mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
AccVideo support
This commit is contained in:
parent
a669de3d82
commit
db25325930
@ -470,14 +470,14 @@ class WanT2V:
|
|||||||
latent_noise_factor = t / 1000
|
latent_noise_factor = t / 1000
|
||||||
for zz, zz_r, ll in zip(z, z_reactive, [latents]):
|
for zz, zz_r, ll in zip(z, z_reactive, [latents]):
|
||||||
pass
|
pass
|
||||||
# zz[0:16, ref_images_count:overlapped_latents_size + ref_images_count] = zz_r[:, ref_images_count:] * (1.0 - overlap_noise_factor) + torch.randn_like(zz_r[:, ref_images_count:] ) * overlap_noise_factor
|
zz[0:16, ref_images_count:overlapped_latents_size + ref_images_count] = zz_r[:, ref_images_count:] * (1.0 - overlap_noise_factor) + torch.randn_like(zz_r[:, ref_images_count:] ) * overlap_noise_factor
|
||||||
# ll[:, 0:overlapped_latents_size + ref_images_count] = zz_r * (1.0 - latent_noise_factor) + torch.randn_like(zz_r ) * latent_noise_factor
|
ll[:, 0:overlapped_latents_size + ref_images_count] = zz_r * (1.0 - latent_noise_factor) + torch.randn_like(zz_r ) * latent_noise_factor
|
||||||
|
|
||||||
if conditioning_latents_size > 0 and overlap_noise > 0:
|
if conditioning_latents_size > 0 and overlap_noise > 0:
|
||||||
pass
|
pass
|
||||||
overlap_noise_factor = overlap_noise / 1000
|
overlap_noise_factor = overlap_noise / 1000
|
||||||
latents[:, conditioning_latents_size + ref_images_count:] = latents[:, conditioning_latents_size + ref_images_count:] * (1.0 - overlap_noise_factor) + torch.randn_like(latents[:, conditioning_latents_size + ref_images_count:]) * overlap_noise_factor
|
# latents[:, conditioning_latents_size + ref_images_count:] = latents[:, conditioning_latents_size + ref_images_count:] * (1.0 - overlap_noise_factor) + torch.randn_like(latents[:, conditioning_latents_size + ref_images_count:]) * overlap_noise_factor
|
||||||
#timestep = [torch.tensor([t.item()] * (conditioning_latents_size + ref_images_count) + [t.item() - overlap_noise]*(len(timesteps) - conditioning_latents_size - ref_images_count))]
|
# timestep = [torch.tensor([t.item()] * (conditioning_latents_size + ref_images_count) + [t.item() - overlap_noise]*(target_shape[1] - conditioning_latents_size - ref_images_count))]
|
||||||
|
|
||||||
if target_camera != None:
|
if target_camera != None:
|
||||||
latent_model_input = torch.cat([latents, source_latents], dim=1)
|
latent_model_input = torch.cat([latents, source_latents], dim=1)
|
||||||
|
|||||||
12
wgp.py
12
wgp.py
@ -42,8 +42,8 @@ global_queue_ref = []
|
|||||||
AUTOSAVE_FILENAME = "queue.zip"
|
AUTOSAVE_FILENAME = "queue.zip"
|
||||||
PROMPT_VARS_MAX = 10
|
PROMPT_VARS_MAX = 10
|
||||||
|
|
||||||
target_mmgp_version = "3.4.7"
|
target_mmgp_version = "3.4.8"
|
||||||
WanGP_version = "5.4"
|
WanGP_version = "5.41"
|
||||||
prompt_enhancer_image_caption_model, prompt_enhancer_image_caption_processor, prompt_enhancer_llm_model, prompt_enhancer_llm_tokenizer = None, None, None, None
|
prompt_enhancer_image_caption_model, prompt_enhancer_image_caption_processor, prompt_enhancer_llm_model, prompt_enhancer_llm_tokenizer = None, None, None, None
|
||||||
|
|
||||||
from importlib.metadata import version
|
from importlib.metadata import version
|
||||||
@ -3263,11 +3263,13 @@ def generate_video(
|
|||||||
if exp > 0:
|
if exp > 0:
|
||||||
from rife.inference import temporal_interpolation
|
from rife.inference import temporal_interpolation
|
||||||
if sliding_window and window_no > 1:
|
if sliding_window and window_no > 1:
|
||||||
sample = torch.cat([frames_already_processed[:, -2:-1], sample], dim=1)
|
sample = torch.cat([previous_before_last_frame, sample], dim=1)
|
||||||
|
previous_before_last_frame = sample[:, -2:-1].clone()
|
||||||
sample = temporal_interpolation( os.path.join("ckpts", "flownet.pkl"), sample, exp, device=processing_device)
|
sample = temporal_interpolation( os.path.join("ckpts", "flownet.pkl"), sample, exp, device=processing_device)
|
||||||
sample = sample[:, 1:]
|
sample = sample[:, 1:]
|
||||||
else:
|
else:
|
||||||
sample = temporal_interpolation( os.path.join("ckpts", "flownet.pkl"), sample, exp, device=processing_device)
|
sample = temporal_interpolation( os.path.join("ckpts", "flownet.pkl"), sample, exp, device=processing_device)
|
||||||
|
previous_before_last_frame = sample[:, -2:-1].clone()
|
||||||
|
|
||||||
output_fps = output_fps * 2**exp
|
output_fps = output_fps * 2**exp
|
||||||
|
|
||||||
@ -4843,8 +4845,8 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
|
|||||||
temporal_upsampling = gr.Dropdown(
|
temporal_upsampling = gr.Dropdown(
|
||||||
choices=[
|
choices=[
|
||||||
("Disabled", ""),
|
("Disabled", ""),
|
||||||
("Rife x2 (32 frames/s)", "rife2"),
|
("Rife x2 frames/s", "rife2"),
|
||||||
("Rife x4 (64 frames/s)", "rife4"),
|
("Rife x4 frames/s", "rife4"),
|
||||||
],
|
],
|
||||||
value=ui_defaults.get("temporal_upsampling", ""),
|
value=ui_defaults.get("temporal_upsampling", ""),
|
||||||
visible=True,
|
visible=True,
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user