mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-06-05 14:54:54 +00:00
Add VACE
This commit is contained in:
parent
204f899b64
commit
d372c7eb6b
80
generate.py
80
generate.py
@ -41,6 +41,14 @@ EXAMPLE_PROMPT = {
|
||||
"last_frame":
|
||||
"examples/flf2v_input_last_frame.png",
|
||||
},
|
||||
"vace-1.3B": {
|
||||
"src_ref_images": './bag.jpg,./heben.png',
|
||||
"prompt": "优雅的女士在精品店仔细挑选包包,她身穿一袭黑色修身连衣裙,搭配珍珠项链,展现出成熟女性的魅力。手中拿着一款复古风格的棕色皮质半月形手提包,正细致地观察其工艺与质地。店内灯光柔和,木质装潢营造出温馨而高级的氛围。中景,侧拍捕捉女士挑选瞬间,展现其品味与气质。"
|
||||
},
|
||||
"vace-14B": {
|
||||
"src_ref_images": './bag.jpg,./heben.png',
|
||||
"prompt": "优雅的女士在精品店仔细挑选包包,她身穿一袭黑色修身连衣裙,搭配珍珠项链,展现出成熟女性的魅力。手中拿着一款复古风格的棕色皮质半月形手提包,正细致地观察其工艺与质地。店内灯光柔和,木质装潢营造出温馨而高级的氛围。中景,侧拍捕捉女士挑选瞬间,展现其品味与气质。"
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -50,6 +58,7 @@ def _validate_args(args):
|
||||
assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
|
||||
assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
|
||||
|
||||
# TODO(wangang.wa): need to be confirmed
|
||||
# The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
|
||||
if args.sample_steps is None:
|
||||
args.sample_steps = 40 if "i2v" in args.task else 50
|
||||
@ -141,6 +150,21 @@ def _parse_args():
|
||||
type=str,
|
||||
default=None,
|
||||
help="The file to save the generated image or video to.")
|
||||
parser.add_argument(
|
||||
"--src_video",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The file of the source video. Default None.")
|
||||
parser.add_argument(
|
||||
"--src_mask",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The file of the source mask. Default None.")
|
||||
parser.add_argument(
|
||||
"--src_ref_images",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The file list of the source reference images. Separated by ','. Default None.")
|
||||
parser.add_argument(
|
||||
"--prompt",
|
||||
type=str,
|
||||
@ -397,7 +421,7 @@ def generate(args):
|
||||
guide_scale=args.sample_guide_scale,
|
||||
seed=args.base_seed,
|
||||
offload_model=args.offload_model)
|
||||
else:
|
||||
elif "flf2v" in args.task:
|
||||
if args.prompt is None:
|
||||
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
||||
if args.first_frame is None or args.last_frame is None:
|
||||
@ -457,6 +481,60 @@ def generate(args):
|
||||
seed=args.base_seed,
|
||||
offload_model=args.offload_model
|
||||
)
|
||||
elif "vace" in args.task:
|
||||
if args.prompt is None:
|
||||
args.prompt = EXAMPLE_PROMPT[args.model_name]["prompt"]
|
||||
args.src_video = EXAMPLE_PROMPT[args.model_name].get("src_video", None)
|
||||
args.src_mask = EXAMPLE_PROMPT[args.model_name].get("src_mask", None)
|
||||
args.src_ref_images = EXAMPLE_PROMPT[args.model_name].get("src_ref_images", None)
|
||||
|
||||
logging.info(f"Input prompt: {args.prompt}")
|
||||
if args.use_prompt_extend and args.use_prompt_extend != 'plain':
|
||||
logging.info("Extending prompt ...")
|
||||
if rank == 0:
|
||||
prompt = prompt_expander.forward(args.prompt)
|
||||
logging.info(f"Prompt extended from '{args.prompt}' to '{prompt}'")
|
||||
input_prompt = [prompt]
|
||||
else:
|
||||
input_prompt = [None]
|
||||
if dist.is_initialized():
|
||||
dist.broadcast_object_list(input_prompt, src=0)
|
||||
args.prompt = input_prompt[0]
|
||||
logging.info(f"Extended prompt: {args.prompt}")
|
||||
|
||||
logging.info("Creating WanT2V pipeline.")
|
||||
wan_vace = wan.WanVace(
|
||||
config=cfg,
|
||||
checkpoint_dir=args.ckpt_dir,
|
||||
device_id=device,
|
||||
rank=rank,
|
||||
t5_fsdp=args.t5_fsdp,
|
||||
dit_fsdp=args.dit_fsdp,
|
||||
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
||||
t5_cpu=args.t5_cpu,
|
||||
)
|
||||
|
||||
src_video, src_mask, src_ref_images = wan_vace.prepare_source([args.src_video],
|
||||
[args.src_mask],
|
||||
[None if args.src_ref_images is None else args.src_ref_images.split(',')],
|
||||
args.frame_num, SIZE_CONFIGS[args.size], device)
|
||||
|
||||
logging.info(f"Generating video...")
|
||||
video = wan_vace.generate(
|
||||
args.prompt,
|
||||
src_video,
|
||||
src_mask,
|
||||
src_ref_images,
|
||||
size=SIZE_CONFIGS[args.size],
|
||||
frame_num=args.frame_num,
|
||||
shift=args.sample_shift,
|
||||
sample_solver=args.sample_solver,
|
||||
sampling_steps=args.sample_steps,
|
||||
guide_scale=args.sample_guide_scale,
|
||||
seed=args.base_seed,
|
||||
offload_model=args.offload_model)
|
||||
else:
|
||||
raise ValueError(f"Unkown task type: {args.task}")
|
||||
|
||||
if rank == 0:
|
||||
if args.save_file is None:
|
||||
|
@ -2,3 +2,4 @@ from . import configs, distributed, modules
|
||||
from .image2video import WanI2V
|
||||
from .text2video import WanT2V
|
||||
from .first_last_frame2video import WanFLF2V
|
||||
from .vace import WanVace
|
||||
|
@ -22,7 +22,9 @@ WAN_CONFIGS = {
|
||||
't2v-1.3B': t2v_1_3B,
|
||||
'i2v-14B': i2v_14B,
|
||||
't2i-14B': t2i_14B,
|
||||
'flf2v-14B': flf2v_14B
|
||||
'flf2v-14B': flf2v_14B,
|
||||
'vace-1.3B': t2v_1_3B,
|
||||
'vace-14B': t2v_14B,
|
||||
}
|
||||
|
||||
SIZE_CONFIGS = {
|
||||
@ -46,4 +48,6 @@ SUPPORTED_SIZES = {
|
||||
'i2v-14B': ('720*1280', '1280*720', '480*832', '832*480'),
|
||||
'flf2v-14B': ('720*1280', '1280*720', '480*832', '832*480'),
|
||||
't2i-14B': tuple(SIZE_CONFIGS.keys()),
|
||||
'vace-1.3B': ('480*832', '832*480'),
|
||||
'vace-14B': ('720*1280', '1280*720', '480*832', '832*480')
|
||||
}
|
||||
|
@ -2,11 +2,13 @@ from .attention import flash_attention
|
||||
from .model import WanModel
|
||||
from .t5 import T5Decoder, T5Encoder, T5EncoderModel, T5Model
|
||||
from .tokenizers import HuggingfaceTokenizer
|
||||
from .vace_model import VaceWanModel
|
||||
from .vae import WanVAE
|
||||
|
||||
__all__ = [
|
||||
'WanVAE',
|
||||
'WanModel',
|
||||
'VaceWanModel',
|
||||
'T5Model',
|
||||
'T5Encoder',
|
||||
'T5Decoder',
|
||||
|
237
wan/modules/vace_model.py
Normal file
237
wan/modules/vace_model.py
Normal file
@ -0,0 +1,237 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import torch
|
||||
import torch.cuda.amp as amp
|
||||
import torch.nn as nn
|
||||
from diffusers.configuration_utils import register_to_config
|
||||
from .model import WanModel, WanAttentionBlock, sinusoidal_embedding_1d
|
||||
|
||||
|
||||
class VaceWanAttentionBlock(WanAttentionBlock):
|
||||
def __init__(
|
||||
self,
|
||||
cross_attn_type,
|
||||
dim,
|
||||
ffn_dim,
|
||||
num_heads,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=False,
|
||||
eps=1e-6,
|
||||
block_id=0
|
||||
):
|
||||
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
|
||||
self.block_id = block_id
|
||||
if block_id == 0:
|
||||
self.before_proj = nn.Linear(self.dim, self.dim)
|
||||
nn.init.zeros_(self.before_proj.weight)
|
||||
nn.init.zeros_(self.before_proj.bias)
|
||||
self.after_proj = nn.Linear(self.dim, self.dim)
|
||||
nn.init.zeros_(self.after_proj.weight)
|
||||
nn.init.zeros_(self.after_proj.bias)
|
||||
|
||||
def forward(self, c, x, **kwargs):
|
||||
if self.block_id == 0:
|
||||
c = self.before_proj(c) + x
|
||||
all_c = []
|
||||
else:
|
||||
all_c = list(torch.unbind(c))
|
||||
c = all_c.pop(-1)
|
||||
c = super().forward(c, **kwargs)
|
||||
c_skip = self.after_proj(c)
|
||||
all_c += [c_skip, c]
|
||||
c = torch.stack(all_c)
|
||||
return c
|
||||
|
||||
|
||||
class BaseWanAttentionBlock(WanAttentionBlock):
|
||||
def __init__(
|
||||
self,
|
||||
cross_attn_type,
|
||||
dim,
|
||||
ffn_dim,
|
||||
num_heads,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=False,
|
||||
eps=1e-6,
|
||||
block_id=None
|
||||
):
|
||||
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
|
||||
self.block_id = block_id
|
||||
|
||||
def forward(self, x, hints, context_scale=1.0, **kwargs):
|
||||
x = super().forward(x, **kwargs)
|
||||
if self.block_id is not None:
|
||||
x = x + hints[self.block_id] * context_scale
|
||||
return x
|
||||
|
||||
|
||||
class VaceWanModel(WanModel):
|
||||
@register_to_config
|
||||
def __init__(self,
|
||||
vace_layers=None,
|
||||
vace_in_dim=None,
|
||||
model_type='t2v',
|
||||
patch_size=(1, 2, 2),
|
||||
text_len=512,
|
||||
in_dim=16,
|
||||
dim=2048,
|
||||
ffn_dim=8192,
|
||||
freq_dim=256,
|
||||
text_dim=4096,
|
||||
out_dim=16,
|
||||
num_heads=16,
|
||||
num_layers=32,
|
||||
window_size=(-1, -1),
|
||||
qk_norm=True,
|
||||
cross_attn_norm=True,
|
||||
eps=1e-6):
|
||||
super().__init__(model_type, patch_size, text_len, in_dim, dim, ffn_dim, freq_dim, text_dim, out_dim,
|
||||
num_heads, num_layers, window_size, qk_norm, cross_attn_norm, eps)
|
||||
|
||||
self.vace_layers = [i for i in range(0, self.num_layers, 2)] if vace_layers is None else vace_layers
|
||||
self.vace_in_dim = self.in_dim if vace_in_dim is None else vace_in_dim
|
||||
|
||||
assert 0 in self.vace_layers
|
||||
self.vace_layers_mapping = {i: n for n, i in enumerate(self.vace_layers)}
|
||||
|
||||
# blocks
|
||||
self.blocks = nn.ModuleList([
|
||||
BaseWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
|
||||
self.cross_attn_norm, self.eps,
|
||||
block_id=self.vace_layers_mapping[i] if i in self.vace_layers else None)
|
||||
for i in range(self.num_layers)
|
||||
])
|
||||
|
||||
# vace blocks
|
||||
self.vace_blocks = nn.ModuleList([
|
||||
VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
|
||||
self.cross_attn_norm, self.eps, block_id=i)
|
||||
for i in self.vace_layers
|
||||
])
|
||||
|
||||
# vace patch embeddings
|
||||
self.vace_patch_embedding = nn.Conv3d(
|
||||
self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size
|
||||
)
|
||||
|
||||
def forward_vace(
|
||||
self,
|
||||
x,
|
||||
vace_context,
|
||||
seq_len,
|
||||
kwargs
|
||||
):
|
||||
# embeddings
|
||||
c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
|
||||
c = [u.flatten(2).transpose(1, 2) for u in c]
|
||||
c = torch.cat([
|
||||
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
|
||||
dim=1) for u in c
|
||||
])
|
||||
|
||||
# arguments
|
||||
new_kwargs = dict(x=x)
|
||||
new_kwargs.update(kwargs)
|
||||
|
||||
for block in self.vace_blocks:
|
||||
c = block(c, **new_kwargs)
|
||||
hints = torch.unbind(c)[:-1]
|
||||
return hints
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
t,
|
||||
vace_context,
|
||||
context,
|
||||
seq_len,
|
||||
vace_context_scale=1.0,
|
||||
clip_fea=None,
|
||||
y=None,
|
||||
):
|
||||
r"""
|
||||
Forward pass through the diffusion model
|
||||
|
||||
Args:
|
||||
x (List[Tensor]):
|
||||
List of input video tensors, each with shape [C_in, F, H, W]
|
||||
t (Tensor):
|
||||
Diffusion timesteps tensor of shape [B]
|
||||
context (List[Tensor]):
|
||||
List of text embeddings each with shape [L, C]
|
||||
seq_len (`int`):
|
||||
Maximum sequence length for positional encoding
|
||||
clip_fea (Tensor, *optional*):
|
||||
CLIP image features for image-to-video mode
|
||||
y (List[Tensor], *optional*):
|
||||
Conditional video inputs for image-to-video mode, same shape as x
|
||||
|
||||
Returns:
|
||||
List[Tensor]:
|
||||
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
||||
"""
|
||||
# if self.model_type == 'i2v':
|
||||
# assert clip_fea is not None and y is not None
|
||||
# params
|
||||
device = self.patch_embedding.weight.device
|
||||
if self.freqs.device != device:
|
||||
self.freqs = self.freqs.to(device)
|
||||
|
||||
# if y is not None:
|
||||
# x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
||||
|
||||
# embeddings
|
||||
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
||||
grid_sizes = torch.stack(
|
||||
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
||||
x = [u.flatten(2).transpose(1, 2) for u in x]
|
||||
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
||||
assert seq_lens.max() <= seq_len
|
||||
x = torch.cat([
|
||||
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
|
||||
dim=1) for u in x
|
||||
])
|
||||
|
||||
# time embeddings
|
||||
with amp.autocast(dtype=torch.float32):
|
||||
e = self.time_embedding(
|
||||
sinusoidal_embedding_1d(self.freq_dim, t).float())
|
||||
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
||||
assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
||||
|
||||
# context
|
||||
context_lens = None
|
||||
context = self.text_embedding(
|
||||
torch.stack([
|
||||
torch.cat(
|
||||
[u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
||||
for u in context
|
||||
]))
|
||||
|
||||
# if clip_fea is not None:
|
||||
# context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||||
# context = torch.concat([context_clip, context], dim=1)
|
||||
|
||||
# arguments
|
||||
kwargs = dict(
|
||||
e=e0,
|
||||
seq_lens=seq_lens,
|
||||
grid_sizes=grid_sizes,
|
||||
freqs=self.freqs,
|
||||
context=context,
|
||||
context_lens=context_lens)
|
||||
|
||||
hints = self.forward_vace(x, vace_context, seq_len, kwargs)
|
||||
kwargs['hints'] = hints
|
||||
kwargs['context_scale'] = vace_context_scale
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x, **kwargs)
|
||||
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
|
||||
# unpatchify
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return [u.float() for u in x]
|
@ -1,8 +1,10 @@
|
||||
from .fm_solvers import (FlowDPMSolverMultistepScheduler, get_sampling_sigmas,
|
||||
retrieve_timesteps)
|
||||
from .fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
from .vace_processor import VaceVideoProcessor
|
||||
|
||||
__all__ = [
|
||||
'HuggingfaceTokenizer', 'get_sampling_sigmas', 'retrieve_timesteps',
|
||||
'FlowDPMSolverMultistepScheduler', 'FlowUniPCMultistepScheduler'
|
||||
'FlowDPMSolverMultistepScheduler', 'FlowUniPCMultistepScheduler',
|
||||
'VaceVideoProcessor'
|
||||
]
|
||||
|
270
wan/utils/vace_processor.py
Normal file
270
wan/utils/vace_processor.py
Normal file
@ -0,0 +1,270 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torchvision.transforms.functional as TF
|
||||
|
||||
|
||||
class VaceImageProcessor(object):
|
||||
def __init__(self, downsample=None, seq_len=None):
|
||||
self.downsample = downsample
|
||||
self.seq_len = seq_len
|
||||
|
||||
def _pillow_convert(self, image, cvt_type='RGB'):
|
||||
if image.mode != cvt_type:
|
||||
if image.mode == 'P':
|
||||
image = image.convert(f'{cvt_type}A')
|
||||
if image.mode == f'{cvt_type}A':
|
||||
bg = Image.new(cvt_type,
|
||||
size=(image.width, image.height),
|
||||
color=(255, 255, 255))
|
||||
bg.paste(image, (0, 0), mask=image)
|
||||
image = bg
|
||||
else:
|
||||
image = image.convert(cvt_type)
|
||||
return image
|
||||
|
||||
def _load_image(self, img_path):
|
||||
if img_path is None or img_path == '':
|
||||
return None
|
||||
img = Image.open(img_path)
|
||||
img = self._pillow_convert(img)
|
||||
return img
|
||||
|
||||
def _resize_crop(self, img, oh, ow, normalize=True):
|
||||
"""
|
||||
Resize, center crop, convert to tensor, and normalize.
|
||||
"""
|
||||
# resize and crop
|
||||
iw, ih = img.size
|
||||
if iw != ow or ih != oh:
|
||||
# resize
|
||||
scale = max(ow / iw, oh / ih)
|
||||
img = img.resize(
|
||||
(round(scale * iw), round(scale * ih)),
|
||||
resample=Image.Resampling.LANCZOS
|
||||
)
|
||||
assert img.width >= ow and img.height >= oh
|
||||
|
||||
# center crop
|
||||
x1 = (img.width - ow) // 2
|
||||
y1 = (img.height - oh) // 2
|
||||
img = img.crop((x1, y1, x1 + ow, y1 + oh))
|
||||
|
||||
# normalize
|
||||
if normalize:
|
||||
img = TF.to_tensor(img).sub_(0.5).div_(0.5).unsqueeze(1)
|
||||
return img
|
||||
|
||||
def _image_preprocess(self, img, oh, ow, normalize=True, **kwargs):
|
||||
return self._resize_crop(img, oh, ow, normalize)
|
||||
|
||||
def load_image(self, data_key, **kwargs):
|
||||
return self.load_image_batch(data_key, **kwargs)
|
||||
|
||||
def load_image_pair(self, data_key, data_key2, **kwargs):
|
||||
return self.load_image_batch(data_key, data_key2, **kwargs)
|
||||
|
||||
def load_image_batch(self, *data_key_batch, normalize=True, seq_len=None, **kwargs):
|
||||
seq_len = self.seq_len if seq_len is None else seq_len
|
||||
imgs = []
|
||||
for data_key in data_key_batch:
|
||||
img = self._load_image(data_key)
|
||||
imgs.append(img)
|
||||
w, h = imgs[0].size
|
||||
dh, dw = self.downsample[1:]
|
||||
|
||||
# compute output size
|
||||
scale = min(1., np.sqrt(seq_len / ((h / dh) * (w / dw))))
|
||||
oh = int(h * scale) // dh * dh
|
||||
ow = int(w * scale) // dw * dw
|
||||
assert (oh // dh) * (ow // dw) <= seq_len
|
||||
imgs = [self._image_preprocess(img, oh, ow, normalize) for img in imgs]
|
||||
return *imgs, (oh, ow)
|
||||
|
||||
|
||||
class VaceVideoProcessor(object):
|
||||
def __init__(self, downsample, min_area, max_area, min_fps, max_fps, zero_start, seq_len, keep_last, **kwargs):
|
||||
self.downsample = downsample
|
||||
self.min_area = min_area
|
||||
self.max_area = max_area
|
||||
self.min_fps = min_fps
|
||||
self.max_fps = max_fps
|
||||
self.zero_start = zero_start
|
||||
self.keep_last = keep_last
|
||||
self.seq_len = seq_len
|
||||
assert seq_len >= min_area / (self.downsample[1] * self.downsample[2])
|
||||
|
||||
def set_area(self, area):
|
||||
self.min_area = area
|
||||
self.max_area = area
|
||||
|
||||
def set_seq_len(self, seq_len):
|
||||
self.seq_len = seq_len
|
||||
|
||||
@staticmethod
|
||||
def resize_crop(video: torch.Tensor, oh: int, ow: int):
|
||||
"""
|
||||
Resize, center crop and normalize for decord loaded video (torch.Tensor type)
|
||||
|
||||
Parameters:
|
||||
video - video to process (torch.Tensor): Tensor from `reader.get_batch(frame_ids)`, in shape of (T, H, W, C)
|
||||
oh - target height (int)
|
||||
ow - target width (int)
|
||||
|
||||
Returns:
|
||||
The processed video (torch.Tensor): Normalized tensor range [-1, 1], in shape of (C, T, H, W)
|
||||
|
||||
Raises:
|
||||
"""
|
||||
# permute ([t, h, w, c] -> [t, c, h, w])
|
||||
video = video.permute(0, 3, 1, 2)
|
||||
|
||||
# resize and crop
|
||||
ih, iw = video.shape[2:]
|
||||
if ih != oh or iw != ow:
|
||||
# resize
|
||||
scale = max(ow / iw, oh / ih)
|
||||
video = F.interpolate(
|
||||
video,
|
||||
size=(round(scale * ih), round(scale * iw)),
|
||||
mode='bicubic',
|
||||
antialias=True
|
||||
)
|
||||
assert video.size(3) >= ow and video.size(2) >= oh
|
||||
|
||||
# center crop
|
||||
x1 = (video.size(3) - ow) // 2
|
||||
y1 = (video.size(2) - oh) // 2
|
||||
video = video[:, :, y1:y1 + oh, x1:x1 + ow]
|
||||
|
||||
# permute ([t, c, h, w] -> [c, t, h, w]) and normalize
|
||||
video = video.transpose(0, 1).float().div_(127.5).sub_(1.)
|
||||
return video
|
||||
|
||||
def _video_preprocess(self, video, oh, ow):
|
||||
return self.resize_crop(video, oh, ow)
|
||||
|
||||
def _get_frameid_bbox_default(self, fps, frame_timestamps, h, w, crop_box, rng):
|
||||
target_fps = min(fps, self.max_fps)
|
||||
duration = frame_timestamps[-1].mean()
|
||||
x1, x2, y1, y2 = [0, w, 0, h] if crop_box is None else crop_box
|
||||
h, w = y2 - y1, x2 - x1
|
||||
ratio = h / w
|
||||
df, dh, dw = self.downsample
|
||||
|
||||
area_z = min(self.seq_len, self.max_area / (dh * dw), (h // dh) * (w // dw))
|
||||
of = min(
|
||||
(int(duration * target_fps) - 1) // df + 1,
|
||||
int(self.seq_len / area_z)
|
||||
)
|
||||
|
||||
# deduce target shape of the [latent video]
|
||||
target_area_z = min(area_z, int(self.seq_len / of))
|
||||
oh = round(np.sqrt(target_area_z * ratio))
|
||||
ow = int(target_area_z / oh)
|
||||
of = (of - 1) * df + 1
|
||||
oh *= dh
|
||||
ow *= dw
|
||||
|
||||
# sample frame ids
|
||||
target_duration = of / target_fps
|
||||
begin = 0. if self.zero_start else rng.uniform(0, duration - target_duration)
|
||||
timestamps = np.linspace(begin, begin + target_duration, of)
|
||||
frame_ids = np.argmax(np.logical_and(
|
||||
timestamps[:, None] >= frame_timestamps[None, :, 0],
|
||||
timestamps[:, None] < frame_timestamps[None, :, 1]
|
||||
), axis=1).tolist()
|
||||
return frame_ids, (x1, x2, y1, y2), (oh, ow), target_fps
|
||||
|
||||
def _get_frameid_bbox_adjust_last(self, fps, frame_timestamps, h, w, crop_box, rng):
|
||||
duration = frame_timestamps[-1].mean()
|
||||
x1, x2, y1, y2 = [0, w, 0, h] if crop_box is None else crop_box
|
||||
h, w = y2 - y1, x2 - x1
|
||||
ratio = h / w
|
||||
df, dh, dw = self.downsample
|
||||
|
||||
area_z = min(self.seq_len, self.max_area / (dh * dw), (h // dh) * (w // dw))
|
||||
of = min(
|
||||
(len(frame_timestamps) - 1) // df + 1,
|
||||
int(self.seq_len / area_z)
|
||||
)
|
||||
|
||||
# deduce target shape of the [latent video]
|
||||
target_area_z = min(area_z, int(self.seq_len / of))
|
||||
oh = round(np.sqrt(target_area_z * ratio))
|
||||
ow = int(target_area_z / oh)
|
||||
of = (of - 1) * df + 1
|
||||
oh *= dh
|
||||
ow *= dw
|
||||
|
||||
# sample frame ids
|
||||
target_duration = duration
|
||||
target_fps = of / target_duration
|
||||
timestamps = np.linspace(0., target_duration, of)
|
||||
frame_ids = np.argmax(np.logical_and(
|
||||
timestamps[:, None] >= frame_timestamps[None, :, 0],
|
||||
timestamps[:, None] <= frame_timestamps[None, :, 1]
|
||||
), axis=1).tolist()
|
||||
# print(oh, ow, of, target_duration, target_fps, len(frame_timestamps), len(frame_ids))
|
||||
return frame_ids, (x1, x2, y1, y2), (oh, ow), target_fps
|
||||
|
||||
|
||||
def _get_frameid_bbox(self, fps, frame_timestamps, h, w, crop_box, rng):
|
||||
if self.keep_last:
|
||||
return self._get_frameid_bbox_adjust_last(fps, frame_timestamps, h, w, crop_box, rng)
|
||||
else:
|
||||
return self._get_frameid_bbox_default(fps, frame_timestamps, h, w, crop_box, rng)
|
||||
|
||||
def load_video(self, data_key, crop_box=None, seed=2024, **kwargs):
|
||||
return self.load_video_batch(data_key, crop_box=crop_box, seed=seed, **kwargs)
|
||||
|
||||
def load_video_pair(self, data_key, data_key2, crop_box=None, seed=2024, **kwargs):
|
||||
return self.load_video_batch(data_key, data_key2, crop_box=crop_box, seed=seed, **kwargs)
|
||||
|
||||
def load_video_batch(self, *data_key_batch, crop_box=None, seed=2024, **kwargs):
|
||||
rng = np.random.default_rng(seed + hash(data_key_batch[0]) % 10000)
|
||||
# read video
|
||||
import decord
|
||||
decord.bridge.set_bridge('torch')
|
||||
readers = []
|
||||
for data_k in data_key_batch:
|
||||
reader = decord.VideoReader(data_k)
|
||||
readers.append(reader)
|
||||
|
||||
fps = readers[0].get_avg_fps()
|
||||
length = min([len(r) for r in readers])
|
||||
frame_timestamps = [readers[0].get_frame_timestamp(i) for i in range(length)]
|
||||
frame_timestamps = np.array(frame_timestamps, dtype=np.float32)
|
||||
h, w = readers[0].next().shape[:2]
|
||||
frame_ids, (x1, x2, y1, y2), (oh, ow), fps = self._get_frameid_bbox(fps, frame_timestamps, h, w, crop_box, rng)
|
||||
|
||||
# preprocess video
|
||||
videos = [reader.get_batch(frame_ids)[:, y1:y2, x1:x2, :] for reader in readers]
|
||||
videos = [self._video_preprocess(video, oh, ow) for video in videos]
|
||||
return *videos, frame_ids, (oh, ow), fps
|
||||
# return videos if len(videos) > 1 else videos[0]
|
||||
|
||||
|
||||
def prepare_source(src_video, src_mask, src_ref_images, num_frames, image_size, device):
|
||||
for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
|
||||
if sub_src_video is None and sub_src_mask is None:
|
||||
src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
|
||||
src_mask[i] = torch.ones((1, num_frames, image_size[0], image_size[1]), device=device)
|
||||
for i, ref_images in enumerate(src_ref_images):
|
||||
if ref_images is not None:
|
||||
for j, ref_img in enumerate(ref_images):
|
||||
if ref_img is not None and ref_img.shape[-2:] != image_size:
|
||||
canvas_height, canvas_width = image_size
|
||||
ref_height, ref_width = ref_img.shape[-2:]
|
||||
white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
|
||||
scale = min(canvas_height / ref_height, canvas_width / ref_width)
|
||||
new_height = int(ref_height * scale)
|
||||
new_width = int(ref_width * scale)
|
||||
resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
|
||||
top = (canvas_height - new_height) // 2
|
||||
left = (canvas_width - new_width) // 2
|
||||
white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
|
||||
src_ref_images[i][j] = white_canvas
|
||||
return src_video, src_mask, src_ref_images
|
717
wan/vace.py
Normal file
717
wan/vace.py
Normal file
@ -0,0 +1,717 @@
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
import os
|
||||
import sys
|
||||
import gc
|
||||
import math
|
||||
import time
|
||||
import random
|
||||
import types
|
||||
import logging
|
||||
import traceback
|
||||
from contextlib import contextmanager
|
||||
from functools import partial
|
||||
|
||||
from PIL import Image
|
||||
import torchvision.transforms.functional as TF
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import torch.cuda.amp as amp
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
from tqdm import tqdm
|
||||
|
||||
from .text2video import (WanT2V, T5EncoderModel, WanVAE, shard_model, FlowDPMSolverMultistepScheduler,
|
||||
get_sampling_sigmas, retrieve_timesteps, FlowUniPCMultistepScheduler)
|
||||
from .modules.vace_model import VaceWanModel
|
||||
from .utils.vace_processor import VaceVideoProcessor
|
||||
|
||||
|
||||
class WanVace(WanT2V):
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
checkpoint_dir,
|
||||
device_id=0,
|
||||
rank=0,
|
||||
t5_fsdp=False,
|
||||
dit_fsdp=False,
|
||||
use_usp=False,
|
||||
t5_cpu=False,
|
||||
):
|
||||
r"""
|
||||
Initializes the Wan text-to-video generation model components.
|
||||
|
||||
Args:
|
||||
config (EasyDict):
|
||||
Object containing model parameters initialized from config.py
|
||||
checkpoint_dir (`str`):
|
||||
Path to directory containing model checkpoints
|
||||
device_id (`int`, *optional*, defaults to 0):
|
||||
Id of target GPU device
|
||||
rank (`int`, *optional*, defaults to 0):
|
||||
Process rank for distributed training
|
||||
t5_fsdp (`bool`, *optional*, defaults to False):
|
||||
Enable FSDP sharding for T5 model
|
||||
dit_fsdp (`bool`, *optional*, defaults to False):
|
||||
Enable FSDP sharding for DiT model
|
||||
use_usp (`bool`, *optional*, defaults to False):
|
||||
Enable distribution strategy of USP.
|
||||
t5_cpu (`bool`, *optional*, defaults to False):
|
||||
Whether to place T5 model on CPU. Only works without t5_fsdp.
|
||||
"""
|
||||
self.device = torch.device(f"cuda:{device_id}")
|
||||
self.config = config
|
||||
self.rank = rank
|
||||
self.t5_cpu = t5_cpu
|
||||
|
||||
self.num_train_timesteps = config.num_train_timesteps
|
||||
self.param_dtype = config.param_dtype
|
||||
|
||||
shard_fn = partial(shard_model, device_id=device_id)
|
||||
self.text_encoder = T5EncoderModel(
|
||||
text_len=config.text_len,
|
||||
dtype=config.t5_dtype,
|
||||
device=torch.device('cpu'),
|
||||
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint),
|
||||
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
|
||||
shard_fn=shard_fn if t5_fsdp else None)
|
||||
|
||||
self.vae_stride = config.vae_stride
|
||||
self.patch_size = config.patch_size
|
||||
self.vae = WanVAE(
|
||||
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint),
|
||||
device=self.device)
|
||||
|
||||
logging.info(f"Creating VaceWanModel from {checkpoint_dir}")
|
||||
self.model = VaceWanModel.from_pretrained(checkpoint_dir)
|
||||
self.model.eval().requires_grad_(False)
|
||||
|
||||
if use_usp:
|
||||
from xfuser.core.distributed import \
|
||||
get_sequence_parallel_world_size
|
||||
|
||||
from .distributed.xdit_context_parallel import (usp_attn_forward,
|
||||
usp_dit_forward,
|
||||
usp_dit_forward_vace)
|
||||
for block in self.model.blocks:
|
||||
block.self_attn.forward = types.MethodType(
|
||||
usp_attn_forward, block.self_attn)
|
||||
for block in self.model.vace_blocks:
|
||||
block.self_attn.forward = types.MethodType(
|
||||
usp_attn_forward, block.self_attn)
|
||||
self.model.forward = types.MethodType(usp_dit_forward, self.model)
|
||||
self.model.forward_vace = types.MethodType(usp_dit_forward_vace, self.model)
|
||||
self.sp_size = get_sequence_parallel_world_size()
|
||||
else:
|
||||
self.sp_size = 1
|
||||
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
if dit_fsdp:
|
||||
self.model = shard_fn(self.model)
|
||||
else:
|
||||
self.model.to(self.device)
|
||||
|
||||
self.sample_neg_prompt = config.sample_neg_prompt
|
||||
|
||||
self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]),
|
||||
min_area=720*1280,
|
||||
max_area=720*1280,
|
||||
min_fps=config.sample_fps,
|
||||
max_fps=config.sample_fps,
|
||||
zero_start=True,
|
||||
seq_len=75600,
|
||||
keep_last=True)
|
||||
|
||||
def vace_encode_frames(self, frames, ref_images, masks=None, vae=None):
|
||||
vae = self.vae if vae is None else vae
|
||||
if ref_images is None:
|
||||
ref_images = [None] * len(frames)
|
||||
else:
|
||||
assert len(frames) == len(ref_images)
|
||||
|
||||
if masks is None:
|
||||
latents = vae.encode(frames)
|
||||
else:
|
||||
masks = [torch.where(m > 0.5, 1.0, 0.0) for m in masks]
|
||||
inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)]
|
||||
reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)]
|
||||
inactive = vae.encode(inactive)
|
||||
reactive = vae.encode(reactive)
|
||||
latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)]
|
||||
|
||||
cat_latents = []
|
||||
for latent, refs in zip(latents, ref_images):
|
||||
if refs is not None:
|
||||
if masks is None:
|
||||
ref_latent = vae.encode(refs)
|
||||
else:
|
||||
ref_latent = vae.encode(refs)
|
||||
ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent]
|
||||
assert all([x.shape[1] == 1 for x in ref_latent])
|
||||
latent = torch.cat([*ref_latent, latent], dim=1)
|
||||
cat_latents.append(latent)
|
||||
return cat_latents
|
||||
|
||||
def vace_encode_masks(self, masks, ref_images=None, vae_stride=None):
|
||||
vae_stride = self.vae_stride if vae_stride is None else vae_stride
|
||||
if ref_images is None:
|
||||
ref_images = [None] * len(masks)
|
||||
else:
|
||||
assert len(masks) == len(ref_images)
|
||||
|
||||
result_masks = []
|
||||
for mask, refs in zip(masks, ref_images):
|
||||
c, depth, height, width = mask.shape
|
||||
new_depth = int((depth + 3) // vae_stride[0])
|
||||
height = 2 * (int(height) // (vae_stride[1] * 2))
|
||||
width = 2 * (int(width) // (vae_stride[2] * 2))
|
||||
|
||||
# reshape
|
||||
mask = mask[0, :, :, :]
|
||||
mask = mask.view(
|
||||
depth, height, vae_stride[1], width, vae_stride[1]
|
||||
) # depth, height, 8, width, 8
|
||||
mask = mask.permute(2, 4, 0, 1, 3) # 8, 8, depth, height, width
|
||||
mask = mask.reshape(
|
||||
vae_stride[1] * vae_stride[2], depth, height, width
|
||||
) # 8*8, depth, height, width
|
||||
|
||||
# interpolation
|
||||
mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0)
|
||||
|
||||
if refs is not None:
|
||||
length = len(refs)
|
||||
mask_pad = torch.zeros_like(mask[:, :length, :, :])
|
||||
mask = torch.cat((mask_pad, mask), dim=1)
|
||||
result_masks.append(mask)
|
||||
return result_masks
|
||||
|
||||
def vace_latent(self, z, m):
|
||||
return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)]
|
||||
|
||||
def prepare_source(self, src_video, src_mask, src_ref_images, num_frames, image_size, device):
|
||||
area = image_size[0] * image_size[1]
|
||||
self.vid_proc.set_area(area)
|
||||
if area == 720*1280:
|
||||
self.vid_proc.set_seq_len(75600)
|
||||
elif area == 480*832:
|
||||
self.vid_proc.set_seq_len(32760)
|
||||
else:
|
||||
raise NotImplementedError(f'image_size {image_size} is not supported')
|
||||
|
||||
image_sizes = []
|
||||
for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
|
||||
if sub_src_mask is not None and sub_src_video is not None:
|
||||
src_video[i], src_mask[i], _, _, _ = self.vid_proc.load_video_pair(sub_src_video, sub_src_mask)
|
||||
src_video[i] = src_video[i].to(device)
|
||||
src_mask[i] = src_mask[i].to(device)
|
||||
src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1)
|
||||
image_sizes.append(src_video[i].shape[2:])
|
||||
elif sub_src_video is None:
|
||||
src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
|
||||
src_mask[i] = torch.ones_like(src_video[i], device=device)
|
||||
image_sizes.append(image_size)
|
||||
else:
|
||||
src_video[i], _, _, _ = self.vid_proc.load_video(sub_src_video)
|
||||
src_video[i] = src_video[i].to(device)
|
||||
src_mask[i] = torch.ones_like(src_video[i], device=device)
|
||||
image_sizes.append(src_video[i].shape[2:])
|
||||
|
||||
for i, ref_images in enumerate(src_ref_images):
|
||||
if ref_images is not None:
|
||||
image_size = image_sizes[i]
|
||||
for j, ref_img in enumerate(ref_images):
|
||||
if ref_img is not None:
|
||||
ref_img = Image.open(ref_img).convert("RGB")
|
||||
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1)
|
||||
if ref_img.shape[-2:] != image_size:
|
||||
canvas_height, canvas_width = image_size
|
||||
ref_height, ref_width = ref_img.shape[-2:]
|
||||
white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
|
||||
scale = min(canvas_height / ref_height, canvas_width / ref_width)
|
||||
new_height = int(ref_height * scale)
|
||||
new_width = int(ref_width * scale)
|
||||
resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
|
||||
top = (canvas_height - new_height) // 2
|
||||
left = (canvas_width - new_width) // 2
|
||||
white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
|
||||
ref_img = white_canvas
|
||||
src_ref_images[i][j] = ref_img.to(device)
|
||||
return src_video, src_mask, src_ref_images
|
||||
|
||||
def decode_latent(self, zs, ref_images=None, vae=None):
|
||||
vae = self.vae if vae is None else vae
|
||||
if ref_images is None:
|
||||
ref_images = [None] * len(zs)
|
||||
else:
|
||||
assert len(zs) == len(ref_images)
|
||||
|
||||
trimed_zs = []
|
||||
for z, refs in zip(zs, ref_images):
|
||||
if refs is not None:
|
||||
z = z[:, len(refs):, :, :]
|
||||
trimed_zs.append(z)
|
||||
|
||||
return vae.decode(trimed_zs)
|
||||
|
||||
|
||||
|
||||
def generate(self,
|
||||
input_prompt,
|
||||
input_frames,
|
||||
input_masks,
|
||||
input_ref_images,
|
||||
size=(1280, 720),
|
||||
frame_num=81,
|
||||
context_scale=1.0,
|
||||
shift=5.0,
|
||||
sample_solver='unipc',
|
||||
sampling_steps=50,
|
||||
guide_scale=5.0,
|
||||
n_prompt="",
|
||||
seed=-1,
|
||||
offload_model=True):
|
||||
r"""
|
||||
Generates video frames from text prompt using diffusion process.
|
||||
|
||||
Args:
|
||||
input_prompt (`str`):
|
||||
Text prompt for content generation
|
||||
size (tupele[`int`], *optional*, defaults to (1280,720)):
|
||||
Controls video resolution, (width,height).
|
||||
frame_num (`int`, *optional*, defaults to 81):
|
||||
How many frames to sample from a video. The number should be 4n+1
|
||||
shift (`float`, *optional*, defaults to 5.0):
|
||||
Noise schedule shift parameter. Affects temporal dynamics
|
||||
sample_solver (`str`, *optional*, defaults to 'unipc'):
|
||||
Solver used to sample the video.
|
||||
sampling_steps (`int`, *optional*, defaults to 40):
|
||||
Number of diffusion sampling steps. Higher values improve quality but slow generation
|
||||
guide_scale (`float`, *optional*, defaults 5.0):
|
||||
Classifier-free guidance scale. Controls prompt adherence vs. creativity
|
||||
n_prompt (`str`, *optional*, defaults to ""):
|
||||
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
|
||||
seed (`int`, *optional*, defaults to -1):
|
||||
Random seed for noise generation. If -1, use random seed.
|
||||
offload_model (`bool`, *optional*, defaults to True):
|
||||
If True, offloads models to CPU during generation to save VRAM
|
||||
|
||||
Returns:
|
||||
torch.Tensor:
|
||||
Generated video frames tensor. Dimensions: (C, N H, W) where:
|
||||
- C: Color channels (3 for RGB)
|
||||
- N: Number of frames (81)
|
||||
- H: Frame height (from size)
|
||||
- W: Frame width from size)
|
||||
"""
|
||||
# preprocess
|
||||
# F = frame_num
|
||||
# target_shape = (self.vae.model.z_dim, (F - 1) // self.vae_stride[0] + 1,
|
||||
# size[1] // self.vae_stride[1],
|
||||
# size[0] // self.vae_stride[2])
|
||||
#
|
||||
# seq_len = math.ceil((target_shape[2] * target_shape[3]) /
|
||||
# (self.patch_size[1] * self.patch_size[2]) *
|
||||
# target_shape[1] / self.sp_size) * self.sp_size
|
||||
|
||||
if n_prompt == "":
|
||||
n_prompt = self.sample_neg_prompt
|
||||
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
||||
seed_g = torch.Generator(device=self.device)
|
||||
seed_g.manual_seed(seed)
|
||||
|
||||
if not self.t5_cpu:
|
||||
self.text_encoder.model.to(self.device)
|
||||
context = self.text_encoder([input_prompt], self.device)
|
||||
context_null = self.text_encoder([n_prompt], self.device)
|
||||
if offload_model:
|
||||
self.text_encoder.model.cpu()
|
||||
else:
|
||||
context = self.text_encoder([input_prompt], torch.device('cpu'))
|
||||
context_null = self.text_encoder([n_prompt], torch.device('cpu'))
|
||||
context = [t.to(self.device) for t in context]
|
||||
context_null = [t.to(self.device) for t in context_null]
|
||||
|
||||
# vace context encode
|
||||
z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks)
|
||||
m0 = self.vace_encode_masks(input_masks, input_ref_images)
|
||||
z = self.vace_latent(z0, m0)
|
||||
|
||||
target_shape = list(z0[0].shape)
|
||||
target_shape[0] = int(target_shape[0] / 2)
|
||||
noise = [
|
||||
torch.randn(
|
||||
target_shape[0],
|
||||
target_shape[1],
|
||||
target_shape[2],
|
||||
target_shape[3],
|
||||
dtype=torch.float32,
|
||||
device=self.device,
|
||||
generator=seed_g)
|
||||
]
|
||||
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
|
||||
(self.patch_size[1] * self.patch_size[2]) *
|
||||
target_shape[1] / self.sp_size) * self.sp_size
|
||||
|
||||
@contextmanager
|
||||
def noop_no_sync():
|
||||
yield
|
||||
|
||||
no_sync = getattr(self.model, 'no_sync', noop_no_sync)
|
||||
|
||||
# evaluation mode
|
||||
with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync():
|
||||
|
||||
if sample_solver == 'unipc':
|
||||
sample_scheduler = FlowUniPCMultistepScheduler(
|
||||
num_train_timesteps=self.num_train_timesteps,
|
||||
shift=1,
|
||||
use_dynamic_shifting=False)
|
||||
sample_scheduler.set_timesteps(
|
||||
sampling_steps, device=self.device, shift=shift)
|
||||
timesteps = sample_scheduler.timesteps
|
||||
elif sample_solver == 'dpm++':
|
||||
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
||||
num_train_timesteps=self.num_train_timesteps,
|
||||
shift=1,
|
||||
use_dynamic_shifting=False)
|
||||
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
||||
timesteps, _ = retrieve_timesteps(
|
||||
sample_scheduler,
|
||||
device=self.device,
|
||||
sigmas=sampling_sigmas)
|
||||
else:
|
||||
raise NotImplementedError("Unsupported solver.")
|
||||
|
||||
# sample videos
|
||||
latents = noise
|
||||
|
||||
arg_c = {'context': context, 'seq_len': seq_len}
|
||||
arg_null = {'context': context_null, 'seq_len': seq_len}
|
||||
|
||||
for _, t in enumerate(tqdm(timesteps)):
|
||||
latent_model_input = latents
|
||||
timestep = [t]
|
||||
|
||||
timestep = torch.stack(timestep)
|
||||
|
||||
self.model.to(self.device)
|
||||
noise_pred_cond = self.model(
|
||||
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale, **arg_c)[0]
|
||||
noise_pred_uncond = self.model(
|
||||
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale,**arg_null)[0]
|
||||
|
||||
noise_pred = noise_pred_uncond + guide_scale * (
|
||||
noise_pred_cond - noise_pred_uncond)
|
||||
|
||||
temp_x0 = sample_scheduler.step(
|
||||
noise_pred.unsqueeze(0),
|
||||
t,
|
||||
latents[0].unsqueeze(0),
|
||||
return_dict=False,
|
||||
generator=seed_g)[0]
|
||||
latents = [temp_x0.squeeze(0)]
|
||||
|
||||
x0 = latents
|
||||
if offload_model:
|
||||
self.model.cpu()
|
||||
torch.cuda.empty_cache()
|
||||
if self.rank == 0:
|
||||
videos = self.decode_latent(x0, input_ref_images)
|
||||
|
||||
del noise, latents
|
||||
del sample_scheduler
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
|
||||
return videos[0] if self.rank == 0 else None
|
||||
|
||||
|
||||
class WanVaceMP(WanVace):
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
checkpoint_dir,
|
||||
use_usp=False,
|
||||
ulysses_size=None,
|
||||
ring_size=None
|
||||
):
|
||||
self.config = config
|
||||
self.checkpoint_dir = checkpoint_dir
|
||||
self.use_usp = use_usp
|
||||
os.environ['MASTER_ADDR'] = 'localhost'
|
||||
os.environ['MASTER_PORT'] = '12345'
|
||||
os.environ['RANK'] = '0'
|
||||
os.environ['WORLD_SIZE'] = '1'
|
||||
self.in_q_list = None
|
||||
self.out_q = None
|
||||
self.inference_pids = None
|
||||
self.ulysses_size = ulysses_size
|
||||
self.ring_size = ring_size
|
||||
self.dynamic_load()
|
||||
|
||||
self.device = 'cpu' if torch.cuda.is_available() else 'cpu'
|
||||
self.vid_proc = VaceVideoProcessor(
|
||||
downsample=tuple([x * y for x, y in zip(config.vae_stride, config.patch_size)]),
|
||||
min_area=480 * 832,
|
||||
max_area=480 * 832,
|
||||
min_fps=self.config.sample_fps,
|
||||
max_fps=self.config.sample_fps,
|
||||
zero_start=True,
|
||||
seq_len=32760,
|
||||
keep_last=True)
|
||||
|
||||
|
||||
def dynamic_load(self):
|
||||
if hasattr(self, 'inference_pids') and self.inference_pids is not None:
|
||||
return
|
||||
gpu_infer = os.environ.get('LOCAL_WORLD_SIZE') or torch.cuda.device_count()
|
||||
pmi_rank = int(os.environ['RANK'])
|
||||
pmi_world_size = int(os.environ['WORLD_SIZE'])
|
||||
in_q_list = [torch.multiprocessing.Manager().Queue() for _ in range(gpu_infer)]
|
||||
out_q = torch.multiprocessing.Manager().Queue()
|
||||
initialized_events = [torch.multiprocessing.Manager().Event() for _ in range(gpu_infer)]
|
||||
context = mp.spawn(self.mp_worker, nprocs=gpu_infer, args=(gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q, initialized_events, self), join=False)
|
||||
all_initialized = False
|
||||
while not all_initialized:
|
||||
all_initialized = all(event.is_set() for event in initialized_events)
|
||||
if not all_initialized:
|
||||
time.sleep(0.1)
|
||||
print('Inference model is initialized', flush=True)
|
||||
self.in_q_list = in_q_list
|
||||
self.out_q = out_q
|
||||
self.inference_pids = context.pids()
|
||||
self.initialized_events = initialized_events
|
||||
|
||||
def transfer_data_to_cuda(self, data, device):
|
||||
if data is None:
|
||||
return None
|
||||
else:
|
||||
if isinstance(data, torch.Tensor):
|
||||
data = data.to(device)
|
||||
elif isinstance(data, list):
|
||||
data = [self.transfer_data_to_cuda(subdata, device) for subdata in data]
|
||||
elif isinstance(data, dict):
|
||||
data = {key: self.transfer_data_to_cuda(val, device) for key, val in data.items()}
|
||||
return data
|
||||
|
||||
def mp_worker(self, gpu, gpu_infer, pmi_rank, pmi_world_size, in_q_list, out_q, initialized_events, work_env):
|
||||
try:
|
||||
world_size = pmi_world_size * gpu_infer
|
||||
rank = pmi_rank * gpu_infer + gpu
|
||||
print("world_size", world_size, "rank", rank, flush=True)
|
||||
|
||||
torch.cuda.set_device(gpu)
|
||||
dist.init_process_group(
|
||||
backend='nccl',
|
||||
init_method='env://',
|
||||
rank=rank,
|
||||
world_size=world_size
|
||||
)
|
||||
|
||||
from xfuser.core.distributed import (initialize_model_parallel,
|
||||
init_distributed_environment)
|
||||
init_distributed_environment(
|
||||
rank=dist.get_rank(), world_size=dist.get_world_size())
|
||||
|
||||
initialize_model_parallel(
|
||||
sequence_parallel_degree=dist.get_world_size(),
|
||||
ring_degree=self.ring_size or 1,
|
||||
ulysses_degree=self.ulysses_size or 1
|
||||
)
|
||||
|
||||
num_train_timesteps = self.config.num_train_timesteps
|
||||
param_dtype = self.config.param_dtype
|
||||
shard_fn = partial(shard_model, device_id=gpu)
|
||||
text_encoder = T5EncoderModel(
|
||||
text_len=self.config.text_len,
|
||||
dtype=self.config.t5_dtype,
|
||||
device=torch.device('cpu'),
|
||||
checkpoint_path=os.path.join(self.checkpoint_dir, self.config.t5_checkpoint),
|
||||
tokenizer_path=os.path.join(self.checkpoint_dir, self.config.t5_tokenizer),
|
||||
shard_fn=shard_fn if True else None)
|
||||
text_encoder.model.to(gpu)
|
||||
vae_stride = self.config.vae_stride
|
||||
patch_size = self.config.patch_size
|
||||
vae = WanVAE(
|
||||
vae_pth=os.path.join(self.checkpoint_dir, self.config.vae_checkpoint),
|
||||
device=gpu)
|
||||
logging.info(f"Creating VaceWanModel from {self.checkpoint_dir}")
|
||||
model = VaceWanModel.from_pretrained(self.checkpoint_dir)
|
||||
model.eval().requires_grad_(False)
|
||||
|
||||
if self.use_usp:
|
||||
from xfuser.core.distributed import get_sequence_parallel_world_size
|
||||
from .distributed.xdit_context_parallel import (usp_attn_forward,
|
||||
usp_dit_forward,
|
||||
usp_dit_forward_vace)
|
||||
for block in model.blocks:
|
||||
block.self_attn.forward = types.MethodType(
|
||||
usp_attn_forward, block.self_attn)
|
||||
for block in model.vace_blocks:
|
||||
block.self_attn.forward = types.MethodType(
|
||||
usp_attn_forward, block.self_attn)
|
||||
model.forward = types.MethodType(usp_dit_forward, model)
|
||||
model.forward_vace = types.MethodType(usp_dit_forward_vace, model)
|
||||
sp_size = get_sequence_parallel_world_size()
|
||||
else:
|
||||
sp_size = 1
|
||||
|
||||
dist.barrier()
|
||||
model = shard_fn(model)
|
||||
sample_neg_prompt = self.config.sample_neg_prompt
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
event = initialized_events[gpu]
|
||||
in_q = in_q_list[gpu]
|
||||
event.set()
|
||||
|
||||
while True:
|
||||
item = in_q.get()
|
||||
input_prompt, input_frames, input_masks, input_ref_images, size, frame_num, context_scale, \
|
||||
shift, sample_solver, sampling_steps, guide_scale, n_prompt, seed, offload_model = item
|
||||
input_frames = self.transfer_data_to_cuda(input_frames, gpu)
|
||||
input_masks = self.transfer_data_to_cuda(input_masks, gpu)
|
||||
input_ref_images = self.transfer_data_to_cuda(input_ref_images, gpu)
|
||||
|
||||
if n_prompt == "":
|
||||
n_prompt = sample_neg_prompt
|
||||
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
||||
seed_g = torch.Generator(device=gpu)
|
||||
seed_g.manual_seed(seed)
|
||||
|
||||
context = text_encoder([input_prompt], gpu)
|
||||
context_null = text_encoder([n_prompt], gpu)
|
||||
|
||||
# vace context encode
|
||||
z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks, vae=vae)
|
||||
m0 = self.vace_encode_masks(input_masks, input_ref_images, vae_stride=vae_stride)
|
||||
z = self.vace_latent(z0, m0)
|
||||
|
||||
target_shape = list(z0[0].shape)
|
||||
target_shape[0] = int(target_shape[0] / 2)
|
||||
noise = [
|
||||
torch.randn(
|
||||
target_shape[0],
|
||||
target_shape[1],
|
||||
target_shape[2],
|
||||
target_shape[3],
|
||||
dtype=torch.float32,
|
||||
device=gpu,
|
||||
generator=seed_g)
|
||||
]
|
||||
seq_len = math.ceil((target_shape[2] * target_shape[3]) /
|
||||
(patch_size[1] * patch_size[2]) *
|
||||
target_shape[1] / sp_size) * sp_size
|
||||
|
||||
@contextmanager
|
||||
def noop_no_sync():
|
||||
yield
|
||||
|
||||
no_sync = getattr(model, 'no_sync', noop_no_sync)
|
||||
|
||||
# evaluation mode
|
||||
with amp.autocast(dtype=param_dtype), torch.no_grad(), no_sync():
|
||||
|
||||
if sample_solver == 'unipc':
|
||||
sample_scheduler = FlowUniPCMultistepScheduler(
|
||||
num_train_timesteps=num_train_timesteps,
|
||||
shift=1,
|
||||
use_dynamic_shifting=False)
|
||||
sample_scheduler.set_timesteps(
|
||||
sampling_steps, device=gpu, shift=shift)
|
||||
timesteps = sample_scheduler.timesteps
|
||||
elif sample_solver == 'dpm++':
|
||||
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
||||
num_train_timesteps=num_train_timesteps,
|
||||
shift=1,
|
||||
use_dynamic_shifting=False)
|
||||
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
||||
timesteps, _ = retrieve_timesteps(
|
||||
sample_scheduler,
|
||||
device=gpu,
|
||||
sigmas=sampling_sigmas)
|
||||
else:
|
||||
raise NotImplementedError("Unsupported solver.")
|
||||
|
||||
# sample videos
|
||||
latents = noise
|
||||
|
||||
arg_c = {'context': context, 'seq_len': seq_len}
|
||||
arg_null = {'context': context_null, 'seq_len': seq_len}
|
||||
|
||||
for _, t in enumerate(tqdm(timesteps)):
|
||||
latent_model_input = latents
|
||||
timestep = [t]
|
||||
|
||||
timestep = torch.stack(timestep)
|
||||
|
||||
model.to(gpu)
|
||||
noise_pred_cond = model(
|
||||
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale, **arg_c)[
|
||||
0]
|
||||
noise_pred_uncond = model(
|
||||
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale,
|
||||
**arg_null)[0]
|
||||
|
||||
noise_pred = noise_pred_uncond + guide_scale * (
|
||||
noise_pred_cond - noise_pred_uncond)
|
||||
|
||||
temp_x0 = sample_scheduler.step(
|
||||
noise_pred.unsqueeze(0),
|
||||
t,
|
||||
latents[0].unsqueeze(0),
|
||||
return_dict=False,
|
||||
generator=seed_g)[0]
|
||||
latents = [temp_x0.squeeze(0)]
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
x0 = latents
|
||||
if rank == 0:
|
||||
videos = self.decode_latent(x0, input_ref_images, vae=vae)
|
||||
|
||||
del noise, latents
|
||||
del sample_scheduler
|
||||
if offload_model:
|
||||
gc.collect()
|
||||
torch.cuda.synchronize()
|
||||
if dist.is_initialized():
|
||||
dist.barrier()
|
||||
|
||||
if rank == 0:
|
||||
out_q.put(videos[0].cpu())
|
||||
|
||||
except Exception as e:
|
||||
trace_info = traceback.format_exc()
|
||||
print(trace_info, flush=True)
|
||||
print(e, flush=True)
|
||||
|
||||
|
||||
|
||||
def generate(self,
|
||||
input_prompt,
|
||||
input_frames,
|
||||
input_masks,
|
||||
input_ref_images,
|
||||
size=(1280, 720),
|
||||
frame_num=81,
|
||||
context_scale=1.0,
|
||||
shift=5.0,
|
||||
sample_solver='unipc',
|
||||
sampling_steps=50,
|
||||
guide_scale=5.0,
|
||||
n_prompt="",
|
||||
seed=-1,
|
||||
offload_model=True):
|
||||
|
||||
input_data = (input_prompt, input_frames, input_masks, input_ref_images, size, frame_num, context_scale,
|
||||
shift, sample_solver, sampling_steps, guide_scale, n_prompt, seed, offload_model)
|
||||
for in_q in self.in_q_list:
|
||||
in_q.put(input_data)
|
||||
value_output = self.out_q.get()
|
||||
|
||||
return value_output
|
Loading…
Reference in New Issue
Block a user