mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-03 22:04:21 +00:00 
			
		
		
		
	Merge pull request #500 from psyb0t/feature_add-cuda-docker-runner
Add Docker support with automatic GPU detection and optimization for Debian/Ubuntu systems
This commit is contained in:
		
						commit
						d16cc19945
					
				
							
								
								
									
										92
									
								
								Dockerfile
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										92
									
								
								Dockerfile
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,92 @@
 | 
			
		||||
FROM nvidia/cuda:12.4.1-cudnn-devel-ubuntu22.04
 | 
			
		||||
 | 
			
		||||
# Build arg for GPU architectures - specify which CUDA compute capabilities to compile for
 | 
			
		||||
# Common values:
 | 
			
		||||
#   7.0  - Tesla V100
 | 
			
		||||
#   7.5  - RTX 2060, 2070, 2080, Titan RTX
 | 
			
		||||
#   8.0  - A100, A800 (Ampere data center)
 | 
			
		||||
#   8.6  - RTX 3060, 3070, 3080, 3090 (Ampere consumer)
 | 
			
		||||
#   8.9  - RTX 4070, 4080, 4090 (Ada Lovelace)
 | 
			
		||||
#   9.0  - H100, H800 (Hopper data center)
 | 
			
		||||
#   12.0 - RTX 5070, 5080, 5090 (Blackwell) - Note: sm_120 architecture
 | 
			
		||||
#
 | 
			
		||||
# Examples:
 | 
			
		||||
#   RTX 3060: --build-arg CUDA_ARCHITECTURES="8.6"
 | 
			
		||||
#   RTX 4090: --build-arg CUDA_ARCHITECTURES="8.9"
 | 
			
		||||
#   Multiple: --build-arg CUDA_ARCHITECTURES="8.0;8.6;8.9"
 | 
			
		||||
#
 | 
			
		||||
# Note: Including 8.9 or 9.0 may cause compilation issues on some setups
 | 
			
		||||
# Default includes 8.0 and 8.6 for broad Ampere compatibility
 | 
			
		||||
ARG CUDA_ARCHITECTURES="8.0;8.6"
 | 
			
		||||
 | 
			
		||||
ENV DEBIAN_FRONTEND=noninteractive
 | 
			
		||||
 | 
			
		||||
# Install system dependencies
 | 
			
		||||
RUN apt update && \
 | 
			
		||||
    apt install -y \
 | 
			
		||||
    python3 python3-pip git wget curl cmake ninja-build \
 | 
			
		||||
    libgl1 libglib2.0-0 ffmpeg && \
 | 
			
		||||
    apt clean
 | 
			
		||||
 | 
			
		||||
WORKDIR /workspace
 | 
			
		||||
 | 
			
		||||
COPY requirements.txt .
 | 
			
		||||
 | 
			
		||||
# Upgrade pip first
 | 
			
		||||
RUN pip install --upgrade pip setuptools wheel
 | 
			
		||||
 | 
			
		||||
# Install requirements if exists
 | 
			
		||||
RUN pip install -r requirements.txt
 | 
			
		||||
 | 
			
		||||
# Install PyTorch with CUDA support
 | 
			
		||||
RUN pip install --extra-index-url https://download.pytorch.org/whl/cu124 \
 | 
			
		||||
    torch==2.6.0+cu124 torchvision==0.21.0+cu124
 | 
			
		||||
 | 
			
		||||
# Install SageAttention from git (patch GPU detection)
 | 
			
		||||
ENV TORCH_CUDA_ARCH_LIST="${CUDA_ARCHITECTURES}"
 | 
			
		||||
ENV FORCE_CUDA="1"
 | 
			
		||||
ENV MAX_JOBS="1"
 | 
			
		||||
 | 
			
		||||
COPY <<EOF /tmp/patch_setup.py
 | 
			
		||||
import os
 | 
			
		||||
with open('setup.py', 'r') as f:
 | 
			
		||||
    content = f.read()
 | 
			
		||||
 | 
			
		||||
# Get architectures from environment variable
 | 
			
		||||
arch_list = os.environ.get('TORCH_CUDA_ARCH_LIST')
 | 
			
		||||
arch_set = '{' + ', '.join([f'"{arch}"' for arch in arch_list.split(';')]) + '}'
 | 
			
		||||
 | 
			
		||||
# Replace the GPU detection section
 | 
			
		||||
old_section = '''compute_capabilities = set()
 | 
			
		||||
device_count = torch.cuda.device_count()
 | 
			
		||||
for i in range(device_count):
 | 
			
		||||
    major, minor = torch.cuda.get_device_capability(i)
 | 
			
		||||
    if major < 8:
 | 
			
		||||
        warnings.warn(f"skipping GPU {i} with compute capability {major}.{minor}")
 | 
			
		||||
        continue
 | 
			
		||||
    compute_capabilities.add(f"{major}.{minor}")'''
 | 
			
		||||
 | 
			
		||||
new_section = 'compute_capabilities = ' + arch_set + '''
 | 
			
		||||
print(f"Manually set compute capabilities: {compute_capabilities}")'''
 | 
			
		||||
 | 
			
		||||
content = content.replace(old_section, new_section)
 | 
			
		||||
 | 
			
		||||
with open('setup.py', 'w') as f:
 | 
			
		||||
    f.write(content)
 | 
			
		||||
EOF
 | 
			
		||||
 | 
			
		||||
RUN git clone https://github.com/thu-ml/SageAttention.git /tmp/sageattention && \
 | 
			
		||||
    cd /tmp/sageattention && \
 | 
			
		||||
    python3 /tmp/patch_setup.py && \
 | 
			
		||||
    pip install --no-build-isolation .
 | 
			
		||||
 | 
			
		||||
RUN useradd -u 1000 -ms /bin/bash user
 | 
			
		||||
 | 
			
		||||
RUN chown -R user:user /workspace
 | 
			
		||||
 | 
			
		||||
RUN mkdir /home/user/.cache && \
 | 
			
		||||
    chown -R user:user /home/user/.cache
 | 
			
		||||
 | 
			
		||||
COPY entrypoint.sh /workspace/entrypoint.sh
 | 
			
		||||
 | 
			
		||||
ENTRYPOINT ["/workspace/entrypoint.sh"]
 | 
			
		||||
							
								
								
									
										31
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										31
									
								
								README.md
									
									
									
									
									
								
							@ -13,7 +13,7 @@ WanGP supports the Wan (and derived models), Hunyuan Video and LTV Video models
 | 
			
		||||
- Auto download of the required model adapted to your specific architecture
 | 
			
		||||
- Tools integrated to facilitate Video Generation : Mask Editor, Prompt Enhancer, Temporal and Spatial Generation, MMAudio, Video Browser, Pose / Depth / Flow extractor
 | 
			
		||||
- Loras Support to customize each model
 | 
			
		||||
- Queuing system : make your shopping list of videos to generate and come back later 
 | 
			
		||||
- Queuing system : make your shopping list of videos to generate and come back later
 | 
			
		||||
 | 
			
		||||
**Discord Server to get Help from Other Users and show your Best Videos:** https://discord.gg/g7efUW9jGV
 | 
			
		||||
 | 
			
		||||
@ -122,6 +122,33 @@ See full changelog: **[Changelog](docs/CHANGELOG.md)**
 | 
			
		||||
 | 
			
		||||
## 🚀 Quick Start
 | 
			
		||||
 | 
			
		||||
### 🐳 Docker:
 | 
			
		||||
 | 
			
		||||
**For Debian-based systems (Ubuntu, Debian, etc.):**
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
./run-docker-cuda-deb.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
This automated script will:
 | 
			
		||||
 | 
			
		||||
- Detect your GPU model and VRAM automatically
 | 
			
		||||
- Select optimal CUDA architecture for your GPU
 | 
			
		||||
- Install NVIDIA Docker runtime if needed
 | 
			
		||||
- Build a Docker image with all dependencies
 | 
			
		||||
- Run WanGP with optimal settings for your hardware
 | 
			
		||||
 | 
			
		||||
**Docker environment includes:**
 | 
			
		||||
 | 
			
		||||
- NVIDIA CUDA 12.4.1 with cuDNN support
 | 
			
		||||
- PyTorch 2.6.0 with CUDA 12.4 support
 | 
			
		||||
- SageAttention compiled for your specific GPU architecture
 | 
			
		||||
- Optimized environment variables for performance (TF32, threading, etc.)
 | 
			
		||||
- Automatic cache directory mounting for faster subsequent runs
 | 
			
		||||
- Current directory mounted in container - all downloaded models, loras, generated videos and files are saved locally
 | 
			
		||||
 | 
			
		||||
**Supported GPUs:** RTX 50XX, RTX 40XX, RTX 30XX, RTX 20XX, GTX 16XX, GTX 10XX, Tesla V100, A100, H100, and more.
 | 
			
		||||
 | 
			
		||||
**One-click installation:** Get started instantly with [Pinokio App](https://pinokio.computer/)
 | 
			
		||||
 | 
			
		||||
**Manual installation:**
 | 
			
		||||
@ -217,4 +244,4 @@ https://www.youtube.com/watch?v=T5jNiEhf9xk
 | 
			
		||||
 | 
			
		||||
<p align="center">
 | 
			
		||||
Made with ❤️ by DeepBeepMeep
 | 
			
		||||
</p> 
 | 
			
		||||
</p>
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										118
									
								
								entrypoint.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										118
									
								
								entrypoint.sh
									
									
									
									
									
										Executable file
									
								
							@ -0,0 +1,118 @@
 | 
			
		||||
#!/usr/bin/env bash
 | 
			
		||||
export HOME=/home/user
 | 
			
		||||
export PYTHONUNBUFFERED=1
 | 
			
		||||
export HF_HOME=/home/user/.cache/huggingface
 | 
			
		||||
 | 
			
		||||
export OMP_NUM_THREADS=$(nproc)
 | 
			
		||||
export MKL_NUM_THREADS=$(nproc)
 | 
			
		||||
export OPENBLAS_NUM_THREADS=$(nproc)
 | 
			
		||||
export NUMEXPR_NUM_THREADS=$(nproc)
 | 
			
		||||
 | 
			
		||||
export TORCH_ALLOW_TF32_CUBLAS=1
 | 
			
		||||
export TORCH_ALLOW_TF32_CUDNN=1
 | 
			
		||||
 | 
			
		||||
# Disable audio warnings in Docker
 | 
			
		||||
export SDL_AUDIODRIVER=dummy
 | 
			
		||||
export PULSE_RUNTIME_PATH=/tmp/pulse-runtime
 | 
			
		||||
 | 
			
		||||
# ═══════════════════════════ CUDA DEBUG CHECKS ═══════════════════════════
 | 
			
		||||
 | 
			
		||||
echo "🔍 CUDA Environment Debug Information:"
 | 
			
		||||
echo "═══════════════════════════════════════════════════════════════════════"
 | 
			
		||||
 | 
			
		||||
# Check CUDA driver on host (if accessible)
 | 
			
		||||
if command -v nvidia-smi >/dev/null 2>&1; then
 | 
			
		||||
    echo "✅ nvidia-smi available"
 | 
			
		||||
    echo "📊 GPU Information:"
 | 
			
		||||
    nvidia-smi --query-gpu=name,driver_version,memory.total,memory.free --format=csv,noheader,nounits 2>/dev/null || echo "❌ nvidia-smi failed to query GPU"
 | 
			
		||||
    echo "🏃 Running Processes:"
 | 
			
		||||
    nvidia-smi --query-compute-apps=pid,name,used_memory --format=csv,noheader,nounits 2>/dev/null || echo "ℹ️  No running CUDA processes"
 | 
			
		||||
else
 | 
			
		||||
    echo "❌ nvidia-smi not available in container"
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
# Check CUDA runtime libraries
 | 
			
		||||
echo ""
 | 
			
		||||
echo "🔧 CUDA Runtime Check:"
 | 
			
		||||
if ls /usr/local/cuda*/lib*/libcudart.so* >/dev/null 2>&1; then
 | 
			
		||||
    echo "✅ CUDA runtime libraries found:"
 | 
			
		||||
    ls /usr/local/cuda*/lib*/libcudart.so* 2>/dev/null
 | 
			
		||||
else
 | 
			
		||||
    echo "❌ CUDA runtime libraries not found"
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
# Check CUDA devices
 | 
			
		||||
echo ""
 | 
			
		||||
echo "🖥️  CUDA Device Files:"
 | 
			
		||||
if ls /dev/nvidia* >/dev/null 2>&1; then
 | 
			
		||||
    echo "✅ NVIDIA device files found:"
 | 
			
		||||
    ls -la /dev/nvidia* 2>/dev/null
 | 
			
		||||
else
 | 
			
		||||
    echo "❌ No NVIDIA device files found - Docker may not have GPU access"
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
# Check CUDA environment variables
 | 
			
		||||
echo ""
 | 
			
		||||
echo "🌍 CUDA Environment Variables:"
 | 
			
		||||
echo "   CUDA_HOME: ${CUDA_HOME:-not set}"
 | 
			
		||||
echo "   CUDA_ROOT: ${CUDA_ROOT:-not set}"
 | 
			
		||||
echo "   CUDA_PATH: ${CUDA_PATH:-not set}"
 | 
			
		||||
echo "   LD_LIBRARY_PATH: ${LD_LIBRARY_PATH:-not set}"
 | 
			
		||||
echo "   TORCH_CUDA_ARCH_LIST: ${TORCH_CUDA_ARCH_LIST:-not set}"
 | 
			
		||||
echo "   CUDA_VISIBLE_DEVICES: ${CUDA_VISIBLE_DEVICES:-not set}"
 | 
			
		||||
 | 
			
		||||
# Check PyTorch CUDA availability
 | 
			
		||||
echo ""
 | 
			
		||||
echo "🐍 PyTorch CUDA Check:"
 | 
			
		||||
python3 -c "
 | 
			
		||||
import sys
 | 
			
		||||
try:
 | 
			
		||||
    import torch
 | 
			
		||||
    print('✅ PyTorch imported successfully')
 | 
			
		||||
    print(f'   Version: {torch.__version__}')
 | 
			
		||||
    print(f'   CUDA available: {torch.cuda.is_available()}')
 | 
			
		||||
    if torch.cuda.is_available():
 | 
			
		||||
        print(f'   CUDA version: {torch.version.cuda}')
 | 
			
		||||
        print(f'   cuDNN version: {torch.backends.cudnn.version()}')
 | 
			
		||||
        print(f'   Device count: {torch.cuda.device_count()}')
 | 
			
		||||
        for i in range(torch.cuda.device_count()):
 | 
			
		||||
            props = torch.cuda.get_device_properties(i)
 | 
			
		||||
            print(f'   Device {i}: {props.name} (SM {props.major}.{props.minor}, {props.total_memory//1024//1024}MB)')
 | 
			
		||||
    else:
 | 
			
		||||
        print('❌ CUDA not available to PyTorch')
 | 
			
		||||
        print('   This could mean:')
 | 
			
		||||
        print('   - CUDA runtime not properly installed')
 | 
			
		||||
        print('   - GPU not accessible to container')
 | 
			
		||||
        print('   - Driver/runtime version mismatch')
 | 
			
		||||
except ImportError as e:
 | 
			
		||||
    print(f'❌ Failed to import PyTorch: {e}')
 | 
			
		||||
except Exception as e:
 | 
			
		||||
    print(f'❌ PyTorch CUDA check failed: {e}')
 | 
			
		||||
" 2>&1
 | 
			
		||||
 | 
			
		||||
# Check for common CUDA issues
 | 
			
		||||
echo ""
 | 
			
		||||
echo "🩺 Common Issue Diagnostics:"
 | 
			
		||||
 | 
			
		||||
# Check if running with proper Docker flags
 | 
			
		||||
if [ ! -e /dev/nvidia0 ] && [ ! -e /dev/nvidiactl ]; then
 | 
			
		||||
    echo "❌ No NVIDIA device nodes - container likely missing --gpus all or --runtime=nvidia"
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
# Check CUDA library paths
 | 
			
		||||
if [ -z "$LD_LIBRARY_PATH" ] || ! echo "$LD_LIBRARY_PATH" | grep -q cuda; then
 | 
			
		||||
    echo "⚠️  LD_LIBRARY_PATH may not include CUDA libraries"
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
# Check permissions on device files
 | 
			
		||||
if ls /dev/nvidia* >/dev/null 2>&1; then
 | 
			
		||||
    if ! ls -la /dev/nvidia* | grep -q "rw-rw-rw-\|rw-r--r--"; then
 | 
			
		||||
        echo "⚠️  NVIDIA device files may have restrictive permissions"
 | 
			
		||||
    fi
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
echo "═══════════════════════════════════════════════════════════════════════"
 | 
			
		||||
echo "🚀 Starting application..."
 | 
			
		||||
echo ""
 | 
			
		||||
 | 
			
		||||
exec su -p user -c "python3 wgp.py --listen $*"
 | 
			
		||||
							
								
								
									
										210
									
								
								run-docker-cuda-deb.sh
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										210
									
								
								run-docker-cuda-deb.sh
									
									
									
									
									
										Executable file
									
								
							@ -0,0 +1,210 @@
 | 
			
		||||
#!/usr/bin/env bash
 | 
			
		||||
set -euo pipefail
 | 
			
		||||
 | 
			
		||||
# ───────────────────────── helpers ─────────────────────────
 | 
			
		||||
 | 
			
		||||
install_nvidia_smi_if_missing() {
 | 
			
		||||
    if command -v nvidia-smi &>/dev/null; then
 | 
			
		||||
        return
 | 
			
		||||
    fi
 | 
			
		||||
 | 
			
		||||
    echo "⚠️  nvidia-smi not found. Installing nvidia-utils…"
 | 
			
		||||
    if [ "$EUID" -ne 0 ]; then
 | 
			
		||||
        SUDO='sudo'
 | 
			
		||||
    else
 | 
			
		||||
        SUDO=''
 | 
			
		||||
    fi
 | 
			
		||||
 | 
			
		||||
    $SUDO apt-get update
 | 
			
		||||
    $SUDO apt-get install -y nvidia-utils-535 || $SUDO apt-get install -y nvidia-utils
 | 
			
		||||
 | 
			
		||||
    if ! command -v nvidia-smi &>/dev/null; then
 | 
			
		||||
        echo "❌ Failed to install nvidia-smi. Cannot detect GPU architecture."
 | 
			
		||||
        exit 1
 | 
			
		||||
    fi
 | 
			
		||||
    echo "✅ nvidia-smi installed successfully."
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
detect_gpu_name() {
 | 
			
		||||
    install_nvidia_smi_if_missing
 | 
			
		||||
    nvidia-smi --query-gpu=name --format=csv,noheader,nounits | head -1
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
map_gpu_to_arch() {
 | 
			
		||||
    local name="$1"
 | 
			
		||||
    case "$name" in
 | 
			
		||||
    *"RTX 50"* | *"5090"* | *"5080"* | *"5070"*) echo "12.0" ;;
 | 
			
		||||
    *"H100"* | *"H800"*) echo "9.0" ;;
 | 
			
		||||
    *"RTX 40"* | *"4090"* | *"4080"* | *"4070"* | *"4060"*) echo "8.9" ;;
 | 
			
		||||
    *"RTX 30"* | *"3090"* | *"3080"* | *"3070"* | *"3060"*) echo "8.6" ;;
 | 
			
		||||
    *"A100"* | *"A800"* | *"A40"*) echo "8.0" ;;
 | 
			
		||||
    *"Tesla V100"*) echo "7.0" ;;
 | 
			
		||||
    *"RTX 20"* | *"2080"* | *"2070"* | *"2060"* | *"Titan RTX"*) echo "7.5" ;;
 | 
			
		||||
    *"GTX 16"* | *"1660"* | *"1650"*) echo "7.5" ;;
 | 
			
		||||
    *"GTX 10"* | *"1080"* | *"1070"* | *"1060"* | *"Tesla P100"*) echo "6.1" ;;
 | 
			
		||||
    *"Tesla K80"* | *"Tesla K40"*) echo "3.7" ;;
 | 
			
		||||
    *)
 | 
			
		||||
        echo "❌ Unknown GPU model: $name"
 | 
			
		||||
        echo "Please update the map_gpu_to_arch function for this model."
 | 
			
		||||
        exit 1
 | 
			
		||||
        ;;
 | 
			
		||||
    esac
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
get_gpu_vram() {
 | 
			
		||||
    install_nvidia_smi_if_missing
 | 
			
		||||
    # Get VRAM in MB, convert to GB
 | 
			
		||||
    local vram_mb=$(nvidia-smi --query-gpu=memory.total --format=csv,noheader,nounits | head -1)
 | 
			
		||||
    echo $((vram_mb / 1024))
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
map_gpu_to_profile() {
 | 
			
		||||
    local name="$1"
 | 
			
		||||
    local vram_gb="$2"
 | 
			
		||||
 | 
			
		||||
    # WanGP Profile descriptions from the actual UI:
 | 
			
		||||
    # Profile 1: HighRAM_HighVRAM - 48GB+ RAM, 24GB+ VRAM (fastest for short videos, RTX 3090/4090)
 | 
			
		||||
    # Profile 2: HighRAM_LowVRAM - 48GB+ RAM, 12GB+ VRAM (recommended, most versatile)
 | 
			
		||||
    # Profile 3: LowRAM_HighVRAM - 32GB+ RAM, 24GB+ VRAM (RTX 3090/4090 with limited RAM)
 | 
			
		||||
    # Profile 4: LowRAM_LowVRAM - 32GB+ RAM, 12GB+ VRAM (default, little VRAM or longer videos)
 | 
			
		||||
    # Profile 5: VerylowRAM_LowVRAM - 16GB+ RAM, 10GB+ VRAM (fail safe, slow but works)
 | 
			
		||||
 | 
			
		||||
    case "$name" in
 | 
			
		||||
    # High-end data center GPUs with 24GB+ VRAM - Profile 1 (HighRAM_HighVRAM)
 | 
			
		||||
    *"RTX 50"* | *"5090"* | *"A100"* | *"A800"* | *"H100"* | *"H800"*)
 | 
			
		||||
        if [ "$vram_gb" -ge 24 ]; then
 | 
			
		||||
            echo "1" # HighRAM_HighVRAM - fastest for short videos
 | 
			
		||||
        else
 | 
			
		||||
            echo "2" # HighRAM_LowVRAM - most versatile
 | 
			
		||||
        fi
 | 
			
		||||
        ;;
 | 
			
		||||
    # High-end consumer GPUs (RTX 3090/4090) - Profile 1 or 3
 | 
			
		||||
    *"RTX 40"* | *"4090"* | *"RTX 30"* | *"3090"*)
 | 
			
		||||
        if [ "$vram_gb" -ge 24 ]; then
 | 
			
		||||
            echo "3" # LowRAM_HighVRAM - good for limited RAM systems
 | 
			
		||||
        else
 | 
			
		||||
            echo "2" # HighRAM_LowVRAM - most versatile
 | 
			
		||||
        fi
 | 
			
		||||
        ;;
 | 
			
		||||
    # Mid-range GPUs (RTX 3070/3080/4070/4080) - Profile 2 recommended
 | 
			
		||||
    *"4080"* | *"4070"* | *"3080"* | *"3070"* | *"RTX 20"* | *"2080"* | *"2070"*)
 | 
			
		||||
        if [ "$vram_gb" -ge 12 ]; then
 | 
			
		||||
            echo "2" # HighRAM_LowVRAM - recommended for these GPUs
 | 
			
		||||
        else
 | 
			
		||||
            echo "4" # LowRAM_LowVRAM - default for little VRAM
 | 
			
		||||
        fi
 | 
			
		||||
        ;;
 | 
			
		||||
    # Lower-end GPUs with 6-12GB VRAM - Profile 4 or 5
 | 
			
		||||
    *"4060"* | *"3060"* | *"2060"* | *"GTX 16"* | *"1660"* | *"1650"*)
 | 
			
		||||
        if [ "$vram_gb" -ge 10 ]; then
 | 
			
		||||
            echo "4" # LowRAM_LowVRAM - default
 | 
			
		||||
        else
 | 
			
		||||
            echo "5" # VerylowRAM_LowVRAM - fail safe
 | 
			
		||||
        fi
 | 
			
		||||
        ;;
 | 
			
		||||
    # Older/lower VRAM GPUs - Profile 5 (fail safe)
 | 
			
		||||
    *"GTX 10"* | *"1080"* | *"1070"* | *"1060"* | *"Tesla"*)
 | 
			
		||||
        echo "5" # VerylowRAM_LowVRAM - fail safe
 | 
			
		||||
        ;;
 | 
			
		||||
    *)
 | 
			
		||||
        echo "4" # LowRAM_LowVRAM - default fallback
 | 
			
		||||
        ;;
 | 
			
		||||
    esac
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
# ───────────────────────── main ────────────────────────────
 | 
			
		||||
 | 
			
		||||
echo "🔧 NVIDIA CUDA Setup Check:"
 | 
			
		||||
 | 
			
		||||
# NVIDIA driver check
 | 
			
		||||
if command -v nvidia-smi &>/dev/null; then
 | 
			
		||||
    DRIVER_VERSION=$(nvidia-smi --query-gpu=driver_version --format=csv,noheader,nounits | head -1)
 | 
			
		||||
    echo "✅ NVIDIA Driver: $DRIVER_VERSION"
 | 
			
		||||
    
 | 
			
		||||
    # Quick CUDA 12.4 compatibility check
 | 
			
		||||
    if [[ "$DRIVER_VERSION" =~ ^([0-9]+) ]]; then
 | 
			
		||||
        MAJOR=${BASH_REMATCH[1]}
 | 
			
		||||
        if [ "$MAJOR" -lt 520 ]; then
 | 
			
		||||
            echo "⚠️  Driver $DRIVER_VERSION may not support CUDA 12.4 (need 520+)"
 | 
			
		||||
        fi
 | 
			
		||||
    fi
 | 
			
		||||
else
 | 
			
		||||
    echo "❌ nvidia-smi not found - no NVIDIA drivers"
 | 
			
		||||
    exit 1
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
GPU_NAME=$(detect_gpu_name)
 | 
			
		||||
echo "🔍 Detected GPU: $GPU_NAME"
 | 
			
		||||
 | 
			
		||||
VRAM_GB=$(get_gpu_vram)
 | 
			
		||||
echo "🧠 Detected VRAM: ${VRAM_GB}GB"
 | 
			
		||||
 | 
			
		||||
CUDA_ARCH=$(map_gpu_to_arch "$GPU_NAME")
 | 
			
		||||
echo "🚀 Using CUDA architecture: $CUDA_ARCH"
 | 
			
		||||
 | 
			
		||||
PROFILE=$(map_gpu_to_profile "$GPU_NAME" "$VRAM_GB")
 | 
			
		||||
echo "⚙️  Selected profile: $PROFILE"
 | 
			
		||||
 | 
			
		||||
docker build --build-arg CUDA_ARCHITECTURES="$CUDA_ARCH" -t deepbeepmeep/wan2gp .
 | 
			
		||||
 | 
			
		||||
# sudo helper for later commands
 | 
			
		||||
if [ "$EUID" -ne 0 ]; then
 | 
			
		||||
    SUDO='sudo'
 | 
			
		||||
else
 | 
			
		||||
    SUDO=''
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
# Ensure NVIDIA runtime is available
 | 
			
		||||
if ! docker info 2>/dev/null | grep -q 'Runtimes:.*nvidia'; then
 | 
			
		||||
    echo "⚠️  NVIDIA Docker runtime not found. Installing nvidia-docker2…"
 | 
			
		||||
    $SUDO apt-get update
 | 
			
		||||
    $SUDO apt-get install -y curl ca-certificates gnupg
 | 
			
		||||
    curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | $SUDO apt-key add -
 | 
			
		||||
    distribution=$(
 | 
			
		||||
        . /etc/os-release
 | 
			
		||||
        echo $ID$VERSION_ID
 | 
			
		||||
    )
 | 
			
		||||
    curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list |
 | 
			
		||||
        $SUDO tee /etc/apt/sources.list.d/nvidia-docker.list
 | 
			
		||||
    $SUDO apt-get update
 | 
			
		||||
    $SUDO apt-get install -y nvidia-docker2
 | 
			
		||||
    echo "🔄 Restarting Docker service…"
 | 
			
		||||
    $SUDO systemctl restart docker
 | 
			
		||||
    echo "✅ NVIDIA Docker runtime installed."
 | 
			
		||||
else
 | 
			
		||||
    echo "✅ NVIDIA Docker runtime found."
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
# Quick NVIDIA runtime test
 | 
			
		||||
echo "🧪 Testing NVIDIA runtime..."
 | 
			
		||||
if timeout 15s docker run --rm --gpus all --runtime=nvidia nvidia/cuda:12.4-runtime-ubuntu22.04 nvidia-smi >/dev/null 2>&1; then
 | 
			
		||||
    echo "✅ NVIDIA runtime working"
 | 
			
		||||
else
 | 
			
		||||
    echo "❌ NVIDIA runtime test failed - check driver/runtime compatibility"
 | 
			
		||||
fi
 | 
			
		||||
 | 
			
		||||
# Prepare cache dirs & volume mounts
 | 
			
		||||
cache_dirs=(numba matplotlib huggingface torch)
 | 
			
		||||
cache_mounts=()
 | 
			
		||||
for d in "${cache_dirs[@]}"; do
 | 
			
		||||
    mkdir -p "$HOME/.cache/$d"
 | 
			
		||||
    chmod 700 "$HOME/.cache/$d"
 | 
			
		||||
    cache_mounts+=(-v "$HOME/.cache/$d:/home/user/.cache/$d")
 | 
			
		||||
done
 | 
			
		||||
 | 
			
		||||
echo "🔧 Optimization settings:"
 | 
			
		||||
echo "   Profile: $PROFILE"
 | 
			
		||||
 | 
			
		||||
# Run the container
 | 
			
		||||
docker run --rm -it \
 | 
			
		||||
    --name wan2gp \
 | 
			
		||||
    --gpus all \
 | 
			
		||||
    --runtime=nvidia \
 | 
			
		||||
    -p 7860:7860 \
 | 
			
		||||
    -v "$(pwd):/workspace" \
 | 
			
		||||
    "${cache_mounts[@]}" \
 | 
			
		||||
    deepbeepmeep/wan2gp \
 | 
			
		||||
    --profile "$PROFILE" \
 | 
			
		||||
    --attention sage \
 | 
			
		||||
    --compile \
 | 
			
		||||
    --perc-reserved-mem-max 1
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user