mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
added missing file
This commit is contained in:
parent
a9119782d0
commit
dd7b09c6d3
83
wan/utils/basic_flowmatch.py
Normal file
83
wan/utils/basic_flowmatch.py
Normal file
@ -0,0 +1,83 @@
|
||||
"""
|
||||
The following code is copied from https://github.com/modelscope/DiffSynth-Studio/blob/main/diffsynth/schedulers/flow_match.py
|
||||
"""
|
||||
import torch
|
||||
|
||||
|
||||
class FlowMatchScheduler():
|
||||
|
||||
def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003 / 1.002, inverse_timesteps=False, extra_one_step=False, reverse_sigmas=False):
|
||||
self.num_train_timesteps = num_train_timesteps
|
||||
self.shift = shift
|
||||
self.sigma_max = sigma_max
|
||||
self.sigma_min = sigma_min
|
||||
self.inverse_timesteps = inverse_timesteps
|
||||
self.extra_one_step = extra_one_step
|
||||
self.reverse_sigmas = reverse_sigmas
|
||||
self.set_timesteps(num_inference_steps)
|
||||
|
||||
def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0, training=False):
|
||||
sigma_start = self.sigma_min + \
|
||||
(self.sigma_max - self.sigma_min) * denoising_strength
|
||||
if self.extra_one_step:
|
||||
self.sigmas = torch.linspace(
|
||||
sigma_start, self.sigma_min, num_inference_steps + 1)[:-1]
|
||||
else:
|
||||
self.sigmas = torch.linspace(
|
||||
sigma_start, self.sigma_min, num_inference_steps)
|
||||
if self.inverse_timesteps:
|
||||
self.sigmas = torch.flip(self.sigmas, dims=[0])
|
||||
self.sigmas = self.shift * self.sigmas / \
|
||||
(1 + (self.shift - 1) * self.sigmas)
|
||||
if self.reverse_sigmas:
|
||||
self.sigmas = 1 - self.sigmas
|
||||
self.timesteps = self.sigmas * self.num_train_timesteps
|
||||
if training:
|
||||
x = self.timesteps
|
||||
y = torch.exp(-2 * ((x - num_inference_steps / 2) /
|
||||
num_inference_steps) ** 2)
|
||||
y_shifted = y - y.min()
|
||||
bsmntw_weighing = y_shifted * \
|
||||
(num_inference_steps / y_shifted.sum())
|
||||
self.linear_timesteps_weights = bsmntw_weighing
|
||||
|
||||
def step(self, model_output, timestep, sample, to_final=False):
|
||||
self.sigmas = self.sigmas.to(model_output.device)
|
||||
self.timesteps = self.timesteps.to(model_output.device)
|
||||
timestep_id = torch.argmin(
|
||||
(self.timesteps - timestep).abs(), dim=0)
|
||||
sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1)
|
||||
if to_final or (timestep_id + 1 >= len(self.timesteps)).any():
|
||||
sigma_ = 1 if (
|
||||
self.inverse_timesteps or self.reverse_sigmas) else 0
|
||||
else:
|
||||
sigma_ = self.sigmas[timestep_id + 1].reshape(-1, 1, 1, 1)
|
||||
prev_sample = sample + model_output * (sigma_ - sigma)
|
||||
return prev_sample
|
||||
|
||||
def add_noise(self, original_samples, noise, timestep):
|
||||
"""
|
||||
Diffusion forward corruption process.
|
||||
Input:
|
||||
- clean_latent: the clean latent with shape [B, C, H, W]
|
||||
- noise: the noise with shape [B, C, H, W]
|
||||
- timestep: the timestep with shape [B]
|
||||
Output: the corrupted latent with shape [B, C, H, W]
|
||||
"""
|
||||
self.sigmas = self.sigmas.to(noise.device)
|
||||
self.timesteps = self.timesteps.to(noise.device)
|
||||
timestep_id = torch.argmin(
|
||||
(self.timesteps.unsqueeze(0) - timestep.unsqueeze(1)).abs(), dim=1)
|
||||
sigma = self.sigmas[timestep_id].reshape(-1, 1, 1, 1)
|
||||
sample = (1 - sigma) * original_samples + sigma * noise
|
||||
return sample.type_as(noise)
|
||||
|
||||
def training_target(self, sample, noise, timestep):
|
||||
target = noise - sample
|
||||
return target
|
||||
|
||||
def training_weight(self, timestep):
|
||||
timestep_id = torch.argmin(
|
||||
(self.timesteps - timestep.to(self.timesteps.device)).abs())
|
||||
weights = self.linear_timesteps_weights[timestep_id]
|
||||
return weights
|
||||
Loading…
Reference in New Issue
Block a user