mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	added missing file
This commit is contained in:
		
							parent
							
								
									a9119782d0
								
							
						
					
					
						commit
						dd7b09c6d3
					
				
							
								
								
									
										83
									
								
								wan/utils/basic_flowmatch.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										83
									
								
								wan/utils/basic_flowmatch.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,83 @@
 | 
				
			|||||||
 | 
					"""
 | 
				
			||||||
 | 
					The following code is copied from https://github.com/modelscope/DiffSynth-Studio/blob/main/diffsynth/schedulers/flow_match.py
 | 
				
			||||||
 | 
					"""
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class FlowMatchScheduler():
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003 / 1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False):
 | 
				
			||||||
 | 
					        self.num_train_timesteps = num_train_timesteps
 | 
				
			||||||
 | 
					        self.shift = shift
 | 
				
			||||||
 | 
					        self.sigma_max = sigma_max
 | 
				
			||||||
 | 
					        self.sigma_min = sigma_min
 | 
				
			||||||
 | 
					        self.inverse_timesteps = inverse_timesteps
 | 
				
			||||||
 | 
					        self.extra_one_step = extra_one_step
 | 
				
			||||||
 | 
					        self.reverse_sigmas = reverse_sigmas
 | 
				
			||||||
 | 
					        self.set_timesteps(num_inference_steps)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False):
 | 
				
			||||||
 | 
					        sigma_start = self.sigma_min + \
 | 
				
			||||||
 | 
					            (self.sigma_max - self.sigma_min) * denoising_strength
 | 
				
			||||||
 | 
					        if self.extra_one_step:
 | 
				
			||||||
 | 
					            self.sigmas = torch.linspace(
 | 
				
			||||||
 | 
					                sigma_start, self.sigma_min, num_inference_steps + 1)[:-1]
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            self.sigmas = torch.linspace(
 | 
				
			||||||
 | 
					                sigma_start, self.sigma_min, num_inference_steps)
 | 
				
			||||||
 | 
					        if self.inverse_timesteps:
 | 
				
			||||||
 | 
					            self.sigmas = torch.flip(self.sigmas, dims=[0])
 | 
				
			||||||
 | 
					        self.sigmas = self.shift * self.sigmas / \
 | 
				
			||||||
 | 
					            (1 + (self.shift - 1) * self.sigmas)
 | 
				
			||||||
 | 
					        if self.reverse_sigmas:
 | 
				
			||||||
 | 
					            self.sigmas = 1 - self.sigmas
 | 
				
			||||||
 | 
					        self.timesteps = self.sigmas * self.num_train_timesteps
 | 
				
			||||||
 | 
					        if training:
 | 
				
			||||||
 | 
					            x = self.timesteps
 | 
				
			||||||
 | 
					            y = torch.exp(-2 * ((x - num_inference_steps / 2) /
 | 
				
			||||||
 | 
					                          num_inference_steps) ** 2)
 | 
				
			||||||
 | 
					            y_shifted = y - y.min()
 | 
				
			||||||
 | 
					            bsmntw_weighing = y_shifted * \
 | 
				
			||||||
 | 
					                (num_inference_steps / y_shifted.sum())
 | 
				
			||||||
 | 
					            self.linear_timesteps_weights = bsmntw_weighing
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def step(self, model_output, timestep, sample, to_final=False):
 | 
				
			||||||
 | 
					        self.sigmas = self.sigmas.to(model_output.device)
 | 
				
			||||||
 | 
					        self.timesteps = self.timesteps.to(model_output.device)
 | 
				
			||||||
 | 
					        timestep_id = torch.argmin(
 | 
				
			||||||
 | 
					            (self.timesteps - timestep).abs(), dim=0)
 | 
				
			||||||
 | 
					        sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1)
 | 
				
			||||||
 | 
					        if to_final or (timestep_id + 1 >= len(self.timesteps)).any():
 | 
				
			||||||
 | 
					            sigma_ = 1 if (
 | 
				
			||||||
 | 
					                self.inverse_timesteps or self.reverse_sigmas) else 0
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            sigma_ = self.sigmas[timestep_id + 1].reshape(-1, 1, 1, 1)
 | 
				
			||||||
 | 
					        prev_sample = sample + model_output * (sigma_ - sigma)
 | 
				
			||||||
 | 
					        return prev_sample
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def add_noise(self, original_samples, noise, timestep):
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        Diffusion forward corruption process.
 | 
				
			||||||
 | 
					        Input:
 | 
				
			||||||
 | 
					            - clean_latent: the clean latent with shape [B, C, H, W]
 | 
				
			||||||
 | 
					            - noise: the noise with shape [B, C, H, W]
 | 
				
			||||||
 | 
					            - timestep: the timestep with shape [B]
 | 
				
			||||||
 | 
					        Output: the corrupted latent with shape [B, C, H, W]
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        self.sigmas = self.sigmas.to(noise.device)
 | 
				
			||||||
 | 
					        self.timesteps = self.timesteps.to(noise.device)
 | 
				
			||||||
 | 
					        timestep_id = torch.argmin(
 | 
				
			||||||
 | 
					            (self.timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1)
 | 
				
			||||||
 | 
					        sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1)
 | 
				
			||||||
 | 
					        sample = (1 - sigma) * original_samples + sigma * noise
 | 
				
			||||||
 | 
					        return sample.type_as(noise)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def training_target(self, sample, noise, timestep):
 | 
				
			||||||
 | 
					        target = noise - sample
 | 
				
			||||||
 | 
					        return target
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def training_weight(self, timestep):
 | 
				
			||||||
 | 
					        timestep_id = torch.argmin(
 | 
				
			||||||
 | 
					            (self.timesteps - timestep.to(self.timesteps.device)).abs())
 | 
				
			||||||
 | 
					        weights = self.linear_timesteps_weights[timestep_id]
 | 
				
			||||||
 | 
					        return weights
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user