Update README.md and text2video.py to offload model and enable using fp8

This commit is contained in:
Yexiong Lin 2025-02-28 16:35:02 +11:00
parent 24007c2c39
commit db54b7c613
4 changed files with 81 additions and 4 deletions

View File

@ -135,6 +135,8 @@ If you encounter OOM (Out-of-Memory) issues, you can use the `--offload_model Tr
python generate.py --task t2v-1.3B --size 832*480 --ckpt_dir ./Wan2.1-T2V-1.3B --offload_model True --t5_cpu --sample_shift 8 --sample_guide_scale 6 --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage." python generate.py --task t2v-1.3B --size 832*480 --ckpt_dir ./Wan2.1-T2V-1.3B --offload_model True --t5_cpu --sample_shift 8 --sample_guide_scale 6 --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
``` ```
You can also use the `--fp8` option to enable FP8 precision for reduced memory usage. Make sure to download the [FP8 model weight](https://huggingface.co/Kijai/WanVideo_comfy/resolve/main/Wan2_1-T2V-1_3B_fp8_e4m3fn.safetensors) and place it in the `Wan2.1-T2V-1.3B` folder.
> 💡Note: If you are using the `T2V-1.3B` model, we recommend setting the parameter `--sample_guide_scale 6`. The `--sample_shift parameter` can be adjusted within the range of 8 to 12 based on the performance. > 💡Note: If you are using the `T2V-1.3B` model, we recommend setting the parameter `--sample_guide_scale 6`. The `--sample_shift parameter` can be adjusted within the range of 8 to 12 based on the performance.
@ -222,6 +224,17 @@ Similar to Text-to-Video, Image-to-Video is also divided into processes with and
python generate.py --task i2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-I2V-14B-720P --image examples/i2v_input.JPG --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside." python generate.py --task i2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-I2V-14B-720P --image examples/i2v_input.JPG --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
``` ```
To minimize GPU memory usage, you can enable model offloading with `--offload_model True` and use FP8 precision with `--fp8`.
For example, to run **Wan2.1-I2V-14B-480P** on an RTX 4090 GPU:
1. First, download the [FP8 model weights](https://huggingface.co/Kijai/WanVideo_comfy/resolve/main/Wan2_1-I2V-14B-480P_fp8_e4m3fn.safetensors) and place them in the `Wan2.1-I2V-14B-480P` folder.
2. Then, execute the following command:
```
python generate.py --task i2v-14B --size 832*480 --ckpt_dir ./Wan2.1-I2V-14B-480P --offload_model True --fp8 --image examples/i2v_input.JPG --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
```
> 💡For the Image-to-Video task, the `size` parameter represents the area of the generated video, with the aspect ratio following that of the original input image. > 💡For the Image-to-Video task, the `size` parameter represents the area of the generated video, with the aspect ratio following that of the original input image.

View File

@ -311,6 +311,7 @@ def generate(args):
dit_fsdp=args.dit_fsdp, dit_fsdp=args.dit_fsdp,
use_usp=(args.ulysses_size > 1 or args.ring_size > 1), use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
t5_cpu=args.t5_cpu, t5_cpu=args.t5_cpu,
fp8=args.fp8,
) )
logging.info( logging.info(

View File

@ -103,6 +103,7 @@ class WanI2V:
config.clip_checkpoint), config.clip_checkpoint),
tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer)) tokenizer_path=os.path.join(checkpoint_dir, config.clip_tokenizer))
logging.info(f"Creating WanModel from {checkpoint_dir}")
if not fp8: if not fp8:
self.model = WanModel.from_pretrained(checkpoint_dir) self.model = WanModel.from_pretrained(checkpoint_dir)
else: else:
@ -131,7 +132,6 @@ class WanI2V:
with init_empty_weights(): with init_empty_weights():
self.model = WanModel(**TRANSFORMER_CONFIG) self.model = WanModel(**TRANSFORMER_CONFIG)
logging.info(f"Creating WanModel from {checkpoint_dir}")
base_dtype=torch.bfloat16 base_dtype=torch.bfloat16
dtype=torch.float8_e4m3fn dtype=torch.float8_e4m3fn
@ -382,9 +382,10 @@ class WanI2V:
if offload_model: if offload_model:
self.model.cpu() self.model.cpu()
torch.cuda.empty_cache() torch.cuda.empty_cache()
# load vae model back to device
self.vae.model.to(self.device)
if self.rank == 0: if self.rank == 0:
self.vae.model.to(self.device)
videos = self.vae.decode(x0, device=self.device) videos = self.vae.decode(x0, device=self.device)
del noise, latent del noise, latent

View File

@ -14,6 +14,10 @@ import torch.cuda.amp as amp
import torch.distributed as dist import torch.distributed as dist
from tqdm import tqdm from tqdm import tqdm
from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device
from safetensors.torch import load_file
from .distributed.fsdp import shard_model from .distributed.fsdp import shard_model
from .modules.model import WanModel from .modules.model import WanModel
from .modules.t5 import T5EncoderModel from .modules.t5 import T5EncoderModel
@ -35,6 +39,8 @@ class WanT2V:
dit_fsdp=False, dit_fsdp=False,
use_usp=False, use_usp=False,
t5_cpu=False, t5_cpu=False,
init_on_cpu=True,
fp8=False,
): ):
r""" r"""
Initializes the Wan text-to-video generation model components. Initializes the Wan text-to-video generation model components.
@ -56,6 +62,8 @@ class WanT2V:
Enable distribution strategy of USP. Enable distribution strategy of USP.
t5_cpu (`bool`, *optional*, defaults to False): t5_cpu (`bool`, *optional*, defaults to False):
Whether to place T5 model on CPU. Only works without t5_fsdp. Whether to place T5 model on CPU. Only works without t5_fsdp.
fp8 (`bool`, *optional*, defaults to False):
Enable 8-bit floating point precision for model parameters.
""" """
self.device = torch.device(f"cuda:{device_id}") self.device = torch.device(f"cuda:{device_id}")
self.config = config self.config = config
@ -81,9 +89,52 @@ class WanT2V:
device=self.device) device=self.device)
logging.info(f"Creating WanModel from {checkpoint_dir}") logging.info(f"Creating WanModel from {checkpoint_dir}")
self.model = WanModel.from_pretrained(checkpoint_dir) if not fp8:
self.model = WanModel.from_pretrained(checkpoint_dir)
else:
if '14B' in checkpoint_dir:
state_dict = load_file(checkpoint_dir+'/Wan2_1-T2V-14B_fp8_e4m3fn.safetensors', device="cpu")
else:
state_dict = load_file(checkpoint_dir+'/Wan2_1-T2V-1_3B_fp8_e4m3fn.safetensors', device="cpu")
dim = state_dict["patch_embedding.weight"].shape[0]
in_channels = state_dict["patch_embedding.weight"].shape[1]
ffn_dim = state_dict["blocks.0.ffn.0.bias"].shape[0]
model_type = "i2v" if in_channels == 36 else "t2v"
num_heads = 40 if dim == 5120 else 12
num_layers = 40 if dim == 5120 else 30
TRANSFORMER_CONFIG= {
"dim": dim,
"ffn_dim": ffn_dim,
"eps": 1e-06,
"freq_dim": 256,
"in_dim": in_channels,
"model_type": model_type,
"out_dim": 16,
"text_len": 512,
"num_heads": num_heads,
"num_layers": num_layers,
}
with init_empty_weights():
self.model = WanModel(**TRANSFORMER_CONFIG)
base_dtype=torch.bfloat16
dtype=torch.float8_e4m3fn
params_to_keep = {"norm", "head", "bias", "time_in", "vector_in", "patch_embedding", "time_", "img_emb", "modulation"}
for name, param in self.model.named_parameters():
dtype_to_use = base_dtype if any(keyword in name for keyword in params_to_keep) else dtype
# dtype_to_use = torch.bfloat16
# print("Assigning Parameter name: ", name, " with dtype: ", dtype_to_use)
set_module_tensor_to_device(self.model, name, device='cpu', dtype=dtype_to_use, value=state_dict[name])
del state_dict
self.model.eval().requires_grad_(False) self.model.eval().requires_grad_(False)
if t5_fsdp or dit_fsdp or use_usp:
init_on_cpu = False
if use_usp: if use_usp:
from xfuser.core.distributed import \ from xfuser.core.distributed import \
get_sequence_parallel_world_size get_sequence_parallel_world_size
@ -103,7 +154,8 @@ class WanT2V:
if dit_fsdp: if dit_fsdp:
self.model = shard_fn(self.model) self.model = shard_fn(self.model)
else: else:
self.model.to(self.device) if not init_on_cpu:
self.model.to(self.device)
self.sample_neg_prompt = config.sample_neg_prompt self.sample_neg_prompt = config.sample_neg_prompt
@ -190,6 +242,9 @@ class WanT2V:
generator=seed_g) generator=seed_g)
] ]
if offload_model:
self.vae.model.cpu()
@contextmanager @contextmanager
def noop_no_sync(): def noop_no_sync():
yield yield
@ -226,6 +281,10 @@ class WanT2V:
arg_c = {'context': context, 'seq_len': seq_len} arg_c = {'context': context, 'seq_len': seq_len}
arg_null = {'context': context_null, 'seq_len': seq_len} arg_null = {'context': context_null, 'seq_len': seq_len}
if offload_model:
torch.cuda.empty_cache()
self.model.to(self.device)
for _, t in enumerate(tqdm(timesteps)): for _, t in enumerate(tqdm(timesteps)):
latent_model_input = latents latent_model_input = latents
timestep = [t] timestep = [t]
@ -253,6 +312,9 @@ class WanT2V:
if offload_model: if offload_model:
self.model.cpu() self.model.cpu()
torch.cuda.empty_cache() torch.cuda.empty_cache()
# load vae model back to device
self.vae.model.to(self.device)
if self.rank == 0: if self.rank == 0:
videos = self.vae.decode(x0) videos = self.vae.decode(x0)