mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	Add VACE
This commit is contained in:
		
							parent
							
								
									204f899b64
								
							
						
					
					
						commit
						d372c7eb6b
					
				
							
								
								
									
										80
									
								
								generate.py
									
									
									
									
									
								
							
							
						
						
									
										80
									
								
								generate.py
									
									
									
									
									
								
							@ -41,6 +41,14 @@ EXAMPLE_PROMPT = {
 | 
			
		||||
            "last_frame":
 | 
			
		||||
                "examples/flf2v_input_last_frame.png",
 | 
			
		||||
    },
 | 
			
		||||
    "vace-1.3B": {
 | 
			
		||||
        "src_ref_images": './bag.jpg,./heben.png',
 | 
			
		||||
        "prompt": "优雅的女士在精品店仔细挑选包包,她身穿一袭黑色修身连衣裙,搭配珍珠项链,展现出成熟女性的魅力。手中拿着一款复古风格的棕色皮质半月形手提包,正细致地观察其工艺与质地。店内灯光柔和,木质装潢营造出温馨而高级的氛围。中景,侧拍捕捉女士挑选瞬间,展现其品味与气质。"
 | 
			
		||||
    },
 | 
			
		||||
    "vace-14B": {
 | 
			
		||||
        "src_ref_images": './bag.jpg,./heben.png',
 | 
			
		||||
        "prompt": "优雅的女士在精品店仔细挑选包包,她身穿一袭黑色修身连衣裙,搭配珍珠项链,展现出成熟女性的魅力。手中拿着一款复古风格的棕色皮质半月形手提包,正细致地观察其工艺与质地。店内灯光柔和,木质装潢营造出温馨而高级的氛围。中景,侧拍捕捉女士挑选瞬间,展现其品味与气质。"
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -50,6 +58,7 @@ def _validate_args(args):
 | 
			
		||||
    assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
 | 
			
		||||
    assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
 | 
			
		||||
 | 
			
		||||
    # TODO(wangang.wa): need to be confirmed
 | 
			
		||||
    # The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
 | 
			
		||||
    if args.sample_steps is None:
 | 
			
		||||
        args.sample_steps = 40 if "i2v" in args.task else 50
 | 
			
		||||
@ -141,6 +150,21 @@ def _parse_args():
 | 
			
		||||
        type=str,
 | 
			
		||||
        default=None,
 | 
			
		||||
        help="The file to save the generated image or video to.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--src_video",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default=None,
 | 
			
		||||
        help="The file of the source video. Default None.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--src_mask",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default=None,
 | 
			
		||||
        help="The file of the source mask. Default None.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--src_ref_images",
 | 
			
		||||
        type=str,
 | 
			
		||||
        default=None,
 | 
			
		||||
        help="The file list of the source reference images. Separated by ','. Default None.")
 | 
			
		||||
    parser.add_argument(
 | 
			
		||||
        "--prompt",
 | 
			
		||||
        type=str,
 | 
			
		||||
@ -397,7 +421,7 @@ def generate(args):
 | 
			
		||||
            guide_scale=args.sample_guide_scale,
 | 
			
		||||
            seed=args.base_seed,
 | 
			
		||||
            offload_model=args.offload_model)
 | 
			
		||||
    else:
 | 
			
		||||
    elif "flf2v" in args.task:
 | 
			
		||||
        if args.prompt is None:
 | 
			
		||||
            args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
 | 
			
		||||
        if args.first_frame is None or args.last_frame is None:
 | 
			
		||||
@ -457,6 +481,60 @@ def generate(args):
 | 
			
		||||
            seed=args.base_seed,
 | 
			
		||||
            offload_model=args.offload_model
 | 
			
		||||
        )
 | 
			
		||||
    elif "vace" in args.task:
 | 
			
		||||
        if args.prompt is None:
 | 
			
		||||
            args.prompt = EXAMPLE_PROMPT[args.model_name]["prompt"]
 | 
			
		||||
            args.src_video = EXAMPLE_PROMPT[args.model_name].get("src_video", None)
 | 
			
		||||
            args.src_mask = EXAMPLE_PROMPT[args.model_name].get("src_mask", None)
 | 
			
		||||
            args.src_ref_images = EXAMPLE_PROMPT[args.model_name].get("src_ref_images", None)
 | 
			
		||||
 | 
			
		||||
        logging.info(f"Input prompt: {args.prompt}")
 | 
			
		||||
        if args.use_prompt_extend and args.use_prompt_extend != 'plain':
 | 
			
		||||
            logging.info("Extending prompt ...")
 | 
			
		||||
            if rank == 0:
 | 
			
		||||
                prompt = prompt_expander.forward(args.prompt)
 | 
			
		||||
                logging.info(f"Prompt extended from '{args.prompt}' to '{prompt}'")
 | 
			
		||||
                input_prompt = [prompt]
 | 
			
		||||
            else:
 | 
			
		||||
                input_prompt = [None]
 | 
			
		||||
            if dist.is_initialized():
 | 
			
		||||
                dist.broadcast_object_list(input_prompt, src=0)
 | 
			
		||||
            args.prompt = input_prompt[0]
 | 
			
		||||
            logging.info(f"Extended prompt: {args.prompt}")
 | 
			
		||||
 | 
			
		||||
        logging.info("Creating WanT2V pipeline.")
 | 
			
		||||
        wan_vace = wan.WanVace(
 | 
			
		||||
            config=cfg,
 | 
			
		||||
            checkpoint_dir=args.ckpt_dir,
 | 
			
		||||
            device_id=device,
 | 
			
		||||
            rank=rank,
 | 
			
		||||
            t5_fsdp=args.t5_fsdp,
 | 
			
		||||
            dit_fsdp=args.dit_fsdp,
 | 
			
		||||
            use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
 | 
			
		||||
            t5_cpu=args.t5_cpu,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        src_video, src_mask, src_ref_images = wan_vace.prepare_source([args.src_video],
 | 
			
		||||
                                                                    [args.src_mask],
 | 
			
		||||
                                                                    [None if args.src_ref_images is None else args.src_ref_images.split(',')],
 | 
			
		||||
                                                                    args.frame_num, SIZE_CONFIGS[args.size], device)
 | 
			
		||||
 | 
			
		||||
        logging.info(f"Generating video...")
 | 
			
		||||
        video = wan_vace.generate(
 | 
			
		||||
            args.prompt,
 | 
			
		||||
            src_video,
 | 
			
		||||
            src_mask,
 | 
			
		||||
            src_ref_images,
 | 
			
		||||
            size=SIZE_CONFIGS[args.size],
 | 
			
		||||
            frame_num=args.frame_num,
 | 
			
		||||
            shift=args.sample_shift,
 | 
			
		||||
            sample_solver=args.sample_solver,
 | 
			
		||||
            sampling_steps=args.sample_steps,
 | 
			
		||||
            guide_scale=args.sample_guide_scale,
 | 
			
		||||
            seed=args.base_seed,
 | 
			
		||||
            offload_model=args.offload_model)
 | 
			
		||||
    else:
 | 
			
		||||
        raise ValueError(f"Unkown task type: {args.task}")
 | 
			
		||||
 | 
			
		||||
    if rank == 0:
 | 
			
		||||
        if args.save_file is None:
 | 
			
		||||
 | 
			
		||||
@ -2,3 +2,4 @@ from . import configs, distributed, modules
 | 
			
		||||
from .image2video import WanI2V
 | 
			
		||||
from .text2video import WanT2V
 | 
			
		||||
from .first_last_frame2video import WanFLF2V
 | 
			
		||||
from .vace import WanVace
 | 
			
		||||
 | 
			
		||||
@ -22,7 +22,9 @@ WAN_CONFIGS = {
 | 
			
		||||
    't2v-1.3B': t2v_1_3B,
 | 
			
		||||
    'i2v-14B': i2v_14B,
 | 
			
		||||
    't2i-14B': t2i_14B,
 | 
			
		||||
    'flf2v-14B': flf2v_14B
 | 
			
		||||
    'flf2v-14B': flf2v_14B,
 | 
			
		||||
    'vace-1.3B': t2v_1_3B,
 | 
			
		||||
    'vace-14B': t2v_14B,
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
SIZE_CONFIGS = {
 | 
			
		||||
@ -46,4 +48,6 @@ SUPPORTED_SIZES = {
 | 
			
		||||
    'i2v-14B': ('720*1280', '1280*720', '480*832', '832*480'),
 | 
			
		||||
    'flf2v-14B': ('720*1280', '1280*720', '480*832', '832*480'),
 | 
			
		||||
    't2i-14B': tuple(SIZE_CONFIGS.keys()),
 | 
			
		||||
    'vace-1.3B': ('480*832', '832*480'),
 | 
			
		||||
    'vace-14B': ('720*1280', '1280*720', '480*832', '832*480')
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
@ -2,11 +2,13 @@ from .attention import flash_attention
 | 
			
		||||
from .model import WanModel
 | 
			
		||||
from .t5 import T5Decoder, T5Encoder, T5EncoderModel, T5Model
 | 
			
		||||
from .tokenizers import HuggingfaceTokenizer
 | 
			
		||||
from .vace_model import VaceWanModel
 | 
			
		||||
from .vae import WanVAE
 | 
			
		||||
 | 
			
		||||
__all__ = [
 | 
			
		||||
    'WanVAE',
 | 
			
		||||
    'WanModel',
 | 
			
		||||
    'VaceWanModel',
 | 
			
		||||
    'T5Model',
 | 
			
		||||
    'T5Encoder',
 | 
			
		||||
    'T5Decoder',
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										237
									
								
								wan/modules/vace_model.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										237
									
								
								wan/modules/vace_model.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,237 @@
 | 
			
		||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
			
		||||
import torch
 | 
			
		||||
import torch.cuda.amp as amp
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
from diffusers.configuration_utils import register_to_config
 | 
			
		||||
from .model import WanModel, WanAttentionBlock, sinusoidal_embedding_1d
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class VaceWanAttentionBlock(WanAttentionBlock):
 | 
			
		||||
    def __init__(
 | 
			
		||||
            self,
 | 
			
		||||
            cross_attn_type,
 | 
			
		||||
            dim,
 | 
			
		||||
            ffn_dim,
 | 
			
		||||
            num_heads,
 | 
			
		||||
            window_size=(-1, -1),
 | 
			
		||||
            qk_norm=True,
 | 
			
		||||
            cross_attn_norm=False,
 | 
			
		||||
            eps=1e-6,
 | 
			
		||||
            block_id=0
 | 
			
		||||
    ):
 | 
			
		||||
        super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
 | 
			
		||||
        self.block_id = block_id
 | 
			
		||||
        if block_id == 0:
 | 
			
		||||
            self.before_proj = nn.Linear(self.dim, self.dim)
 | 
			
		||||
            nn.init.zeros_(self.before_proj.weight)
 | 
			
		||||
            nn.init.zeros_(self.before_proj.bias)
 | 
			
		||||
        self.after_proj = nn.Linear(self.dim, self.dim)
 | 
			
		||||
        nn.init.zeros_(self.after_proj.weight)
 | 
			
		||||
        nn.init.zeros_(self.after_proj.bias)
 | 
			
		||||
 | 
			
		||||
    def forward(self, c, x, **kwargs):
 | 
			
		||||
        if self.block_id == 0:
 | 
			
		||||
            c = self.before_proj(c) + x
 | 
			
		||||
            all_c = []
 | 
			
		||||
        else:
 | 
			
		||||
            all_c = list(torch.unbind(c))
 | 
			
		||||
            c = all_c.pop(-1)
 | 
			
		||||
        c = super().forward(c, **kwargs)
 | 
			
		||||
        c_skip = self.after_proj(c)
 | 
			
		||||
        all_c += [c_skip, c]
 | 
			
		||||
        c = torch.stack(all_c)
 | 
			
		||||
        return c
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class BaseWanAttentionBlock(WanAttentionBlock):
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        cross_attn_type,
 | 
			
		||||
        dim,
 | 
			
		||||
        ffn_dim,
 | 
			
		||||
        num_heads,
 | 
			
		||||
        window_size=(-1, -1),
 | 
			
		||||
        qk_norm=True,
 | 
			
		||||
        cross_attn_norm=False,
 | 
			
		||||
        eps=1e-6,
 | 
			
		||||
        block_id=None
 | 
			
		||||
    ):
 | 
			
		||||
        super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
 | 
			
		||||
        self.block_id = block_id
 | 
			
		||||
 | 
			
		||||
    def forward(self, x, hints, context_scale=1.0, **kwargs):
 | 
			
		||||
        x = super().forward(x, **kwargs)
 | 
			
		||||
        if self.block_id is not None:
 | 
			
		||||
            x = x + hints[self.block_id] * context_scale
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class VaceWanModel(WanModel):
 | 
			
		||||
    @register_to_config
 | 
			
		||||
    def __init__(self,
 | 
			
		||||
                 vace_layers=None,
 | 
			
		||||
                 vace_in_dim=None,
 | 
			
		||||
                 model_type='t2v',
 | 
			
		||||
                 patch_size=(1, 2, 2),
 | 
			
		||||
                 text_len=512,
 | 
			
		||||
                 in_dim=16,
 | 
			
		||||
                 dim=2048,
 | 
			
		||||
                 ffn_dim=8192,
 | 
			
		||||
                 freq_dim=256,
 | 
			
		||||
                 text_dim=4096,
 | 
			
		||||
                 out_dim=16,
 | 
			
		||||
                 num_heads=16,
 | 
			
		||||
                 num_layers=32,
 | 
			
		||||
                 window_size=(-1, -1),
 | 
			
		||||
                 qk_norm=True,
 | 
			
		||||
                 cross_attn_norm=True,
 | 
			
		||||
                 eps=1e-6):
 | 
			
		||||
        super().__init__(model_type, patch_size, text_len, in_dim, dim, ffn_dim, freq_dim, text_dim, out_dim,
 | 
			
		||||
                         num_heads, num_layers, window_size, qk_norm, cross_attn_norm, eps)
 | 
			
		||||
 | 
			
		||||
        self.vace_layers = [i for i in range(0, self.num_layers, 2)] if vace_layers is None else vace_layers
 | 
			
		||||
        self.vace_in_dim = self.in_dim if vace_in_dim is None else vace_in_dim
 | 
			
		||||
 | 
			
		||||
        assert 0 in self.vace_layers
 | 
			
		||||
        self.vace_layers_mapping = {i: n for n, i in enumerate(self.vace_layers)}
 | 
			
		||||
 | 
			
		||||
        # blocks
 | 
			
		||||
        self.blocks = nn.ModuleList([
 | 
			
		||||
            BaseWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
 | 
			
		||||
                                  self.cross_attn_norm, self.eps,
 | 
			
		||||
                                  block_id=self.vace_layers_mapping[i] if i in self.vace_layers else None)
 | 
			
		||||
            for i in range(self.num_layers)
 | 
			
		||||
        ])
 | 
			
		||||
 | 
			
		||||
        # vace blocks
 | 
			
		||||
        self.vace_blocks = nn.ModuleList([
 | 
			
		||||
            VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
 | 
			
		||||
                                     self.cross_attn_norm, self.eps, block_id=i)
 | 
			
		||||
            for i in self.vace_layers
 | 
			
		||||
        ])
 | 
			
		||||
 | 
			
		||||
        # vace patch embeddings
 | 
			
		||||
        self.vace_patch_embedding = nn.Conv3d(
 | 
			
		||||
            self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def forward_vace(
 | 
			
		||||
        self,
 | 
			
		||||
        x,
 | 
			
		||||
        vace_context,
 | 
			
		||||
        seq_len,
 | 
			
		||||
        kwargs
 | 
			
		||||
    ):
 | 
			
		||||
        # embeddings
 | 
			
		||||
        c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
 | 
			
		||||
        c = [u.flatten(2).transpose(1, 2) for u in c]
 | 
			
		||||
        c = torch.cat([
 | 
			
		||||
            torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
 | 
			
		||||
                      dim=1) for u in c
 | 
			
		||||
        ])
 | 
			
		||||
 | 
			
		||||
        # arguments
 | 
			
		||||
        new_kwargs = dict(x=x)
 | 
			
		||||
        new_kwargs.update(kwargs)
 | 
			
		||||
 | 
			
		||||
        for block in self.vace_blocks:
 | 
			
		||||
            c = block(c, **new_kwargs)
 | 
			
		||||
        hints = torch.unbind(c)[:-1]
 | 
			
		||||
        return hints
 | 
			
		||||
 | 
			
		||||
    def forward(
 | 
			
		||||
        self,
 | 
			
		||||
        x,
 | 
			
		||||
        t,
 | 
			
		||||
        vace_context,
 | 
			
		||||
        context,
 | 
			
		||||
        seq_len,
 | 
			
		||||
        vace_context_scale=1.0,
 | 
			
		||||
        clip_fea=None,
 | 
			
		||||
        y=None,
 | 
			
		||||
    ):
 | 
			
		||||
        r"""
 | 
			
		||||
        Forward pass through the diffusion model
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            x (List[Tensor]):
 | 
			
		||||
                List of input video tensors, each with shape [C_in, F, H, W]
 | 
			
		||||
            t (Tensor):
 | 
			
		||||
                Diffusion timesteps tensor of shape [B]
 | 
			
		||||
            context (List[Tensor]):
 | 
			
		||||
                List of text embeddings each with shape [L, C]
 | 
			
		||||
            seq_len (`int`):
 | 
			
		||||
                Maximum sequence length for positional encoding
 | 
			
		||||
            clip_fea (Tensor, *optional*):
 | 
			
		||||
                CLIP image features for image-to-video mode
 | 
			
		||||
            y (List[Tensor], *optional*):
 | 
			
		||||
                Conditional video inputs for image-to-video mode, same shape as x
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            List[Tensor]:
 | 
			
		||||
                List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
 | 
			
		||||
        """
 | 
			
		||||
        # if self.model_type == 'i2v':
 | 
			
		||||
        #     assert clip_fea is not None and y is not None
 | 
			
		||||
        # params
 | 
			
		||||
        device = self.patch_embedding.weight.device
 | 
			
		||||
        if self.freqs.device != device:
 | 
			
		||||
            self.freqs = self.freqs.to(device)
 | 
			
		||||
 | 
			
		||||
        # if y is not None:
 | 
			
		||||
        #     x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
 | 
			
		||||
 | 
			
		||||
        # embeddings
 | 
			
		||||
        x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
 | 
			
		||||
        grid_sizes = torch.stack(
 | 
			
		||||
            [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
 | 
			
		||||
        x = [u.flatten(2).transpose(1, 2) for u in x]
 | 
			
		||||
        seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
 | 
			
		||||
        assert seq_lens.max() <= seq_len
 | 
			
		||||
        x = torch.cat([
 | 
			
		||||
            torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
 | 
			
		||||
                      dim=1) for u in x
 | 
			
		||||
        ])
 | 
			
		||||
 | 
			
		||||
        # time embeddings
 | 
			
		||||
        with amp.autocast(dtype=torch.float32):
 | 
			
		||||
            e = self.time_embedding(
 | 
			
		||||
                sinusoidal_embedding_1d(self.freq_dim, t).float())
 | 
			
		||||
            e0 = self.time_projection(e).unflatten(1, (6, self.dim))
 | 
			
		||||
            assert e.dtype == torch.float32 and e0.dtype == torch.float32
 | 
			
		||||
 | 
			
		||||
        # context
 | 
			
		||||
        context_lens = None
 | 
			
		||||
        context = self.text_embedding(
 | 
			
		||||
            torch.stack([
 | 
			
		||||
                torch.cat(
 | 
			
		||||
                    [u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
 | 
			
		||||
                for u in context
 | 
			
		||||
            ]))
 | 
			
		||||
 | 
			
		||||
        # if clip_fea is not None:
 | 
			
		||||
        #     context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
 | 
			
		||||
        #     context = torch.concat([context_clip, context], dim=1)
 | 
			
		||||
 | 
			
		||||
        # arguments
 | 
			
		||||
        kwargs = dict(
 | 
			
		||||
            e=e0,
 | 
			
		||||
            seq_lens=seq_lens,
 | 
			
		||||
            grid_sizes=grid_sizes,
 | 
			
		||||
            freqs=self.freqs,
 | 
			
		||||
            context=context,
 | 
			
		||||
            context_lens=context_lens)
 | 
			
		||||
 | 
			
		||||
        hints = self.forward_vace(x, vace_context, seq_len, kwargs)
 | 
			
		||||
        kwargs['hints'] = hints
 | 
			
		||||
        kwargs['context_scale'] = vace_context_scale
 | 
			
		||||
 | 
			
		||||
        for block in self.blocks:
 | 
			
		||||
            x = block(x, **kwargs)
 | 
			
		||||
 | 
			
		||||
        # head
 | 
			
		||||
        x = self.head(x, e)
 | 
			
		||||
 | 
			
		||||
        # unpatchify
 | 
			
		||||
        x = self.unpatchify(x, grid_sizes)
 | 
			
		||||
        return [u.float() for u in x]
 | 
			
		||||
@ -1,8 +1,10 @@
 | 
			
		||||
from .fm_solvers import (FlowDPMSolverMultistepScheduler, get_sampling_sigmas,
 | 
			
		||||
                         retrieve_timesteps)
 | 
			
		||||
from .fm_solvers_unipc import FlowUniPCMultistepScheduler
 | 
			
		||||
from .vace_processor import VaceVideoProcessor
 | 
			
		||||
 | 
			
		||||
__all__ = [
 | 
			
		||||
    'HuggingfaceTokenizer', 'get_sampling_sigmas', 'retrieve_timesteps',
 | 
			
		||||
    'FlowDPMSolverMultistepScheduler', 'FlowUniPCMultistepScheduler'
 | 
			
		||||
    'FlowDPMSolverMultistepScheduler', 'FlowUniPCMultistepScheduler',
 | 
			
		||||
    'VaceVideoProcessor'
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										270
									
								
								wan/utils/vace_processor.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										270
									
								
								wan/utils/vace_processor.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,270 @@
 | 
			
		||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
			
		||||
import numpy as np
 | 
			
		||||
from PIL import Image
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
import torchvision.transforms.functional as TF
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class VaceImageProcessor(object):
 | 
			
		||||
    def __init__(self, downsample=None, seq_len=None):
 | 
			
		||||
        self.downsample = downsample
 | 
			
		||||
        self.seq_len = seq_len
 | 
			
		||||
 | 
			
		||||
    def _pillow_convert(self, image, cvt_type='RGB'):
 | 
			
		||||
        if image.mode != cvt_type:
 | 
			
		||||
            if image.mode == 'P':
 | 
			
		||||
                image = image.convert(f'{cvt_type}A')
 | 
			
		||||
            if image.mode == f'{cvt_type}A':
 | 
			
		||||
                bg = Image.new(cvt_type,
 | 
			
		||||
                               size=(image.width, image.height),
 | 
			
		||||
                               color=(255, 255, 255))
 | 
			
		||||
                bg.paste(image, (0, 0), mask=image)
 | 
			
		||||
                image = bg
 | 
			
		||||
            else:
 | 
			
		||||
                image = image.convert(cvt_type)
 | 
			
		||||
        return image
 | 
			
		||||
 | 
			
		||||
    def _load_image(self, img_path):
 | 
			
		||||
        if img_path is None or img_path == '':
 | 
			
		||||
            return None
 | 
			
		||||
        img = Image.open(img_path)
 | 
			
		||||
        img = self._pillow_convert(img)
 | 
			
		||||
        return img
 | 
			
		||||
 | 
			
		||||
    def _resize_crop(self, img, oh, ow, normalize=True):
 | 
			
		||||
        """
 | 
			
		||||
        Resize, center crop, convert to tensor, and normalize.
 | 
			
		||||
        """
 | 
			
		||||
        # resize and crop
 | 
			
		||||
        iw, ih = img.size
 | 
			
		||||
        if iw != ow or ih != oh:
 | 
			
		||||
            # resize
 | 
			
		||||
            scale = max(ow / iw, oh / ih)
 | 
			
		||||
            img = img.resize(
 | 
			
		||||
                (round(scale * iw), round(scale * ih)),
 | 
			
		||||
                resample=Image.Resampling.LANCZOS
 | 
			
		||||
            )
 | 
			
		||||
            assert img.width >= ow and img.height >= oh
 | 
			
		||||
 | 
			
		||||
            # center crop
 | 
			
		||||
            x1 = (img.width - ow) // 2
 | 
			
		||||
            y1 = (img.height - oh) // 2
 | 
			
		||||
            img = img.crop((x1, y1, x1 + ow, y1 + oh))
 | 
			
		||||
 | 
			
		||||
        # normalize
 | 
			
		||||
        if normalize:
 | 
			
		||||
            img = TF.to_tensor(img).sub_(0.5).div_(0.5).unsqueeze(1)
 | 
			
		||||
        return img
 | 
			
		||||
 | 
			
		||||
    def _image_preprocess(self, img, oh, ow, normalize=True, **kwargs):
 | 
			
		||||
        return self._resize_crop(img, oh, ow, normalize)
 | 
			
		||||
 | 
			
		||||
    def load_image(self, data_key, **kwargs):
 | 
			
		||||
        return self.load_image_batch(data_key, **kwargs)
 | 
			
		||||
 | 
			
		||||
    def load_image_pair(self, data_key, data_key2, **kwargs):
 | 
			
		||||
        return self.load_image_batch(data_key, data_key2, **kwargs)
 | 
			
		||||
 | 
			
		||||
    def load_image_batch(self, *data_key_batch, normalize=True, seq_len=None, **kwargs):
 | 
			
		||||
        seq_len = self.seq_len if seq_len is None else seq_len
 | 
			
		||||
        imgs = []
 | 
			
		||||
        for data_key in data_key_batch:
 | 
			
		||||
            img = self._load_image(data_key)
 | 
			
		||||
            imgs.append(img)
 | 
			
		||||
        w, h = imgs[0].size
 | 
			
		||||
        dh, dw = self.downsample[1:]
 | 
			
		||||
 | 
			
		||||
        # compute output size
 | 
			
		||||
        scale = min(1., np.sqrt(seq_len / ((h / dh) * (w / dw))))
 | 
			
		||||
        oh = int(h * scale) // dh * dh
 | 
			
		||||
        ow = int(w * scale) // dw * dw
 | 
			
		||||
        assert (oh // dh) * (ow // dw) <= seq_len
 | 
			
		||||
        imgs = [self._image_preprocess(img, oh, ow, normalize) for img in imgs]
 | 
			
		||||
        return *imgs, (oh, ow)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class VaceVideoProcessor(object):
 | 
			
		||||
    def __init__(self, downsample, min_area, max_area, min_fps, max_fps, zero_start, seq_len, keep_last, **kwargs):
 | 
			
		||||
        self.downsample = downsample
 | 
			
		||||
        self.min_area = min_area
 | 
			
		||||
        self.max_area = max_area
 | 
			
		||||
        self.min_fps = min_fps
 | 
			
		||||
        self.max_fps = max_fps
 | 
			
		||||
        self.zero_start = zero_start
 | 
			
		||||
        self.keep_last = keep_last
 | 
			
		||||
        self.seq_len = seq_len
 | 
			
		||||
        assert seq_len >= min_area / (self.downsample[1] * self.downsample[2])
 | 
			
		||||
 | 
			
		||||
    def set_area(self, area):
 | 
			
		||||
        self.min_area = area
 | 
			
		||||
        self.max_area = area
 | 
			
		||||
 | 
			
		||||
    def set_seq_len(self, seq_len):
 | 
			
		||||
        self.seq_len = seq_len
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def resize_crop(video: torch.Tensor, oh: int, ow: int):
 | 
			
		||||
        """
 | 
			
		||||
        Resize, center crop and normalize for decord loaded video (torch.Tensor type)
 | 
			
		||||
 | 
			
		||||
        Parameters:
 | 
			
		||||
          video - video to process (torch.Tensor): Tensor from `reader.get_batch(frame_ids)`, in shape of (T, H, W, C)
 | 
			
		||||
          oh - target height (int)
 | 
			
		||||
          ow - target width (int)
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            The processed video (torch.Tensor): Normalized tensor range [-1, 1], in shape of (C, T, H, W)
 | 
			
		||||
 | 
			
		||||
        Raises:
 | 
			
		||||
        """
 | 
			
		||||
        # permute ([t, h, w, c] -> [t, c, h, w])
 | 
			
		||||
        video = video.permute(0, 3, 1, 2)
 | 
			
		||||
 | 
			
		||||
        # resize and crop
 | 
			
		||||
        ih, iw = video.shape[2:]
 | 
			
		||||
        if ih != oh or iw != ow:
 | 
			
		||||
            # resize
 | 
			
		||||
            scale = max(ow / iw, oh / ih)
 | 
			
		||||
            video = F.interpolate(
 | 
			
		||||
                video,
 | 
			
		||||
                size=(round(scale * ih), round(scale * iw)),
 | 
			
		||||
                mode='bicubic',
 | 
			
		||||
                antialias=True
 | 
			
		||||
            )
 | 
			
		||||
            assert video.size(3) >= ow and video.size(2) >= oh
 | 
			
		||||
 | 
			
		||||
            # center crop
 | 
			
		||||
            x1 = (video.size(3) - ow) // 2
 | 
			
		||||
            y1 = (video.size(2) - oh) // 2
 | 
			
		||||
            video = video[:, :, y1:y1 + oh, x1:x1 + ow]
 | 
			
		||||
 | 
			
		||||
        # permute ([t, c, h, w] -> [c, t, h, w]) and normalize
 | 
			
		||||
        video = video.transpose(0, 1).float().div_(127.5).sub_(1.)
 | 
			
		||||
        return video
 | 
			
		||||
 | 
			
		||||
    def _video_preprocess(self, video, oh, ow):
 | 
			
		||||
        return self.resize_crop(video, oh, ow)
 | 
			
		||||
 | 
			
		||||
    def _get_frameid_bbox_default(self, fps, frame_timestamps, h, w, crop_box, rng):
 | 
			
		||||
        target_fps = min(fps, self.max_fps)
 | 
			
		||||
        duration = frame_timestamps[-1].mean()
 | 
			
		||||
        x1, x2, y1, y2 = [0, w, 0, h] if crop_box is None else crop_box
 | 
			
		||||
        h, w = y2 - y1, x2 - x1
 | 
			
		||||
        ratio = h / w
 | 
			
		||||
        df, dh, dw = self.downsample
 | 
			
		||||
 | 
			
		||||
        area_z = min(self.seq_len, self.max_area / (dh * dw), (h // dh) * (w // dw))
 | 
			
		||||
        of = min(
 | 
			
		||||
            (int(duration * target_fps) - 1) // df + 1,
 | 
			
		||||
            int(self.seq_len / area_z)
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # deduce target shape of the [latent video]
 | 
			
		||||
        target_area_z = min(area_z, int(self.seq_len / of))
 | 
			
		||||
        oh = round(np.sqrt(target_area_z * ratio))
 | 
			
		||||
        ow = int(target_area_z / oh)
 | 
			
		||||
        of = (of - 1) * df + 1
 | 
			
		||||
        oh *= dh
 | 
			
		||||
        ow *= dw
 | 
			
		||||
 | 
			
		||||
        # sample frame ids
 | 
			
		||||
        target_duration = of / target_fps
 | 
			
		||||
        begin = 0. if self.zero_start else rng.uniform(0, duration - target_duration)
 | 
			
		||||
        timestamps = np.linspace(begin, begin + target_duration, of)
 | 
			
		||||
        frame_ids = np.argmax(np.logical_and(
 | 
			
		||||
            timestamps[:, None] >= frame_timestamps[None, :, 0],
 | 
			
		||||
            timestamps[:, None] < frame_timestamps[None, :, 1]
 | 
			
		||||
        ), axis=1).tolist()
 | 
			
		||||
        return frame_ids, (x1, x2, y1, y2), (oh, ow), target_fps
 | 
			
		||||
 | 
			
		||||
    def _get_frameid_bbox_adjust_last(self, fps, frame_timestamps, h, w, crop_box, rng):
 | 
			
		||||
        duration = frame_timestamps[-1].mean()
 | 
			
		||||
        x1, x2, y1, y2 = [0, w, 0, h] if crop_box is None else crop_box
 | 
			
		||||
        h, w = y2 - y1, x2 - x1
 | 
			
		||||
        ratio = h / w
 | 
			
		||||
        df, dh, dw = self.downsample
 | 
			
		||||
 | 
			
		||||
        area_z = min(self.seq_len, self.max_area / (dh * dw), (h // dh) * (w // dw))
 | 
			
		||||
        of = min(
 | 
			
		||||
            (len(frame_timestamps) - 1) // df + 1,
 | 
			
		||||
            int(self.seq_len / area_z)
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # deduce target shape of the [latent video]
 | 
			
		||||
        target_area_z = min(area_z, int(self.seq_len / of))
 | 
			
		||||
        oh = round(np.sqrt(target_area_z * ratio))
 | 
			
		||||
        ow = int(target_area_z / oh)
 | 
			
		||||
        of = (of - 1) * df + 1
 | 
			
		||||
        oh *= dh
 | 
			
		||||
        ow *= dw
 | 
			
		||||
 | 
			
		||||
        # sample frame ids
 | 
			
		||||
        target_duration = duration
 | 
			
		||||
        target_fps = of / target_duration
 | 
			
		||||
        timestamps = np.linspace(0., target_duration, of)
 | 
			
		||||
        frame_ids = np.argmax(np.logical_and(
 | 
			
		||||
            timestamps[:, None] >= frame_timestamps[None, :, 0],
 | 
			
		||||
            timestamps[:, None] <= frame_timestamps[None, :, 1]
 | 
			
		||||
        ), axis=1).tolist()
 | 
			
		||||
        # print(oh, ow, of, target_duration, target_fps, len(frame_timestamps), len(frame_ids))
 | 
			
		||||
        return frame_ids, (x1, x2, y1, y2), (oh, ow), target_fps
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def _get_frameid_bbox(self, fps, frame_timestamps, h, w, crop_box, rng):
 | 
			
		||||
        if self.keep_last:
 | 
			
		||||
            return self._get_frameid_bbox_adjust_last(fps, frame_timestamps, h, w, crop_box, rng)
 | 
			
		||||
        else:
 | 
			
		||||
            return self._get_frameid_bbox_default(fps, frame_timestamps, h, w, crop_box, rng)
 | 
			
		||||
 | 
			
		||||
    def load_video(self, data_key, crop_box=None, seed=2024, **kwargs):
 | 
			
		||||
        return self.load_video_batch(data_key, crop_box=crop_box, seed=seed, **kwargs)
 | 
			
		||||
 | 
			
		||||
    def load_video_pair(self, data_key, data_key2, crop_box=None, seed=2024, **kwargs):
 | 
			
		||||
        return self.load_video_batch(data_key, data_key2, crop_box=crop_box, seed=seed, **kwargs)
 | 
			
		||||
 | 
			
		||||
    def load_video_batch(self, *data_key_batch, crop_box=None, seed=2024, **kwargs):
 | 
			
		||||
        rng = np.random.default_rng(seed + hash(data_key_batch[0]) % 10000)
 | 
			
		||||
        # read video
 | 
			
		||||
        import decord
 | 
			
		||||
        decord.bridge.set_bridge('torch')
 | 
			
		||||
        readers = []
 | 
			
		||||
        for data_k in data_key_batch:
 | 
			
		||||
            reader = decord.VideoReader(data_k)
 | 
			
		||||
            readers.append(reader)
 | 
			
		||||
 | 
			
		||||
        fps = readers[0].get_avg_fps()
 | 
			
		||||
        length = min([len(r) for r in readers])
 | 
			
		||||
        frame_timestamps = [readers[0].get_frame_timestamp(i) for i in range(length)]
 | 
			
		||||
        frame_timestamps = np.array(frame_timestamps, dtype=np.float32)
 | 
			
		||||
        h, w = readers[0].next().shape[:2]
 | 
			
		||||
        frame_ids, (x1, x2, y1, y2), (oh, ow), fps = self._get_frameid_bbox(fps, frame_timestamps, h, w, crop_box, rng)
 | 
			
		||||
 | 
			
		||||
        # preprocess video
 | 
			
		||||
        videos = [reader.get_batch(frame_ids)[:, y1:y2, x1:x2, :] for reader in readers]
 | 
			
		||||
        videos = [self._video_preprocess(video, oh, ow) for video in videos]
 | 
			
		||||
        return *videos, frame_ids, (oh, ow), fps
 | 
			
		||||
        # return videos if len(videos) > 1 else videos[0]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def prepare_source(src_video, src_mask, src_ref_images, num_frames, image_size, device):
 | 
			
		||||
    for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
 | 
			
		||||
        if sub_src_video is None and sub_src_mask is None:
 | 
			
		||||
            src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
 | 
			
		||||
            src_mask[i] = torch.ones((1, num_frames, image_size[0], image_size[1]), device=device)
 | 
			
		||||
    for i, ref_images in enumerate(src_ref_images):
 | 
			
		||||
        if ref_images is not None:
 | 
			
		||||
            for j, ref_img in enumerate(ref_images):
 | 
			
		||||
                if ref_img is not None and ref_img.shape[-2:] != image_size:
 | 
			
		||||
                    canvas_height, canvas_width = image_size
 | 
			
		||||
                    ref_height, ref_width = ref_img.shape[-2:]
 | 
			
		||||
                    white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
 | 
			
		||||
                    scale = min(canvas_height / ref_height, canvas_width / ref_width)
 | 
			
		||||
                    new_height = int(ref_height * scale)
 | 
			
		||||
                    new_width = int(ref_width * scale)
 | 
			
		||||
                    resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
 | 
			
		||||
                    top = (canvas_height - new_height) // 2
 | 
			
		||||
                    left = (canvas_width - new_width) // 2
 | 
			
		||||
                    white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
 | 
			
		||||
                    src_ref_images[i][j] = white_canvas
 | 
			
		||||
    return src_video, src_mask, src_ref_images
 | 
			
		||||
							
								
								
									
										717
									
								
								wan/vace.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										717
									
								
								wan/vace.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,717 @@
 | 
			
		||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
			
		||||
import os
 | 
			
		||||
import sys
 | 
			
		||||
import gc
 | 
			
		||||
import math
 | 
			
		||||
import time
 | 
			
		||||
import random
 | 
			
		||||
import types
 | 
			
		||||
import logging
 | 
			
		||||
import traceback
 | 
			
		||||
from contextlib import contextmanager
 | 
			
		||||
from functools import partial
 | 
			
		||||
 | 
			
		||||
from PIL import Image
 | 
			
		||||
import torchvision.transforms.functional as TF
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
import torch.cuda.amp as amp
 | 
			
		||||
import torch.distributed as dist
 | 
			
		||||
import torch.multiprocessing as mp
 | 
			
		||||
from tqdm import tqdm
 | 
			
		||||
 | 
			
		||||
from .text2video import (WanT2V, T5EncoderModel, WanVAE, shard_model, FlowDPMSolverMultistepScheduler,
 | 
			
		||||
                               get_sampling_sigmas, retrieve_timesteps, FlowUniPCMultistepScheduler)
 | 
			
		||||
from .modules.vace_model import VaceWanModel
 | 
			
		||||
from .utils.vace_processor import VaceVideoProcessor
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class WanVace(WanT2V):
 | 
			
		||||
    def __init__(
 | 
			
		||||
        self,
 | 
			
		||||
        config,
 | 
			
		||||
        checkpoint_dir,
 | 
			
		||||
        device_id=0,
 | 
			
		||||
        rank=0,
 | 
			
		||||
        t5_fsdp=False,
 | 
			
		||||
        dit_fsdp=False,
 | 
			
		||||
        use_usp=False,
 | 
			
		||||
        t5_cpu=False,
 | 
			
		||||
    ):
 | 
			
		||||
        r"""
 | 
			
		||||
        Initializes the Wan text-to-video generation model components.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            config (EasyDict):
 | 
			
		||||
                Object containing model parameters initialized from config.py
 | 
			
		||||
            checkpoint_dir (`str`):
 | 
			
		||||
                Path to directory containing model checkpoints
 | 
			
		||||
            device_id (`int`,  *optional*, defaults to 0):
 | 
			
		||||
                Id of target GPU device
 | 
			
		||||
            rank (`int`,  *optional*, defaults to 0):
 | 
			
		||||
                Process rank for distributed training
 | 
			
		||||
            t5_fsdp (`bool`, *optional*, defaults to False):
 | 
			
		||||
                Enable FSDP sharding for T5 model
 | 
			
		||||
            dit_fsdp (`bool`, *optional*, defaults to False):
 | 
			
		||||
                Enable FSDP sharding for DiT model
 | 
			
		||||
            use_usp (`bool`, *optional*, defaults to False):
 | 
			
		||||
                Enable distribution strategy of USP.
 | 
			
		||||
            t5_cpu (`bool`, *optional*, defaults to False):
 | 
			
		||||
                Whether to place T5 model on CPU. Only works without t5_fsdp.
 | 
			
		||||
        """
 | 
			
		||||
        self.device = torch.device(f"cuda:{device_id}")
 | 
			
		||||
        self.config = config
 | 
			
		||||
        self.rank = rank
 | 
			
		||||
        self.t5_cpu = t5_cpu
 | 
			
		||||
 | 
			
		||||
        self.num_train_timesteps = config.num_train_timesteps
 | 
			
		||||
        self.param_dtype = config.param_dtype
 | 
			
		||||
 | 
			
		||||
        shard_fn = partial(shard_model, device_id=device_id)
 | 
			
		||||
        self.text_encoder = T5EncoderModel(
 | 
			
		||||
            text_len=config.text_len,
 | 
			
		||||
            dtype=config.t5_dtype,
 | 
			
		||||
            device=torch.device('cpu'),
 | 
			
		||||
            checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
 | 
			
		||||
            tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
 | 
			
		||||
            shard_fn=shard_fn if t5_fsdp else None)
 | 
			
		||||
 | 
			
		||||
        self.vae_stride = config.vae_stride
 | 
			
		||||
        self.patch_size = config.patch_size
 | 
			
		||||
        self.vae = WanVAE(
 | 
			
		||||
            vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
 | 
			
		||||
            device=self.device)
 | 
			
		||||
 | 
			
		||||
        logging.info(f"Creating VaceWanModel from {checkpoint_dir}")
 | 
			
		||||
        self.model = VaceWanModel.from_pretrained(checkpoint_dir)
 | 
			
		||||
        self.model.eval().requires_grad_(False)
 | 
			
		||||
 | 
			
		||||
        if use_usp:
 | 
			
		||||
            from xfuser.core.distributed import \
 | 
			
		||||
                get_sequence_parallel_world_size
 | 
			
		||||
 | 
			
		||||
            from .distributed.xdit_context_parallel import (usp_attn_forward,
 | 
			
		||||
                                                            usp_dit_forward,
 | 
			
		||||
                                                            usp_dit_forward_vace)
 | 
			
		||||
            for block in self.model.blocks:
 | 
			
		||||
                block.self_attn.forward = types.MethodType(
 | 
			
		||||
                    usp_attn_forward, block.self_attn)
 | 
			
		||||
            for block in self.model.vace_blocks:
 | 
			
		||||
                block.self_attn.forward = types.MethodType(
 | 
			
		||||
                    usp_attn_forward, block.self_attn)
 | 
			
		||||
            self.model.forward = types.MethodType(usp_dit_forward, self.model)
 | 
			
		||||
            self.model.forward_vace = types.MethodType(usp_dit_forward_vace, self.model)
 | 
			
		||||
            self.sp_size = get_sequence_parallel_world_size()
 | 
			
		||||
        else:
 | 
			
		||||
            self.sp_size = 1
 | 
			
		||||
 | 
			
		||||
        if dist.is_initialized():
 | 
			
		||||
            dist.barrier()
 | 
			
		||||
        if dit_fsdp:
 | 
			
		||||
            self.model = shard_fn(self.model)
 | 
			
		||||
        else:
 | 
			
		||||
            self.model.to(self.device)
 | 
			
		||||
 | 
			
		||||
        self.sample_neg_prompt = config.sample_neg_prompt
 | 
			
		||||
 | 
			
		||||
        self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
 | 
			
		||||
                                           min_area=720*1280,
 | 
			
		||||
                                           max_area=720*1280,
 | 
			
		||||
                                           min_fps=config.sample_fps,
 | 
			
		||||
                                           max_fps=config.sample_fps,
 | 
			
		||||
                                           zero_start=True,
 | 
			
		||||
                                           seq_len=75600,
 | 
			
		||||
                                           keep_last=True)
 | 
			
		||||
 | 
			
		||||
    def vace_encode_frames(self, frames, ref_images, masks=None, vae=None):
 | 
			
		||||
        vae = self.vae if vae is None else vae
 | 
			
		||||
        if ref_images is None:
 | 
			
		||||
            ref_images = [None] * len(frames)
 | 
			
		||||
        else:
 | 
			
		||||
            assert len(frames) == len(ref_images)
 | 
			
		||||
 | 
			
		||||
        if masks is None:
 | 
			
		||||
            latents = vae.encode(frames)
 | 
			
		||||
        else:
 | 
			
		||||
            masks = [torch.where(m > 0.5, 1.0, 0.0) for m in masks]
 | 
			
		||||
            inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
 | 
			
		||||
            reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
 | 
			
		||||
            inactive = vae.encode(inactive)
 | 
			
		||||
            reactive = vae.encode(reactive)
 | 
			
		||||
            latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]
 | 
			
		||||
 | 
			
		||||
        cat_latents = []
 | 
			
		||||
        for latent, refs in zip(latents, ref_images):
 | 
			
		||||
            if refs is not None:
 | 
			
		||||
                if masks is None:
 | 
			
		||||
                    ref_latent = vae.encode(refs)
 | 
			
		||||
                else:
 | 
			
		||||
                    ref_latent = vae.encode(refs)
 | 
			
		||||
                    ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
 | 
			
		||||
                assert all([x.shape[1] == 1 for x in ref_latent])
 | 
			
		||||
                latent = torch.cat([*ref_latent, latent], dim=1)
 | 
			
		||||
            cat_latents.append(latent)
 | 
			
		||||
        return cat_latents
 | 
			
		||||
 | 
			
		||||
    def vace_encode_masks(self, masks, ref_images=None, vae_stride=None):
 | 
			
		||||
        vae_stride = self.vae_stride if vae_stride is None else vae_stride
 | 
			
		||||
        if ref_images is None:
 | 
			
		||||
            ref_images = [None] * len(masks)
 | 
			
		||||
        else:
 | 
			
		||||
            assert len(masks) == len(ref_images)
 | 
			
		||||
 | 
			
		||||
        result_masks = []
 | 
			
		||||
        for mask, refs in zip(masks, ref_images):
 | 
			
		||||
            c, depth, height, width = mask.shape
 | 
			
		||||
            new_depth = int((depth + 3) // vae_stride[0])
 | 
			
		||||
            height = 2 * (int(height) // (vae_stride[1] * 2))
 | 
			
		||||
            width = 2 * (int(width) // (vae_stride[2] * 2))
 | 
			
		||||
 | 
			
		||||
            # reshape
 | 
			
		||||
            mask = mask[0, :, :, :]
 | 
			
		||||
            mask = mask.view(
 | 
			
		||||
                depth, height, vae_stride[1], width, vae_stride[1]
 | 
			
		||||
            )  # depth, height, 8, width, 8
 | 
			
		||||
            mask = mask.permute(2, 4, 0, 1, 3)  # 8, 8, depth, height, width
 | 
			
		||||
            mask = mask.reshape(
 | 
			
		||||
                vae_stride[1] * vae_stride[2], depth, height, width
 | 
			
		||||
            )  # 8*8, depth, height, width
 | 
			
		||||
 | 
			
		||||
            # interpolation
 | 
			
		||||
            mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)
 | 
			
		||||
 | 
			
		||||
            if refs is not None:
 | 
			
		||||
                length = len(refs)
 | 
			
		||||
                mask_pad = torch.zeros_like(mask[:, :length, :, :])
 | 
			
		||||
                mask = torch.cat((mask_pad, mask), dim=1)
 | 
			
		||||
            result_masks.append(mask)
 | 
			
		||||
        return result_masks
 | 
			
		||||
 | 
			
		||||
    def vace_latent(self, z, m):
 | 
			
		||||
        return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
 | 
			
		||||
 | 
			
		||||
    def prepare_source(self, src_video, src_mask, src_ref_images, num_frames, image_size, device):
 | 
			
		||||
        area = image_size[0] * image_size[1]
 | 
			
		||||
        self.vid_proc.set_area(area)
 | 
			
		||||
        if area == 720*1280:
 | 
			
		||||
            self.vid_proc.set_seq_len(75600)
 | 
			
		||||
        elif area == 480*832:
 | 
			
		||||
            self.vid_proc.set_seq_len(32760)
 | 
			
		||||
        else:
 | 
			
		||||
            raise NotImplementedError(f'image_size {image_size} is not supported')
 | 
			
		||||
 | 
			
		||||
        image_sizes = []
 | 
			
		||||
        for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
 | 
			
		||||
            if sub_src_mask is not None and sub_src_video is not None:
 | 
			
		||||
                src_video[i], src_mask[i], _, _, _ = self.vid_proc.load_video_pair(sub_src_video, sub_src_mask)
 | 
			
		||||
                src_video[i] = src_video[i].to(device)
 | 
			
		||||
                src_mask[i] = src_mask[i].to(device)
 | 
			
		||||
                src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
 | 
			
		||||
                image_sizes.append(src_video[i].shape[2:])
 | 
			
		||||
            elif sub_src_video is None:
 | 
			
		||||
                src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
 | 
			
		||||
                src_mask[i] = torch.ones_like(src_video[i], device=device)
 | 
			
		||||
                image_sizes.append(image_size)
 | 
			
		||||
            else:
 | 
			
		||||
                src_video[i], _, _, _ = self.vid_proc.load_video(sub_src_video)
 | 
			
		||||
                src_video[i] = src_video[i].to(device)
 | 
			
		||||
                src_mask[i] = torch.ones_like(src_video[i], device=device)
 | 
			
		||||
                image_sizes.append(src_video[i].shape[2:])
 | 
			
		||||
 | 
			
		||||
        for i, ref_images in enumerate(src_ref_images):
 | 
			
		||||
            if ref_images is not None:
 | 
			
		||||
                image_size = image_sizes[i]
 | 
			
		||||
                for j, ref_img in enumerate(ref_images):
 | 
			
		||||
                    if ref_img is not None:
 | 
			
		||||
                        ref_img = Image.open(ref_img).convert("RGB")
 | 
			
		||||
                        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
 | 
			
		||||
                        if ref_img.shape[-2:] != image_size:
 | 
			
		||||
                            canvas_height, canvas_width = image_size
 | 
			
		||||
                            ref_height, ref_width = ref_img.shape[-2:]
 | 
			
		||||
                            white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
 | 
			
		||||
                            scale = min(canvas_height / ref_height, canvas_width / ref_width)
 | 
			
		||||
                            new_height = int(ref_height * scale)
 | 
			
		||||
                            new_width = int(ref_width * scale)
 | 
			
		||||
                            resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
 | 
			
		||||
                            top = (canvas_height - new_height) // 2
 | 
			
		||||
                            left = (canvas_width - new_width) // 2
 | 
			
		||||
                            white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
 | 
			
		||||
                            ref_img = white_canvas
 | 
			
		||||
                        src_ref_images[i][j] = ref_img.to(device)
 | 
			
		||||
        return src_video, src_mask, src_ref_images
 | 
			
		||||
 | 
			
		||||
    def decode_latent(self, zs, ref_images=None, vae=None):
 | 
			
		||||
        vae = self.vae if vae is None else vae
 | 
			
		||||
        if ref_images is None:
 | 
			
		||||
            ref_images = [None] * len(zs)
 | 
			
		||||
        else:
 | 
			
		||||
            assert len(zs) == len(ref_images)
 | 
			
		||||
 | 
			
		||||
        trimed_zs = []
 | 
			
		||||
        for z, refs in zip(zs, ref_images):
 | 
			
		||||
            if refs is not None:
 | 
			
		||||
                z = z[:, len(refs):, :, :]
 | 
			
		||||
            trimed_zs.append(z)
 | 
			
		||||
 | 
			
		||||
        return vae.decode(trimed_zs)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def generate(self,
 | 
			
		||||
                 input_prompt,
 | 
			
		||||
                 input_frames,
 | 
			
		||||
                 input_masks,
 | 
			
		||||
                 input_ref_images,
 | 
			
		||||
                 size=(1280, 720),
 | 
			
		||||
                 frame_num=81,
 | 
			
		||||
                 context_scale=1.0,
 | 
			
		||||
                 shift=5.0,
 | 
			
		||||
                 sample_solver='unipc',
 | 
			
		||||
                 sampling_steps=50,
 | 
			
		||||
                 guide_scale=5.0,
 | 
			
		||||
                 n_prompt="",
 | 
			
		||||
                 seed=-1,
 | 
			
		||||
                 offload_model=True):
 | 
			
		||||
        r"""
 | 
			
		||||
        Generates video frames from text prompt using diffusion process.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            input_prompt (`str`):
 | 
			
		||||
                Text prompt for content generation
 | 
			
		||||
            size (tupele[`int`], *optional*, defaults to (1280,720)):
 | 
			
		||||
                Controls video resolution, (width,height).
 | 
			
		||||
            frame_num (`int`, *optional*, defaults to 81):
 | 
			
		||||
                How many frames to sample from a video. The number should be 4n+1
 | 
			
		||||
            shift (`float`, *optional*, defaults to 5.0):
 | 
			
		||||
                Noise schedule shift parameter. Affects temporal dynamics
 | 
			
		||||
            sample_solver (`str`, *optional*, defaults to 'unipc'):
 | 
			
		||||
                Solver used to sample the video.
 | 
			
		||||
            sampling_steps (`int`, *optional*, defaults to 40):
 | 
			
		||||
                Number of diffusion sampling steps. Higher values improve quality but slow generation
 | 
			
		||||
            guide_scale (`float`, *optional*, defaults 5.0):
 | 
			
		||||
                Classifier-free guidance scale. Controls prompt adherence vs. creativity
 | 
			
		||||
            n_prompt (`str`, *optional*, defaults to ""):
 | 
			
		||||
                Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
 | 
			
		||||
            seed (`int`, *optional*, defaults to -1):
 | 
			
		||||
                Random seed for noise generation. If -1, use random seed.
 | 
			
		||||
            offload_model (`bool`, *optional*, defaults to True):
 | 
			
		||||
                If True, offloads models to CPU during generation to save VRAM
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            torch.Tensor:
 | 
			
		||||
                Generated video frames tensor. Dimensions: (C, N H, W) where:
 | 
			
		||||
                - C: Color channels (3 for RGB)
 | 
			
		||||
                - N: Number of frames (81)
 | 
			
		||||
                - H: Frame height (from size)
 | 
			
		||||
                - W: Frame width from size)
 | 
			
		||||
        """
 | 
			
		||||
        # preprocess
 | 
			
		||||
        # F = frame_num
 | 
			
		||||
        # target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
 | 
			
		||||
        #                 size[1] // self.vae_stride[1],
 | 
			
		||||
        #                 size[0] // self.vae_stride[2])
 | 
			
		||||
        #
 | 
			
		||||
        # seq_len = math.ceil((target_shape[2] * target_shape[3]) /
 | 
			
		||||
        #                     (self.patch_size[1] * self.patch_size[2]) *
 | 
			
		||||
        #                     target_shape[1] / self.sp_size) * self.sp_size
 | 
			
		||||
 | 
			
		||||
        if n_prompt == "":
 | 
			
		||||
            n_prompt = self.sample_neg_prompt
 | 
			
		||||
        seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
 | 
			
		||||
        seed_g = torch.Generator(device=self.device)
 | 
			
		||||
        seed_g.manual_seed(seed)
 | 
			
		||||
 | 
			
		||||
        if not self.t5_cpu:
 | 
			
		||||
            self.text_encoder.model.to(self.device)
 | 
			
		||||
            context = self.text_encoder([input_prompt], self.device)
 | 
			
		||||
            context_null = self.text_encoder([n_prompt], self.device)
 | 
			
		||||
            if offload_model:
 | 
			
		||||
                self.text_encoder.model.cpu()
 | 
			
		||||
        else:
 | 
			
		||||
            context = self.text_encoder([input_prompt], torch.device('cpu'))
 | 
			
		||||
            context_null = self.text_encoder([n_prompt], torch.device('cpu'))
 | 
			
		||||
            context = [t.to(self.device) for t in context]
 | 
			
		||||
            context_null = [t.to(self.device) for t in context_null]
 | 
			
		||||
 | 
			
		||||
        # vace context encode
 | 
			
		||||
        z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks)
 | 
			
		||||
        m0 = self.vace_encode_masks(input_masks, input_ref_images)
 | 
			
		||||
        z = self.vace_latent(z0, m0)
 | 
			
		||||
 | 
			
		||||
        target_shape = list(z0[0].shape)
 | 
			
		||||
        target_shape[0] = int(target_shape[0] / 2)
 | 
			
		||||
        noise = [
 | 
			
		||||
            torch.randn(
 | 
			
		||||
                target_shape[0],
 | 
			
		||||
                target_shape[1],
 | 
			
		||||
                target_shape[2],
 | 
			
		||||
                target_shape[3],
 | 
			
		||||
                dtype=torch.float32,
 | 
			
		||||
                device=self.device,
 | 
			
		||||
                generator=seed_g)
 | 
			
		||||
        ]
 | 
			
		||||
        seq_len = math.ceil((target_shape[2] * target_shape[3]) /
 | 
			
		||||
                            (self.patch_size[1] * self.patch_size[2]) *
 | 
			
		||||
                            target_shape[1] / self.sp_size) * self.sp_size
 | 
			
		||||
 | 
			
		||||
        @contextmanager
 | 
			
		||||
        def noop_no_sync():
 | 
			
		||||
            yield
 | 
			
		||||
 | 
			
		||||
        no_sync = getattr(self.model, 'no_sync', noop_no_sync)
 | 
			
		||||
 | 
			
		||||
        # evaluation mode
 | 
			
		||||
        with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
 | 
			
		||||
 | 
			
		||||
            if sample_solver == 'unipc':
 | 
			
		||||
                sample_scheduler = FlowUniPCMultistepScheduler(
 | 
			
		||||
                    num_train_timesteps=self.num_train_timesteps,
 | 
			
		||||
                    shift=1,
 | 
			
		||||
                    use_dynamic_shifting=False)
 | 
			
		||||
                sample_scheduler.set_timesteps(
 | 
			
		||||
                    sampling_steps, device=self.device, shift=shift)
 | 
			
		||||
                timesteps = sample_scheduler.timesteps
 | 
			
		||||
            elif sample_solver == 'dpm++':
 | 
			
		||||
                sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
			
		||||
                    num_train_timesteps=self.num_train_timesteps,
 | 
			
		||||
                    shift=1,
 | 
			
		||||
                    use_dynamic_shifting=False)
 | 
			
		||||
                sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
 | 
			
		||||
                timesteps, _ = retrieve_timesteps(
 | 
			
		||||
                    sample_scheduler,
 | 
			
		||||
                    device=self.device,
 | 
			
		||||
                    sigmas=sampling_sigmas)
 | 
			
		||||
            else:
 | 
			
		||||
                raise NotImplementedError("Unsupported solver.")
 | 
			
		||||
 | 
			
		||||
            # sample videos
 | 
			
		||||
            latents = noise
 | 
			
		||||
 | 
			
		||||
            arg_c = {'context': context, 'seq_len': seq_len}
 | 
			
		||||
            arg_null = {'context': context_null, 'seq_len': seq_len}
 | 
			
		||||
 | 
			
		||||
            for _, t in enumerate(tqdm(timesteps)):
 | 
			
		||||
                latent_model_input = latents
 | 
			
		||||
                timestep = [t]
 | 
			
		||||
 | 
			
		||||
                timestep = torch.stack(timestep)
 | 
			
		||||
 | 
			
		||||
                self.model.to(self.device)
 | 
			
		||||
                noise_pred_cond = self.model(
 | 
			
		||||
                    latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale, **arg_c)[0]
 | 
			
		||||
                noise_pred_uncond = self.model(
 | 
			
		||||
                    latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale,**arg_null)[0]
 | 
			
		||||
 | 
			
		||||
                noise_pred = noise_pred_uncond + guide_scale * (
 | 
			
		||||
                    noise_pred_cond - noise_pred_uncond)
 | 
			
		||||
 | 
			
		||||
                temp_x0 = sample_scheduler.step(
 | 
			
		||||
                    noise_pred.unsqueeze(0),
 | 
			
		||||
                    t,
 | 
			
		||||
                    latents[0].unsqueeze(0),
 | 
			
		||||
                    return_dict=False,
 | 
			
		||||
                    generator=seed_g)[0]
 | 
			
		||||
                latents = [temp_x0.squeeze(0)]
 | 
			
		||||
 | 
			
		||||
            x0 = latents
 | 
			
		||||
            if offload_model:
 | 
			
		||||
                self.model.cpu()
 | 
			
		||||
                torch.cuda.empty_cache()
 | 
			
		||||
            if self.rank == 0:
 | 
			
		||||
                videos = self.decode_latent(x0, input_ref_images)
 | 
			
		||||
 | 
			
		||||
        del noise, latents
 | 
			
		||||
        del sample_scheduler
 | 
			
		||||
        if offload_model:
 | 
			
		||||
            gc.collect()
 | 
			
		||||
            torch.cuda.synchronize()
 | 
			
		||||
        if dist.is_initialized():
 | 
			
		||||
            dist.barrier()
 | 
			
		||||
 | 
			
		||||
        return videos[0] if self.rank == 0 else None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class WanVaceMP(WanVace):
 | 
			
		||||
    def __init__(
 | 
			
		||||
            self,
 | 
			
		||||
            config,
 | 
			
		||||
            checkpoint_dir,
 | 
			
		||||
            use_usp=False,
 | 
			
		||||
            ulysses_size=None,
 | 
			
		||||
            ring_size=None
 | 
			
		||||
    ):
 | 
			
		||||
        self.config = config
 | 
			
		||||
        self.checkpoint_dir = checkpoint_dir
 | 
			
		||||
        self.use_usp = use_usp
 | 
			
		||||
        os.environ['MASTER_ADDR'] = 'localhost'
 | 
			
		||||
        os.environ['MASTER_PORT'] = '12345'
 | 
			
		||||
        os.environ['RANK'] = '0'
 | 
			
		||||
        os.environ['WORLD_SIZE'] = '1'
 | 
			
		||||
        self.in_q_list = None
 | 
			
		||||
        self.out_q = None
 | 
			
		||||
        self.inference_pids = None
 | 
			
		||||
        self.ulysses_size = ulysses_size
 | 
			
		||||
        self.ring_size = ring_size
 | 
			
		||||
        self.dynamic_load()
 | 
			
		||||
 | 
			
		||||
        self.device = 'cpu' if torch.cuda.is_available() else 'cpu'
 | 
			
		||||
        self.vid_proc = VaceVideoProcessor(
 | 
			
		||||
            downsample=tuple([x * y for x, y in zip(config.vae_stride, config.patch_size)]),
 | 
			
		||||
            min_area=480 * 832,
 | 
			
		||||
            max_area=480 * 832,
 | 
			
		||||
            min_fps=self.config.sample_fps,
 | 
			
		||||
            max_fps=self.config.sample_fps,
 | 
			
		||||
            zero_start=True,
 | 
			
		||||
            seq_len=32760,
 | 
			
		||||
            keep_last=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def dynamic_load(self):
 | 
			
		||||
        if hasattr(self, 'inference_pids') and self.inference_pids is not None:
 | 
			
		||||
            return
 | 
			
		||||
        gpu_infer = os.environ.get('LOCAL_WORLD_SIZE') or torch.cuda.device_count()
 | 
			
		||||
        pmi_rank = int(os.environ['RANK'])
 | 
			
		||||
        pmi_world_size = int(os.environ['WORLD_SIZE'])
 | 
			
		||||
        in_q_list = [torch.multiprocessing.Manager().Queue() for _ in range(gpu_infer)]
 | 
			
		||||
        out_q = torch.multiprocessing.Manager().Queue()
 | 
			
		||||
        initialized_events = [torch.multiprocessing.Manager().Event() for _ in range(gpu_infer)]
 | 
			
		||||
        context = mp.spawn(self.mp_worker, nprocs=gpu_infer, args=(gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q, initialized_events, self), join=False)
 | 
			
		||||
        all_initialized = False
 | 
			
		||||
        while not all_initialized:
 | 
			
		||||
            all_initialized = all(event.is_set() for event in initialized_events)
 | 
			
		||||
            if not all_initialized:
 | 
			
		||||
                time.sleep(0.1)
 | 
			
		||||
        print('Inference model is initialized', flush=True)
 | 
			
		||||
        self.in_q_list = in_q_list
 | 
			
		||||
        self.out_q = out_q
 | 
			
		||||
        self.inference_pids = context.pids()
 | 
			
		||||
        self.initialized_events = initialized_events
 | 
			
		||||
 | 
			
		||||
    def transfer_data_to_cuda(self, data, device):
 | 
			
		||||
        if data is None:
 | 
			
		||||
            return None
 | 
			
		||||
        else:
 | 
			
		||||
            if isinstance(data, torch.Tensor):
 | 
			
		||||
                data = data.to(device)
 | 
			
		||||
            elif isinstance(data, list):
 | 
			
		||||
                data = [self.transfer_data_to_cuda(subdata, device) for subdata in data]
 | 
			
		||||
            elif isinstance(data, dict):
 | 
			
		||||
                data = {key: self.transfer_data_to_cuda(val, device) for key, val in data.items()}
 | 
			
		||||
        return data
 | 
			
		||||
 | 
			
		||||
    def mp_worker(self, gpu, gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q, initialized_events, work_env):
 | 
			
		||||
        try:
 | 
			
		||||
            world_size = pmi_world_size * gpu_infer
 | 
			
		||||
            rank = pmi_rank * gpu_infer + gpu
 | 
			
		||||
            print("world_size", world_size, "rank", rank, flush=True)
 | 
			
		||||
 | 
			
		||||
            torch.cuda.set_device(gpu)
 | 
			
		||||
            dist.init_process_group(
 | 
			
		||||
                backend='nccl',
 | 
			
		||||
                init_method='env://',
 | 
			
		||||
                rank=rank,
 | 
			
		||||
                world_size=world_size
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            from xfuser.core.distributed import (initialize_model_parallel,
 | 
			
		||||
                                                 init_distributed_environment)
 | 
			
		||||
            init_distributed_environment(
 | 
			
		||||
                rank=dist.get_rank(), world_size=dist.get_world_size())
 | 
			
		||||
 | 
			
		||||
            initialize_model_parallel(
 | 
			
		||||
                sequence_parallel_degree=dist.get_world_size(),
 | 
			
		||||
                ring_degree=self.ring_size or 1,
 | 
			
		||||
                ulysses_degree=self.ulysses_size or 1
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            num_train_timesteps = self.config.num_train_timesteps
 | 
			
		||||
            param_dtype = self.config.param_dtype
 | 
			
		||||
            shard_fn = partial(shard_model, device_id=gpu)
 | 
			
		||||
            text_encoder = T5EncoderModel(
 | 
			
		||||
                text_len=self.config.text_len,
 | 
			
		||||
                dtype=self.config.t5_dtype,
 | 
			
		||||
                device=torch.device('cpu'),
 | 
			
		||||
                checkpoint_path=os.path.join(self.checkpoint_dir, self.config.t5_checkpoint),
 | 
			
		||||
                tokenizer_path=os.path.join(self.checkpoint_dir, self.config.t5_tokenizer),
 | 
			
		||||
                shard_fn=shard_fn if True else None)
 | 
			
		||||
            text_encoder.model.to(gpu)
 | 
			
		||||
            vae_stride = self.config.vae_stride
 | 
			
		||||
            patch_size = self.config.patch_size
 | 
			
		||||
            vae = WanVAE(
 | 
			
		||||
                vae_pth=os.path.join(self.checkpoint_dir, self.config.vae_checkpoint),
 | 
			
		||||
                device=gpu)
 | 
			
		||||
            logging.info(f"Creating VaceWanModel from {self.checkpoint_dir}")
 | 
			
		||||
            model = VaceWanModel.from_pretrained(self.checkpoint_dir)
 | 
			
		||||
            model.eval().requires_grad_(False)
 | 
			
		||||
 | 
			
		||||
            if self.use_usp:
 | 
			
		||||
                from xfuser.core.distributed import get_sequence_parallel_world_size
 | 
			
		||||
                from .distributed.xdit_context_parallel import (usp_attn_forward,
 | 
			
		||||
                                                                usp_dit_forward,
 | 
			
		||||
                                                                usp_dit_forward_vace)
 | 
			
		||||
                for block in model.blocks:
 | 
			
		||||
                    block.self_attn.forward = types.MethodType(
 | 
			
		||||
                        usp_attn_forward, block.self_attn)
 | 
			
		||||
                for block in model.vace_blocks:
 | 
			
		||||
                    block.self_attn.forward = types.MethodType(
 | 
			
		||||
                        usp_attn_forward, block.self_attn)
 | 
			
		||||
                model.forward = types.MethodType(usp_dit_forward, model)
 | 
			
		||||
                model.forward_vace = types.MethodType(usp_dit_forward_vace, model)
 | 
			
		||||
                sp_size = get_sequence_parallel_world_size()
 | 
			
		||||
            else:
 | 
			
		||||
                sp_size = 1
 | 
			
		||||
 | 
			
		||||
            dist.barrier()
 | 
			
		||||
            model = shard_fn(model)
 | 
			
		||||
            sample_neg_prompt = self.config.sample_neg_prompt
 | 
			
		||||
 | 
			
		||||
            torch.cuda.empty_cache()
 | 
			
		||||
            event = initialized_events[gpu]
 | 
			
		||||
            in_q = in_q_list[gpu]
 | 
			
		||||
            event.set()
 | 
			
		||||
 | 
			
		||||
            while True:
 | 
			
		||||
                item = in_q.get()
 | 
			
		||||
                input_prompt, input_frames, input_masks, input_ref_images, size, frame_num, context_scale, \
 | 
			
		||||
                shift, sample_solver, sampling_steps, guide_scale, n_prompt, seed, offload_model = item
 | 
			
		||||
                input_frames = self.transfer_data_to_cuda(input_frames, gpu)
 | 
			
		||||
                input_masks = self.transfer_data_to_cuda(input_masks, gpu)
 | 
			
		||||
                input_ref_images = self.transfer_data_to_cuda(input_ref_images, gpu)
 | 
			
		||||
 | 
			
		||||
                if n_prompt == "":
 | 
			
		||||
                    n_prompt = sample_neg_prompt
 | 
			
		||||
                seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
 | 
			
		||||
                seed_g = torch.Generator(device=gpu)
 | 
			
		||||
                seed_g.manual_seed(seed)
 | 
			
		||||
 | 
			
		||||
                context = text_encoder([input_prompt], gpu)
 | 
			
		||||
                context_null = text_encoder([n_prompt], gpu)
 | 
			
		||||
 | 
			
		||||
                # vace context encode
 | 
			
		||||
                z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, vae=vae)
 | 
			
		||||
                m0 = self.vace_encode_masks(input_masks, input_ref_images, vae_stride=vae_stride)
 | 
			
		||||
                z = self.vace_latent(z0, m0)
 | 
			
		||||
 | 
			
		||||
                target_shape = list(z0[0].shape)
 | 
			
		||||
                target_shape[0] = int(target_shape[0] / 2)
 | 
			
		||||
                noise = [
 | 
			
		||||
                    torch.randn(
 | 
			
		||||
                        target_shape[0],
 | 
			
		||||
                        target_shape[1],
 | 
			
		||||
                        target_shape[2],
 | 
			
		||||
                        target_shape[3],
 | 
			
		||||
                        dtype=torch.float32,
 | 
			
		||||
                        device=gpu,
 | 
			
		||||
                        generator=seed_g)
 | 
			
		||||
                ]
 | 
			
		||||
                seq_len = math.ceil((target_shape[2] * target_shape[3]) /
 | 
			
		||||
                                    (patch_size[1] * patch_size[2]) *
 | 
			
		||||
                                    target_shape[1] / sp_size) * sp_size
 | 
			
		||||
 | 
			
		||||
                @contextmanager
 | 
			
		||||
                def noop_no_sync():
 | 
			
		||||
                    yield
 | 
			
		||||
 | 
			
		||||
                no_sync = getattr(model, 'no_sync', noop_no_sync)
 | 
			
		||||
 | 
			
		||||
                # evaluation mode
 | 
			
		||||
                with amp.autocast(dtype=param_dtype), torch.no_grad(), no_sync():
 | 
			
		||||
 | 
			
		||||
                    if sample_solver == 'unipc':
 | 
			
		||||
                        sample_scheduler = FlowUniPCMultistepScheduler(
 | 
			
		||||
                            num_train_timesteps=num_train_timesteps,
 | 
			
		||||
                            shift=1,
 | 
			
		||||
                            use_dynamic_shifting=False)
 | 
			
		||||
                        sample_scheduler.set_timesteps(
 | 
			
		||||
                            sampling_steps, device=gpu, shift=shift)
 | 
			
		||||
                        timesteps = sample_scheduler.timesteps
 | 
			
		||||
                    elif sample_solver == 'dpm++':
 | 
			
		||||
                        sample_scheduler = FlowDPMSolverMultistepScheduler(
 | 
			
		||||
                            num_train_timesteps=num_train_timesteps,
 | 
			
		||||
                            shift=1,
 | 
			
		||||
                            use_dynamic_shifting=False)
 | 
			
		||||
                        sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
 | 
			
		||||
                        timesteps, _ = retrieve_timesteps(
 | 
			
		||||
                            sample_scheduler,
 | 
			
		||||
                            device=gpu,
 | 
			
		||||
                            sigmas=sampling_sigmas)
 | 
			
		||||
                    else:
 | 
			
		||||
                        raise NotImplementedError("Unsupported solver.")
 | 
			
		||||
 | 
			
		||||
                    # sample videos
 | 
			
		||||
                    latents = noise
 | 
			
		||||
 | 
			
		||||
                    arg_c = {'context': context, 'seq_len': seq_len}
 | 
			
		||||
                    arg_null = {'context': context_null, 'seq_len': seq_len}
 | 
			
		||||
 | 
			
		||||
                    for _, t in enumerate(tqdm(timesteps)):
 | 
			
		||||
                        latent_model_input = latents
 | 
			
		||||
                        timestep = [t]
 | 
			
		||||
 | 
			
		||||
                        timestep = torch.stack(timestep)
 | 
			
		||||
 | 
			
		||||
                        model.to(gpu)
 | 
			
		||||
                        noise_pred_cond = model(
 | 
			
		||||
                            latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale, **arg_c)[
 | 
			
		||||
                            0]
 | 
			
		||||
                        noise_pred_uncond = model(
 | 
			
		||||
                            latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale,
 | 
			
		||||
                            **arg_null)[0]
 | 
			
		||||
 | 
			
		||||
                        noise_pred = noise_pred_uncond + guide_scale * (
 | 
			
		||||
                                noise_pred_cond - noise_pred_uncond)
 | 
			
		||||
 | 
			
		||||
                        temp_x0 = sample_scheduler.step(
 | 
			
		||||
                            noise_pred.unsqueeze(0),
 | 
			
		||||
                            t,
 | 
			
		||||
                            latents[0].unsqueeze(0),
 | 
			
		||||
                            return_dict=False,
 | 
			
		||||
                            generator=seed_g)[0]
 | 
			
		||||
                        latents = [temp_x0.squeeze(0)]
 | 
			
		||||
 | 
			
		||||
                    torch.cuda.empty_cache()
 | 
			
		||||
                    x0 = latents
 | 
			
		||||
                    if rank == 0:
 | 
			
		||||
                        videos = self.decode_latent(x0, input_ref_images, vae=vae)
 | 
			
		||||
 | 
			
		||||
                del noise, latents
 | 
			
		||||
                del sample_scheduler
 | 
			
		||||
                if offload_model:
 | 
			
		||||
                    gc.collect()
 | 
			
		||||
                    torch.cuda.synchronize()
 | 
			
		||||
                if dist.is_initialized():
 | 
			
		||||
                    dist.barrier()
 | 
			
		||||
 | 
			
		||||
                if rank == 0:
 | 
			
		||||
                    out_q.put(videos[0].cpu())
 | 
			
		||||
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            trace_info = traceback.format_exc()
 | 
			
		||||
            print(trace_info, flush=True)
 | 
			
		||||
            print(e, flush=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def generate(self,
 | 
			
		||||
                 input_prompt,
 | 
			
		||||
                 input_frames,
 | 
			
		||||
                 input_masks,
 | 
			
		||||
                 input_ref_images,
 | 
			
		||||
                 size=(1280, 720),
 | 
			
		||||
                 frame_num=81,
 | 
			
		||||
                 context_scale=1.0,
 | 
			
		||||
                 shift=5.0,
 | 
			
		||||
                 sample_solver='unipc',
 | 
			
		||||
                 sampling_steps=50,
 | 
			
		||||
                 guide_scale=5.0,
 | 
			
		||||
                 n_prompt="",
 | 
			
		||||
                 seed=-1,
 | 
			
		||||
                 offload_model=True):
 | 
			
		||||
 | 
			
		||||
        input_data = (input_prompt, input_frames, input_masks, input_ref_images, size, frame_num, context_scale,
 | 
			
		||||
                      shift, sample_solver, sampling_steps, guide_scale, n_prompt, seed, offload_model)
 | 
			
		||||
        for in_q in self.in_q_list:
 | 
			
		||||
            in_q.put(input_data)
 | 
			
		||||
        value_output = self.out_q.get()
 | 
			
		||||
 | 
			
		||||
        return value_output
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user