radio], outputs=[image_prompt_column, image_prompt_type_radio, image_source1, image_source2, image_source3, max_frames, remove_background_image_ref])
advanced_prompt = advanced
@@ -2518,7 +2612,6 @@ def generate_video_tab(image2video=False):
wizard_prompt = gr.Textbox(visible = not advanced_prompt, label="Prompts (each new line of prompt will generate a new video, # lines = comments)", value=default_wizard_prompt, lines=3)
wizard_prompt_activated_var = gr.Text(wizard_prompt_activated, visible= False)
wizard_variables_var = gr.Text(wizard_variables, visible = False)
- state = gr.State(state_dict)
with gr.Row():
if image2video:
resolution = gr.Dropdown(
@@ -2555,8 +2648,6 @@ def generate_video_tab(image2video=False):
video_length = gr.Slider(5, 193, value=ui_defaults["video_length"], step=4, label="Number of frames (16 = 1s)")
with gr.Column():
num_inference_steps = gr.Slider(1, 100, value=ui_defaults["num_inference_steps"], step=1, label="Number of Inference Steps")
- with gr.Row():
- max_frames = gr.Slider(1, 100, value=9, step=1, label="Number of input frames to use for Video2World prediction", visible=image2video and False) #########
show_advanced = gr.Checkbox(label="Advanced Mode", value=advanced)
with gr.Row(visible=advanced) as advanced_row:
with gr.Column():
@@ -2605,7 +2696,7 @@ def generate_video_tab(image2video=False):
tea_cache_start_step_perc = gr.Slider(0, 100, value=ui_defaults["tea_cache_start_step_perc"], step=1, label="Tea Cache starting moment in % of generation")
with gr.Row():
- gr.Markdown("Upsampling")
+ gr.Markdown("Upsampling - postprocessing that may improve fluidity and the size of the video")
with gr.Row():
temporal_upsampling_choice = gr.Dropdown(
choices=[
@@ -2687,9 +2778,10 @@ def generate_video_tab(image2video=False):
show_advanced.change(fn=switch_advanced, inputs=[state, show_advanced, lset_name], outputs=[advanced_row, preset_buttons_rows, refresh_lora_btn, refresh2_row ,lset_name ]).then(
fn=switch_prompt_type, inputs = [state, wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, *prompt_vars], outputs = [wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, prompt_column_advanced, prompt_column_wizard, prompt_column_wizard_vars, *prompt_vars])
with gr.Column():
- gen_status = gr.Text(label="Status", interactive= False)
- full_sync = gr.Text(label="Status", interactive= False, visible= False)
- light_sync = gr.Text(label="Status", interactive= False, visible= False)
+ gen_status = gr.Text(interactive= False)
+ full_sync = gr.Text(interactive= False, visible= False)
+ light_sync = gr.Text(interactive= False, visible= False)
+
gen_progress_html = gr.HTML(
label="Status",
value="Idle",
@@ -2709,8 +2801,8 @@ def generate_video_tab(image2video=False):
abort_btn = gr.Button("Abort")
queue_df = gr.DataFrame(
- headers=["Qty","Prompt", "Length","Steps","Start", "End", "", "", ""],
- datatype=[ "str","markdown","str", "markdown", "markdown", "markdown", "str", "str", "str"],
+ headers=["Qty","Prompt", "Length","Steps","", "", "", "", ""],
+ datatype=[ "str","markdown","str", "markdown", "markdown", "markdown", "str", "str", "str"],
column_widths= ["50","", "65","55", "60", "60", "30", "30", "35"],
interactive=False,
col_count=(9, "fixed"),
@@ -2792,7 +2884,7 @@ def generate_video_tab(image2video=False):
show_progress="hidden"
)
save_settings_btn.click( fn=validate_wizard_prompt, inputs =[state, wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, *prompt_vars] , outputs= [prompt]).then(
- save_settings, inputs = [state, prompt, image_prompt_type_radio, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt,
+ save_settings, inputs = [state, prompt, image_prompt_type_radio, max_frames, remove_background_image_ref, video_length, resolution, num_inference_steps, seed, repeat_generation, multi_images_gen_type, guidance_scale, flow_shift, negative_prompt,
loras_choices, loras_mult_choices, tea_cache_setting, tea_cache_start_step_perc, temporal_upsampling_choice, spatial_upsampling_choice, RIFLEx_setting, slg_switch, slg_layers,
slg_start_perc, slg_end_perc, cfg_star_switch, cfg_zero_step ], outputs = [])
save_lset_btn.click(validate_save_lset, inputs=[lset_name], outputs=[apply_lset_btn, refresh_lora_btn, delete_lset_btn, save_lset_btn,confirm_save_lset_btn, cancel_lset_btn, save_lset_prompt_drop])
@@ -2808,21 +2900,30 @@ def generate_video_tab(image2video=False):
refresh_lora_btn2.click(refresh_lora_list, inputs=[state, lset_name,loras_choices], outputs=[lset_name, loras_choices])
output.select(select_video, state, None )
+
+
gen_status.change(refresh_gallery,
inputs = [state, gen_status],
outputs = [output, gen_info, generate_btn, add_to_queue_btn, current_gen_column, queue_df, abort_btn])
- full_sync.change(refresh_gallery,
+ full_sync.change(fn= check_refresh_input_type,
+ inputs= [state],
+ outputs= [trigger_refresh_input_type]
+ ).then(fn=refresh_gallery,
inputs = [state, gen_status],
outputs = [output, gen_info, generate_btn, add_to_queue_btn, current_gen_column, queue_df, abort_btn]
- ).then( fn=wait_tasks_done,
+ ).then(fn=wait_tasks_done,
inputs= [state],
outputs =[gen_status],
).then(finalize_generation,
inputs= [state],
outputs= [output, abort_btn, generate_btn, add_to_queue_btn, current_gen_column, gen_info]
)
- light_sync.change(refresh_gallery,
+
+ light_sync.change(fn= check_refresh_input_type,
+ inputs= [state],
+ outputs= [trigger_refresh_input_type]
+ ).then(fn=refresh_gallery,
inputs = [state, gen_status],
outputs = [output, gen_info, generate_btn, add_to_queue_btn, current_gen_column, queue_df, abort_btn]
)
@@ -2848,10 +2949,11 @@ def generate_video_tab(image2video=False):
loras_choices,
loras_mult_choices,
image_prompt_type_radio,
- image_to_continue,
- image_to_end,
- video_to_continue,
+ image_source1,
+ image_source2,
+ image_source3,
max_frames,
+ remove_background_image_ref,
temporal_upsampling_choice,
spatial_upsampling_choice,
RIFLEx_setting,
@@ -2902,7 +3004,7 @@ def generate_video_tab(image2video=False):
)
return loras_column, loras_choices, presets_column, lset_name, header, light_sync, full_sync, state
-def generate_doxnload_tab(presets_column, loras_column, lset_name,loras_choices, state):
+def generate_download_tab(presets_column, loras_column, lset_name,loras_choices, state):
with gr.Row():
with gr.Row(scale =2):
gr.Markdown("Wan2GP's Lora Festival ! Press the following button to download i2v Remade Loras collection (and bonuses Loras).")
@@ -2928,6 +3030,7 @@ def generate_configuration_tab():
("WAN 2.1 1.3B Text to Video 16 bits (recommended)- the small model for fast generations with low VRAM requirements", 0),
("WAN 2.1 14B Text to Video 16 bits - the default engine in its original glory, offers a slightly better image quality but slower and requires more RAM", 1),
("WAN 2.1 14B Text to Video quantized to 8 bits (recommended) - the default engine but quantized", 2),
+ ("WAN 2.1 VACE 1.3B Text to Video / Control Net - text generation driven by reference images or videos", 3),
],
value= index,
label="Transformer model for Text to Video",
@@ -3108,16 +3211,17 @@ def on_tab_select(global_state, t2v_state, i2v_state, evt: gr.SelectData):
t2v_light_sync = gr.Text()
i2v_full_sync = gr.Text()
t2v_full_sync = gr.Text()
+
+ last_tab_was_image2video =global_state.get("last_tab_was_image2video", None)
+ if last_tab_was_image2video == None or last_tab_was_image2video:
+ gen = i2v_state["gen"]
+ t2v_state["gen"] = gen
+ else:
+ gen = t2v_state["gen"]
+ i2v_state["gen"] = gen
+
+
if new_t2v or new_i2v:
- last_tab_was_image2video =global_state.get("last_tab_was_image2video", None)
- if last_tab_was_image2video == None or last_tab_was_image2video:
- gen = i2v_state["gen"]
- t2v_state["gen"] = gen
- else:
- gen = t2v_state["gen"]
- i2v_state["gen"] = gen
-
-
if last_tab_was_image2video != None and new_t2v != new_i2v:
gen_location = gen.get("location", None)
if "in_progress" in gen and gen_location !=None and not (gen_location and new_i2v or not gen_location and new_t2v) :
@@ -3131,7 +3235,6 @@ def on_tab_select(global_state, t2v_state, i2v_state, evt: gr.SelectData):
else:
t2v_light_sync = gr.Text(str(time.time()))
-
global_state["last_tab_was_image2video"] = new_i2v
if(server_config.get("reload_model",2) == 1):
@@ -3433,7 +3536,7 @@ def create_demo():
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft(primary_hue="sky", neutral_hue="slate", text_size="md"), title= "Wan2GP") as demo:
- gr.Markdown("Wan 2.1GP v3.4 by DeepBeepMeep (Updates)
")
+ gr.Markdown("Wan 2.1GP v4.0 by DeepBeepMeep (Updates)
")
gr.Markdown("Welcome to Wan 2.1GP a super fast and low VRAM AI Video Generator !")
with gr.Accordion("Click here for some Info on how to use Wan2GP", open = False):
@@ -3454,7 +3557,7 @@ def create_demo():
i2v_loras_column, i2v_loras_choices, i2v_presets_column, i2v_lset_name, i2v_header, i2v_light_sync, i2v_full_sync, i2v_state = generate_video_tab(True)
if not args.lock_config:
with gr.Tab("Downloads", id="downloads") as downloads_tab:
- generate_doxnload_tab(i2v_presets_column, i2v_loras_column, i2v_lset_name, i2v_loras_choices, i2v_state)
+ generate_download_tab(i2v_presets_column, i2v_loras_column, i2v_lset_name, i2v_loras_choices, i2v_state)
with gr.Tab("Configuration"):
generate_configuration_tab()
with gr.Tab("About"):
diff --git a/requirements.txt b/requirements.txt
index 7576271..a4cd3b3 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -11,11 +11,15 @@ easydict
ftfy
dashscope
imageio-ffmpeg
-# flash_attn
+# flash_attn
gradio>=5.0.0
numpy>=1.23.5,<2
einops
moviepy==1.0.3
mmgp==3.3.4
peft==0.14.0
-mutagen
\ No newline at end of file
+mutagen
+decord
+onnxruntime-gpu
+rembg[gpu]==2.0.65
+# rembg==2.0.65
\ No newline at end of file
diff --git a/wan/configs/__init__.py b/wan/configs/__init__.py
index c72d2d0..e3f539b 100644
--- a/wan/configs/__init__.py
+++ b/wan/configs/__init__.py
@@ -40,3 +40,17 @@ SUPPORTED_SIZES = {
'i2v-14B': ('720*1280', '1280*720', '480*832', '832*480'),
't2i-14B': tuple(SIZE_CONFIGS.keys()),
}
+
+VACE_SIZE_CONFIGS = {
+ '480*832': (480, 832),
+ '832*480': (832, 480),
+}
+
+VACE_MAX_AREA_CONFIGS = {
+ '480*832': 480 * 832,
+ '832*480': 832 * 480,
+}
+
+VACE_SUPPORTED_SIZES = {
+ 'vace-1.3B': ('480*832', '832*480'),
+}
diff --git a/wan/modules/model.py b/wan/modules/model.py
index 2daa00c..5eba92b 100644
--- a/wan/modules/model.py
+++ b/wan/modules/model.py
@@ -377,6 +377,7 @@ class WanI2VCrossAttention(WanSelfAttention):
return x
+
WAN_CROSSATTENTION_CLASSES = {
't2v_cross_attn': WanT2VCrossAttention,
'i2v_cross_attn': WanI2VCrossAttention,
@@ -393,7 +394,9 @@ class WanAttentionBlock(nn.Module):
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
- eps=1e-6):
+ eps=1e-6,
+ block_id=None
+ ):
super().__init__()
self.dim = dim
self.ffn_dim = ffn_dim
@@ -422,6 +425,7 @@ class WanAttentionBlock(nn.Module):
# modulation
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
+ self.block_id = block_id
def forward(
self,
@@ -432,6 +436,8 @@ class WanAttentionBlock(nn.Module):
freqs,
context,
context_lens,
+ hints= None,
+ context_scale=1.0,
):
r"""
Args:
@@ -480,10 +486,49 @@ class WanAttentionBlock(nn.Module):
x.addcmul_(y, e[5])
+ if self.block_id is not None and hints != None:
+ if context_scale == 1:
+ x.add_(hints[self.block_id])
+ else:
+ x.add_(hints[self.block_id], alpha =context_scale)
+ return x
- return x
-
+class VaceWanAttentionBlock(WanAttentionBlock):
+ def __init__(
+ self,
+ cross_attn_type,
+ dim,
+ ffn_dim,
+ num_heads,
+ window_size=(-1, -1),
+ qk_norm=True,
+ cross_attn_norm=False,
+ eps=1e-6,
+ block_id=0
+ ):
+ super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
+ self.block_id = block_id
+ if block_id == 0:
+ self.before_proj = nn.Linear(self.dim, self.dim)
+ nn.init.zeros_(self.before_proj.weight)
+ nn.init.zeros_(self.before_proj.bias)
+ self.after_proj = nn.Linear(self.dim, self.dim)
+ nn.init.zeros_(self.after_proj.weight)
+ nn.init.zeros_(self.after_proj.bias)
+ def forward(self, c, x, **kwargs):
+ # behold dbm magic !
+ if self.block_id == 0:
+ c = self.before_proj(c) + x
+ all_c = []
+ else:
+ all_c = c
+ c = all_c.pop(-1)
+ c = super().forward(c, **kwargs)
+ c_skip = self.after_proj(c)
+ all_c += [c_skip, c]
+ return all_c
+
class Head(nn.Module):
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
@@ -544,6 +589,8 @@ class WanModel(ModelMixin, ConfigMixin):
@register_to_config
def __init__(self,
+ vace_layers=None,
+ vace_in_dim=None,
model_type='t2v',
patch_size=(1, 2, 2),
text_len=512,
@@ -628,12 +675,13 @@ class WanModel(ModelMixin, ConfigMixin):
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
# blocks
- cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
- self.blocks = nn.ModuleList([
- WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
- window_size, qk_norm, cross_attn_norm, eps)
- for _ in range(num_layers)
- ])
+ if vace_layers == None:
+ cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
+ self.blocks = nn.ModuleList([
+ WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
+ window_size, qk_norm, cross_attn_norm, eps)
+ for _ in range(num_layers)
+ ])
# head
self.head = Head(dim, out_dim, patch_size, eps)
@@ -646,6 +694,33 @@ class WanModel(ModelMixin, ConfigMixin):
# initialize weights
self.init_weights()
+ if vace_layers != None:
+ self.vace_layers = [i for i in range(0, self.num_layers, 2)] if vace_layers is None else vace_layers
+ self.vace_in_dim = self.in_dim if vace_in_dim is None else vace_in_dim
+
+ assert 0 in self.vace_layers
+ self.vace_layers_mapping = {i: n for n, i in enumerate(self.vace_layers)}
+
+ # blocks
+ self.blocks = nn.ModuleList([
+ WanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
+ self.cross_attn_norm, self.eps,
+ block_id=self.vace_layers_mapping[i] if i in self.vace_layers else None)
+ for i in range(self.num_layers)
+ ])
+
+ # vace blocks
+ self.vace_blocks = nn.ModuleList([
+ VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
+ self.cross_attn_norm, self.eps, block_id=i)
+ for i in self.vace_layers
+ ])
+
+ # vace patch embeddings
+ self.vace_patch_embedding = nn.Conv3d(
+ self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size
+ )
+
def compute_teacache_threshold(self, start_step, timesteps = None, speed_factor =0):
rescale_func = np.poly1d(self.coefficients)
@@ -688,6 +763,36 @@ class WanModel(ModelMixin, ConfigMixin):
self.rel_l1_thresh = best_threshold
print(f"Tea Cache, best threshold found:{best_threshold:0.2f} with gain x{len(timesteps)/(target_nb_steps - best_signed_diff):0.2f} for a target of x{speed_factor}")
return best_threshold
+
+ def forward_vace(
+ self,
+ x,
+ vace_context,
+ seq_len,
+ context,
+ e,
+ kwargs
+ ):
+ # embeddings
+ c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
+ c = [u.flatten(2).transpose(1, 2) for u in c]
+ if (len(c) == 1 and seq_len == c[0].size(1)):
+ c = c[0]
+ else:
+ c = torch.cat([
+ torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
+ dim=1) for u in c
+ ])
+
+ # arguments
+ new_kwargs = dict(x=x)
+ new_kwargs.update(kwargs)
+
+ for block in self.vace_blocks:
+ c = block(c, context= context, e= e, **new_kwargs)
+ hints = c[:-1]
+
+ return hints
def forward(
self,
@@ -695,6 +800,8 @@ class WanModel(ModelMixin, ConfigMixin):
t,
context,
seq_len,
+ vace_context = None,
+ vace_context_scale=1.0,
clip_fea=None,
y=None,
freqs = None,
@@ -829,13 +936,23 @@ class WanModel(ModelMixin, ConfigMixin):
self.previous_residual_cond = None
ori_hidden_states = x_list[0].clone()
# arguments
+
kwargs = dict(
- # e=e0,
seq_lens=seq_lens,
grid_sizes=grid_sizes,
freqs=freqs,
- # context=context,
context_lens=context_lens)
+
+ if vace_context == None:
+ hints_list = [None ] *len(x_list)
+ else:
+ hints_list = []
+ for x, context in zip(x_list, context_list) :
+ hints_list.append( self.forward_vace(x, vace_context, seq_len, context= context, e= e0, kwargs= kwargs))
+ del x, context
+ kwargs['context_scale'] = vace_context_scale
+
+
for block_idx, block in enumerate(self.blocks):
offload.shared_state["layer"] = block_idx
if callback != None:
@@ -852,9 +969,10 @@ class WanModel(ModelMixin, ConfigMixin):
x_list[0] = block(x_list[0], context = context_list[0], e= e0, **kwargs)
else:
- for i, (x, context) in enumerate(zip(x_list, context_list)):
- x_list[i] = block(x, context = context, e= e0, **kwargs)
+ for i, (x, context, hints) in enumerate(zip(x_list, context_list, hints_list)):
+ x_list[i] = block(x, context = context, hints= hints, e= e0, **kwargs)
del x
+ del context, hints
if self.enable_teacache:
if joint_pass:
diff --git a/wan/text2video.py b/wan/text2video.py
index cdcbd4f..befe139 100644
--- a/wan/text2video.py
+++ b/wan/text2video.py
@@ -13,7 +13,9 @@ import torch
import torch.cuda.amp as amp
import torch.distributed as dist
from tqdm import tqdm
-
+from PIL import Image
+import torchvision.transforms.functional as TF
+import torch.nn.functional as F
from .distributed.fsdp import shard_model
from .modules.model import WanModel
from .modules.t5 import T5EncoderModel
@@ -22,6 +24,7 @@ from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
get_sampling_sigmas, retrieve_timesteps)
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
from wan.modules.posemb_layers import get_rotary_pos_embed
+from .utils.vace_preprocessor import VaceVideoProcessor
def optimized_scale(positive_flat, negative_flat):
@@ -105,8 +108,6 @@ class WanT2V:
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel, writable_tensors= False)
-
-
self.model.eval().requires_grad_(False)
if use_usp:
@@ -132,8 +133,148 @@ class WanT2V:
self.sample_neg_prompt = config.sample_neg_prompt
+ if "Vace" in model_filename:
+ self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
+ min_area=480*832,
+ max_area=480*832,
+ min_fps=config.sample_fps,
+ max_fps=config.sample_fps,
+ zero_start=True,
+ seq_len=32760,
+ keep_last=True)
+
+ def vace_encode_frames(self, frames, ref_images, masks=None, tile_size = 0):
+ if ref_images is None:
+ ref_images = [None] * len(frames)
+ else:
+ assert len(frames) == len(ref_images)
+
+ if masks is None:
+ latents = self.vae.encode(frames, tile_size = tile_size)
+ else:
+ inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
+ reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
+ inactive = self.vae.encode(inactive, tile_size = tile_size)
+ reactive = self.vae.encode(reactive, tile_size = tile_size)
+ latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]
+
+ cat_latents = []
+ for latent, refs in zip(latents, ref_images):
+ if refs is not None:
+ if masks is None:
+ ref_latent = self.vae.encode(refs, tile_size = tile_size)
+ else:
+ ref_latent = self.vae.encode(refs, tile_size = tile_size)
+ ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
+ assert all([x.shape[1] == 1 for x in ref_latent])
+ latent = torch.cat([*ref_latent, latent], dim=1)
+ cat_latents.append(latent)
+ return cat_latents
+
+ def vace_encode_masks(self, masks, ref_images=None):
+ if ref_images is None:
+ ref_images = [None] * len(masks)
+ else:
+ assert len(masks) == len(ref_images)
+
+ result_masks = []
+ for mask, refs in zip(masks, ref_images):
+ c, depth, height, width = mask.shape
+ new_depth = int((depth + 3) // self.vae_stride[0])
+ height = 2 * (int(height) // (self.vae_stride[1] * 2))
+ width = 2 * (int(width) // (self.vae_stride[2] * 2))
+
+ # reshape
+ mask = mask[0, :, :, :]
+ mask = mask.view(
+ depth, height, self.vae_stride[1], width, self.vae_stride[1]
+ ) # depth, height, 8, width, 8
+ mask = mask.permute(2, 4, 0, 1, 3) # 8, 8, depth, height, width
+ mask = mask.reshape(
+ self.vae_stride[1] * self.vae_stride[2], depth, height, width
+ ) # 8*8, depth, height, width
+
+ # interpolation
+ mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)
+
+ if refs is not None:
+ length = len(refs)
+ mask_pad = torch.zeros_like(mask[:, :length, :, :])
+ mask = torch.cat((mask_pad, mask), dim=1)
+ result_masks.append(mask)
+ return result_masks
+
+ def vace_latent(self, z, m):
+ return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
+
+ def prepare_source(self, src_video, src_mask, src_ref_images, num_frames, image_size, device, trim_video= 0):
+ image_sizes = []
+ for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
+ if sub_src_mask is not None and sub_src_video is not None:
+ src_video[i], src_mask[i], _, _, _ = self.vid_proc.load_video_pair(sub_src_video, sub_src_mask, max_frames= num_frames, trim_video = trim_video)
+ src_video[i] = src_video[i].to(device)
+ src_mask[i] = src_mask[i].to(device)
+ src_video_shape = src_video[i].shape
+ if src_video_shape[1] != num_frames:
+ src_video[i] = torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], num_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
+ src_mask[i] = torch.cat( [src_mask[i], src_mask[i].new_ones(src_video_shape[0], num_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
+
+ src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
+ image_sizes.append(src_video[i].shape[2:])
+ elif sub_src_video is None:
+ src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
+ src_mask[i] = torch.ones_like(src_video[i], device=device)
+ image_sizes.append(image_size)
+ else:
+ src_video[i], _, _, _ = self.vid_proc.load_video(sub_src_video, max_frames= num_frames, trim_video = trim_video)
+ src_video[i] = src_video[i].to(device)
+ src_video_shape = src_video[i].shape
+ if src_video_shape[1] != num_frames:
+ src_video[i] = torch.cat( [src_video[i], src_video[i].new_zeros(src_video_shape[0], num_frames -src_video_shape[1], *src_video_shape[-2:])], dim=1)
+ src_mask[i] = torch.ones_like(src_video[i], device=device)
+ image_sizes.append(src_video[i].shape[2:])
+
+ for i, ref_images in enumerate(src_ref_images):
+ if ref_images is not None:
+ image_size = image_sizes[i]
+ for j, ref_img in enumerate(ref_images):
+ if ref_img is not None:
+ ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
+ if ref_img.shape[-2:] != image_size:
+ canvas_height, canvas_width = image_size
+ ref_height, ref_width = ref_img.shape[-2:]
+ white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
+ scale = min(canvas_height / ref_height, canvas_width / ref_width)
+ new_height = int(ref_height * scale)
+ new_width = int(ref_width * scale)
+ resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
+ top = (canvas_height - new_height) // 2
+ left = (canvas_width - new_width) // 2
+ white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
+ ref_img = white_canvas
+ src_ref_images[i][j] = ref_img.to(device)
+ return src_video, src_mask, src_ref_images
+
+ def decode_latent(self, zs, ref_images=None, tile_size= 0 ):
+ if ref_images is None:
+ ref_images = [None] * len(zs)
+ else:
+ assert len(zs) == len(ref_images)
+
+ trimed_zs = []
+ for z, refs in zip(zs, ref_images):
+ if refs is not None:
+ z = z[:, len(refs):, :, :]
+ trimed_zs.append(z)
+
+ return self.vae.decode(trimed_zs, tile_size= tile_size)
+
def generate(self,
input_prompt,
+ input_frames= None,
+ input_masks = None,
+ input_ref_images = None,
+ context_scale=1.0,
size=(1280, 720),
frame_num=81,
shift=5.0,
@@ -187,14 +328,6 @@ class WanT2V:
- W: Frame width from size)
"""
# preprocess
- F = frame_num
- target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
- size[1] // self.vae_stride[1],
- size[0] // self.vae_stride[2])
-
- seq_len = math.ceil((target_shape[2] * target_shape[3]) /
- (self.patch_size[1] * self.patch_size[2]) *
- target_shape[1] / self.sp_size) * self.sp_size
if n_prompt == "":
n_prompt = self.sample_neg_prompt
@@ -213,6 +346,29 @@ class WanT2V:
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
context = [t.to(self.device) for t in context]
context_null = [t.to(self.device) for t in context_null]
+
+ if input_frames != None:
+ # vace context encode
+ input_frames = [u.to(self.device) for u in input_frames]
+ input_ref_images = [ None if u == None else [v.to(self.device) for v in u] for u in input_ref_images]
+ input_masks = [u.to(self.device) for u in input_masks]
+
+ z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, tile_size = VAE_tile_size)
+ m0 = self.vace_encode_masks(input_masks, input_ref_images)
+ z = self.vace_latent(z0, m0)
+
+ target_shape = list(z0[0].shape)
+ target_shape[0] = int(target_shape[0] / 2)
+ else:
+ F = frame_num
+ target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
+ size[1] // self.vae_stride[1],
+ size[0] // self.vae_stride[2])
+
+ seq_len = math.ceil((target_shape[2] * target_shape[3]) /
+ (self.patch_size[1] * self.patch_size[2]) *
+ target_shape[1] / self.sp_size) * self.sp_size
+
noise = [
torch.randn(
@@ -261,10 +417,12 @@ class WanT2V:
arg_c = {'context': context, 'seq_len': seq_len, 'freqs': freqs, 'pipeline': self}
arg_null = {'context': context_null, 'seq_len': seq_len, 'freqs': freqs, 'pipeline': self}
arg_both = {'context': context, 'context2': context_null, 'seq_len': seq_len, 'freqs': freqs, 'pipeline': self}
+ if input_frames != None:
+ vace_dict = {'vace_context' : z, 'vace_context_scale' : context_scale}
+ arg_c.update(vace_dict)
+ arg_null.update(vace_dict)
+ arg_both.update(vace_dict)
- # arg_c = {'context': context, 'seq_len': seq_len, 'freqs': freqs, 'pipeline': self, "max_steps": sampling_steps}
- # arg_null = {'context': context_null, 'seq_len': seq_len, 'freqs': freqs, 'pipeline': self, "max_steps": sampling_steps}
- # arg_both = {'context': context, 'context2': context_null, 'seq_len': seq_len, 'freqs': freqs, 'pipeline': self, "max_steps": sampling_steps}
if self.model.enable_teacache:
self.model.compute_teacache_threshold(self.model.teacache_start_step, timesteps, self.model.teacache_multiplier)
if callback != None:
@@ -281,7 +439,7 @@ class WanT2V:
# self.model.to(self.device)
if joint_pass:
noise_pred_cond, noise_pred_uncond = self.model(
- latent_model_input, t=timestep,current_step=i, slg_layers=slg_layers_local, **arg_both)
+ latent_model_input, t=timestep, current_step=i, slg_layers=slg_layers_local, **arg_both)
if self._interrupt:
return None
else:
@@ -329,7 +487,11 @@ class WanT2V:
self.model.cpu()
torch.cuda.empty_cache()
if self.rank == 0:
- videos = self.vae.decode(x0, VAE_tile_size)
+
+ if input_frames == None:
+ videos = self.vae.decode(x0, VAE_tile_size)
+ else:
+ videos = self.decode_latent(x0, input_ref_images, VAE_tile_size)
del noise, latents
diff --git a/wan/utils/utils.py b/wan/utils/utils.py
index e19c298..d4e237d 100644
--- a/wan/utils/utils.py
+++ b/wan/utils/utils.py
@@ -3,21 +3,70 @@ import argparse
import binascii
import os
import os.path as osp
+import torchvision.transforms.functional as TF
+import torch.nn.functional as F
import imageio
import torch
+import decord
import torchvision
from PIL import Image
import numpy as np
+from rembg import remove, new_session
+
__all__ = ['cache_video', 'cache_image', 'str2bool']
+
+
+from PIL import Image
+
+def get_video_frame(file_name, frame_no):
+ decord.bridge.set_bridge('torch')
+ reader = decord.VideoReader(file_name)
+
+ frame = reader.get_batch([frame_no]).squeeze(0)
+ img = Image.fromarray(frame.numpy().astype(np.uint8))
+ return img
+
def resize_lanczos(img, h, w):
img = Image.fromarray(np.clip(255. * img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8))
img = img.resize((w,h), resample=Image.Resampling.LANCZOS)
return torch.from_numpy(np.array(img).astype(np.float32) / 255.0).movedim(-1, 0)
+def remove_background(img, session=None):
+ if session ==None:
+ session = new_session()
+ img = Image.fromarray(np.clip(255. * img.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8))
+ img = remove(img, session=session, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
+ return torch.from_numpy(np.array(img).astype(np.float32) / 255.0).movedim(-1, 0)
+
+
+
+
+def resize_and_remove_background(img_list, canvas_width, canvas_height, rm_background ):
+ if rm_background:
+ session = new_session()
+
+ output_list =[]
+ for img in img_list:
+ width, height = img.size
+ white_canvas = np.full( (canvas_height, canvas_width, 3), 255, dtype= np.uint8 )
+ scale = min(canvas_height / height, canvas_width / width)
+ new_height = int(height * scale)
+ new_width = int(width * scale)
+ resized_image= img.resize((new_width,new_height), resample=Image.Resampling.LANCZOS)
+ if rm_background:
+ resized_image = remove(resized_image, session=session, alpha_matting = True, bgcolor=[255, 255, 255, 0]).convert('RGB')
+ top = (canvas_height - new_height) // 2
+ left = (canvas_width - new_width) // 2
+ white_canvas[top:top + new_height, left:left + new_width, :] = np.array(resized_image)
+ img = Image.fromarray(white_canvas)
+ output_list.append(img)
+ return output_list
+
+
def rand_name(length=8, suffix=''):
name = binascii.b2a_hex(os.urandom(length)).decode('utf-8')
if suffix:
diff --git a/wan/utils/vace_preprocessor.py b/wan/utils/vace_preprocessor.py
new file mode 100644
index 0000000..7c10719
--- /dev/null
+++ b/wan/utils/vace_preprocessor.py
@@ -0,0 +1,298 @@
+# -*- coding: utf-8 -*-
+# Copyright (c) Alibaba, Inc. and its affiliates.
+import numpy as np
+from PIL import Image
+import torch
+import torch.nn.functional as F
+import torchvision.transforms.functional as TF
+
+
+class VaceImageProcessor(object):
+ def __init__(self, downsample=None, seq_len=None):
+ self.downsample = downsample
+ self.seq_len = seq_len
+
+ def _pillow_convert(self, image, cvt_type='RGB'):
+ if image.mode != cvt_type:
+ if image.mode == 'P':
+ image = image.convert(f'{cvt_type}A')
+ if image.mode == f'{cvt_type}A':
+ bg = Image.new(cvt_type,
+ size=(image.width, image.height),
+ color=(255, 255, 255))
+ bg.paste(image, (0, 0), mask=image)
+ image = bg
+ else:
+ image = image.convert(cvt_type)
+ return image
+
+ def _load_image(self, img_path):
+ if img_path is None or img_path == '':
+ return None
+ img = Image.open(img_path)
+ img = self._pillow_convert(img)
+ return img
+
+ def _resize_crop(self, img, oh, ow, normalize=True):
+ """
+ Resize, center crop, convert to tensor, and normalize.
+ """
+ # resize and crop
+ iw, ih = img.size
+ if iw != ow or ih != oh:
+ # resize
+ scale = max(ow / iw, oh / ih)
+ img = img.resize(
+ (round(scale * iw), round(scale * ih)),
+ resample=Image.Resampling.LANCZOS
+ )
+ assert img.width >= ow and img.height >= oh
+
+ # center crop
+ x1 = (img.width - ow) // 2
+ y1 = (img.height - oh) // 2
+ img = img.crop((x1, y1, x1 + ow, y1 + oh))
+
+ # normalize
+ if normalize:
+ img = TF.to_tensor(img).sub_(0.5).div_(0.5).unsqueeze(1)
+ return img
+
+ def _image_preprocess(self, img, oh, ow, normalize=True, **kwargs):
+ return self._resize_crop(img, oh, ow, normalize)
+
+ def load_image(self, data_key, **kwargs):
+ return self.load_image_batch(data_key, **kwargs)
+
+ def load_image_pair(self, data_key, data_key2, **kwargs):
+ return self.load_image_batch(data_key, data_key2, **kwargs)
+
+ def load_image_batch(self, *data_key_batch, normalize=True, seq_len=None, **kwargs):
+ seq_len = self.seq_len if seq_len is None else seq_len
+ imgs = []
+ for data_key in data_key_batch:
+ img = self._load_image(data_key)
+ imgs.append(img)
+ w, h = imgs[0].size
+ dh, dw = self.downsample[1:]
+
+ # compute output size
+ scale = min(1., np.sqrt(seq_len / ((h / dh) * (w / dw))))
+ oh = int(h * scale) // dh * dh
+ ow = int(w * scale) // dw * dw
+ assert (oh // dh) * (ow // dw) <= seq_len
+ imgs = [self._image_preprocess(img, oh, ow, normalize) for img in imgs]
+ return *imgs, (oh, ow)
+
+
+class VaceVideoProcessor(object):
+ def __init__(self, downsample, min_area, max_area, min_fps, max_fps, zero_start, seq_len, keep_last, **kwargs):
+ self.downsample = downsample
+ self.min_area = min_area
+ self.max_area = max_area
+ self.min_fps = min_fps
+ self.max_fps = max_fps
+ self.zero_start = zero_start
+ self.keep_last = keep_last
+ self.seq_len = seq_len
+ assert seq_len >= min_area / (self.downsample[1] * self.downsample[2])
+
+ @staticmethod
+ def resize_crop(video: torch.Tensor, oh: int, ow: int):
+ """
+ Resize, center crop and normalize for decord loaded video (torch.Tensor type)
+
+ Parameters:
+ video - video to process (torch.Tensor): Tensor from `reader.get_batch(frame_ids)`, in shape of (T, H, W, C)
+ oh - target height (int)
+ ow - target width (int)
+
+ Returns:
+ The processed video (torch.Tensor): Normalized tensor range [-1, 1], in shape of (C, T, H, W)
+
+ Raises:
+ """
+ # permute ([t, h, w, c] -> [t, c, h, w])
+ video = video.permute(0, 3, 1, 2)
+
+ # resize and crop
+ ih, iw = video.shape[2:]
+ if ih != oh or iw != ow:
+ # resize
+ scale = max(ow / iw, oh / ih)
+ video = F.interpolate(
+ video,
+ size=(round(scale * ih), round(scale * iw)),
+ mode='bicubic',
+ antialias=True
+ )
+ assert video.size(3) >= ow and video.size(2) >= oh
+
+ # center crop
+ x1 = (video.size(3) - ow) // 2
+ y1 = (video.size(2) - oh) // 2
+ video = video[:, :, y1:y1 + oh, x1:x1 + ow]
+
+ # permute ([t, c, h, w] -> [c, t, h, w]) and normalize
+ video = video.transpose(0, 1).float().div_(127.5).sub_(1.)
+ return video
+
+ def _video_preprocess(self, video, oh, ow):
+ return self.resize_crop(video, oh, ow)
+
+ def _get_frameid_bbox_default(self, fps, frame_timestamps, h, w, crop_box, rng):
+ target_fps = min(fps, self.max_fps)
+ duration = frame_timestamps[-1].mean()
+ x1, x2, y1, y2 = [0, w, 0, h] if crop_box is None else crop_box
+ h, w = y2 - y1, x2 - x1
+ ratio = h / w
+ df, dh, dw = self.downsample
+
+ # min/max area of the [latent video]
+ min_area_z = self.min_area / (dh * dw)
+ max_area_z = min(self.seq_len, self.max_area / (dh * dw), (h // dh) * (w // dw))
+
+ # sample a frame number of the [latent video]
+ rand_area_z = np.square(np.power(2, rng.uniform(
+ np.log2(np.sqrt(min_area_z)),
+ np.log2(np.sqrt(max_area_z))
+ )))
+ of = min(
+ (int(duration * target_fps) - 1) // df + 1,
+ int(self.seq_len / rand_area_z)
+ )
+
+ # deduce target shape of the [latent video]
+ target_area_z = min(max_area_z, int(self.seq_len / of))
+ oh = round(np.sqrt(target_area_z * ratio))
+ ow = int(target_area_z / oh)
+ of = (of - 1) * df + 1
+ oh *= dh
+ ow *= dw
+
+ # sample frame ids
+ target_duration = of / target_fps
+ begin = 0. if self.zero_start else rng.uniform(0, duration - target_duration)
+ timestamps = np.linspace(begin, begin + target_duration, of)
+ frame_ids = np.argmax(np.logical_and(
+ timestamps[:, None] >= frame_timestamps[None, :, 0],
+ timestamps[:, None] < frame_timestamps[None, :, 1]
+ ), axis=1).tolist()
+ return frame_ids, (x1, x2, y1, y2), (oh, ow), target_fps
+
+ def _get_frameid_bbox_adjust_last(self, fps, frame_timestamps, h, w, crop_box, rng, max_frames= 0):
+ import math
+ target_fps = self.max_fps
+ video_duration = frame_timestamps[-1][1]
+ video_frame_duration = 1 /fps
+ target_frame_duration = 1 / target_fps
+
+ cur_time = 0
+ target_time = 0
+ frame_no = 0
+ frame_ids =[]
+ for i in range(max_frames):
+ add_frames_count = math.ceil( (target_time -cur_time) / video_frame_duration )
+ frame_no += add_frames_count
+ frame_ids.append(frame_no)
+ cur_time += add_frames_count * video_frame_duration
+ target_time += target_frame_duration
+ if cur_time > video_duration:
+ break
+
+ x1, x2, y1, y2 = [0, w, 0, h] if crop_box is None else crop_box
+ h, w = y2 - y1, x2 - x1
+ ratio = h / w
+ df, dh, dw = self.downsample
+ seq_len = self.seq_len
+ # min/max area of the [latent video]
+ min_area_z = self.min_area / (dh * dw)
+ # max_area_z = min(seq_len, self.max_area / (dh * dw), (h // dh) * (w // dw))
+ max_area_z = min_area_z # workaround bug
+ # sample a frame number of the [latent video]
+ rand_area_z = np.square(np.power(2, rng.uniform(
+ np.log2(np.sqrt(min_area_z)),
+ np.log2(np.sqrt(max_area_z))
+ )))
+
+ seq_len = max_area_z * ((max_frames- 1) // df +1)
+
+ # of = min(
+ # (len(frame_ids) - 1) // df + 1,
+ # int(seq_len / rand_area_z)
+ # )
+ of = (len(frame_ids) - 1) // df + 1
+
+
+ # deduce target shape of the [latent video]
+ # target_area_z = min(max_area_z, int(seq_len / of))
+ target_area_z = max_area_z
+ oh = round(np.sqrt(target_area_z * ratio))
+ ow = int(target_area_z / oh)
+ of = (of - 1) * df + 1
+ oh *= dh
+ ow *= dw
+
+ return frame_ids, (x1, x2, y1, y2), (oh, ow), target_fps
+
+ def _get_frameid_bbox(self, fps, frame_timestamps, h, w, crop_box, rng, max_frames= 0):
+ if self.keep_last:
+ return self._get_frameid_bbox_adjust_last(fps, frame_timestamps, h, w, crop_box, rng, max_frames= max_frames)
+ else:
+ return self._get_frameid_bbox_default(fps, frame_timestamps, h, w, crop_box, rng, max_frames= max_frames)
+
+ def load_video(self, data_key, crop_box=None, seed=2024, **kwargs):
+ return self.load_video_batch(data_key, crop_box=crop_box, seed=seed, **kwargs)
+
+ def load_video_pair(self, data_key, data_key2, crop_box=None, seed=2024, **kwargs):
+ return self.load_video_batch(data_key, data_key2, crop_box=crop_box, seed=seed, **kwargs)
+
+ def load_video_batch(self, *data_key_batch, crop_box=None, seed=2024, max_frames= 0, trim_video =0, **kwargs):
+ rng = np.random.default_rng(seed + hash(data_key_batch[0]) % 10000)
+ # read video
+ import decord
+ decord.bridge.set_bridge('torch')
+ readers = []
+ for data_k in data_key_batch:
+ reader = decord.VideoReader(data_k)
+ readers.append(reader)
+
+ fps = readers[0].get_avg_fps()
+ length = min([len(r) for r in readers])
+ frame_timestamps = [readers[0].get_frame_timestamp(i) for i in range(length)]
+ frame_timestamps = np.array(frame_timestamps, dtype=np.float32)
+ # # frame_timestamps = frame_timestamps[ :max_frames]
+ # if trim_video > 0:
+ # frame_timestamps = frame_timestamps[ :trim_video]
+ max_frames = min(max_frames, trim_video) if trim_video > 0 else max_frames
+ h, w = readers[0].next().shape[:2]
+ frame_ids, (x1, x2, y1, y2), (oh, ow), fps = self._get_frameid_bbox(fps, frame_timestamps, h, w, crop_box, rng, max_frames=max_frames)
+
+ # preprocess video
+ videos = [reader.get_batch(frame_ids)[:, y1:y2, x1:x2, :] for reader in readers]
+ videos = [self._video_preprocess(video, oh, ow) for video in videos]
+ return *videos, frame_ids, (oh, ow), fps
+ # return videos if len(videos) > 1 else videos[0]
+
+
+def prepare_source(src_video, src_mask, src_ref_images, num_frames, image_size, device):
+ for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
+ if sub_src_video is None and sub_src_mask is None:
+ src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
+ src_mask[i] = torch.ones((1, num_frames, image_size[0], image_size[1]), device=device)
+ for i, ref_images in enumerate(src_ref_images):
+ if ref_images is not None:
+ for j, ref_img in enumerate(ref_images):
+ if ref_img is not None and ref_img.shape[-2:] != image_size:
+ canvas_height, canvas_width = image_size
+ ref_height, ref_width = ref_img.shape[-2:]
+ white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
+ scale = min(canvas_height / ref_height, canvas_width / ref_width)
+ new_height = int(ref_height * scale)
+ new_width = int(ref_width * scale)
+ resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
+ top = (canvas_height - new_height) // 2
+ left = (canvas_width - new_width) // 2
+ white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
+ src_ref_images[i][j] = white_canvas
+ return src_video, src_mask, src_ref_images