mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	Merge branch 'main' into feature_add-cuda-docker-runner
This commit is contained in:
		
						commit
						dedcc577a4
					
				
							
								
								
									
										10
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										10
									
								
								README.md
									
									
									
									
									
								
							@ -23,6 +23,16 @@ WanGP supports the Wan (and derived models), Hunyuan Video and LTV Video models
 | 
			
		||||
 | 
			
		||||
## 🔥 Latest Updates
 | 
			
		||||
 | 
			
		||||
### July 10 2025: WanGP v6.7, is NAG a game changer ? you tell me
 | 
			
		||||
 | 
			
		||||
Maybe you knew that already but most _Loras accelerators_ we use today (Causvid, FusioniX) don't use _Guidance_ at all (that it is _CFG_ is set to 1). This helps to get much faster generations but the downside is that _Negative Prompts_ are completely ignored (including the default ones set by the models). **NAG** (https://github.com/ChenDarYen/Normalized-Attention-Guidance) aims to solve that by injecting the _Negative Prompt_ during the _attention_ processing phase.
 | 
			
		||||
 | 
			
		||||
So WanGP 6.7 gives you NAG, but not any NAG, a _Low VRAM_ implementation, the default one ends being VRAM greedy. You will find NAG in the _General_ advanced tab for most Wan models.
 | 
			
		||||
 | 
			
		||||
Use NAG especially when Guidance is set to 1. To turn it on set the **NAG scale** to something around 10. There are other NAG parameters **NAG tau** and **NAG alpha** which I recommend to change only if you don't get good results by just playing with the NAG scale. Don't hesitate to share on this discord server the best combinations for these 3 parameters.
 | 
			
		||||
 | 
			
		||||
The authors of NAG claim that NAG can also be used when using a Guidance (CFG > 1) and to improve the prompt adherence.
 | 
			
		||||
 | 
			
		||||
### July 8 2025: WanGP v6.6, WanGP offers you **Vace Multitalk Dual Voices Fusionix Infinite** :
 | 
			
		||||
 | 
			
		||||
**Vace** our beloved super Control Net has been combined with **Multitalk** the new king in town that can animate up to two people speaking (**Dual Voices**). It is accelerated by the **Fusionix** model and thanks to _Sliding Windows_ support and _Adaptive Projected Guidance_ (much slower but should reduce the reddish effect with long videos) your two people will be able to talk for very a long time (which is an **Infinite** amount of time in the field of video generation).
 | 
			
		||||
 | 
			
		||||
@ -393,7 +393,7 @@ class MMSingleStreamBlock(nn.Module):
 | 
			
		||||
 | 
			
		||||
        ##### More spagheti VRAM optimizations done by DeepBeepMeep !
 | 
			
		||||
        # I am sure you are a nice person and as you copy this code, you will give me proper credits:
 | 
			
		||||
        # Please link to https://github.com/deepbeepmeep/HunyuanVideoGP and @deepbeepmeep on twitter  
 | 
			
		||||
        # Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter  
 | 
			
		||||
 | 
			
		||||
        if condition_type == "token_replace":
 | 
			
		||||
            mod, tr_mod = self.modulation(vec,
 | 
			
		||||
 | 
			
		||||
@ -392,6 +392,9 @@ class WanAny2V:
 | 
			
		||||
        keep_frames_parsed = [],
 | 
			
		||||
        model_type = None,
 | 
			
		||||
        loras_slists = None,
 | 
			
		||||
        NAG_scale = 0,
 | 
			
		||||
        NAG_tau = 3.5,
 | 
			
		||||
        NAG_alpha = 0.5,
 | 
			
		||||
        offloadobj = None,
 | 
			
		||||
        apg_switch = False,
 | 
			
		||||
        **bbargs
 | 
			
		||||
@ -443,11 +446,21 @@ class WanAny2V:
 | 
			
		||||
        context_null = self.text_encoder([n_prompt], self.device)[0]
 | 
			
		||||
        context = context.to(self.dtype)
 | 
			
		||||
        context_null = context_null.to(self.dtype)
 | 
			
		||||
        text_len = self.model.text_len
 | 
			
		||||
        context = torch.cat([context, context.new_zeros(text_len -context.size(0), context.size(1)) ]).unsqueeze(0) 
 | 
			
		||||
        context_null = torch.cat([context_null, context_null.new_zeros(text_len -context_null.size(0), context_null.size(1)) ]).unsqueeze(0) 
 | 
			
		||||
        # NAG_prompt =  "static, low resolution, blurry"
 | 
			
		||||
        # context_NAG = self.text_encoder([NAG_prompt], self.device)[0]
 | 
			
		||||
        # context_NAG = context_NAG.to(self.dtype)
 | 
			
		||||
        # context_NAG = torch.cat([context_NAG, context_NAG.new_zeros(text_len -context_NAG.size(0), context_NAG.size(1)) ]).unsqueeze(0) 
 | 
			
		||||
        
 | 
			
		||||
        # from mmgp import offload
 | 
			
		||||
        # offloadobj.unload_all()
 | 
			
		||||
 | 
			
		||||
        if self._interrupt:
 | 
			
		||||
            return None
 | 
			
		||||
        offload.shared_state.update({"_nag_scale" : NAG_scale, "_nag_tau" : NAG_tau, "_nag_alpha":  NAG_alpha })
 | 
			
		||||
        if NAG_scale > 1: context = torch.cat([context, context_null], dim=0)
 | 
			
		||||
        # if NAG_scale > 1: context = torch.cat([context, context_NAG], dim=0)
 | 
			
		||||
        if self._interrupt: return None
 | 
			
		||||
 | 
			
		||||
        vace = model_type in ["vace_1.3B","vace_14B", "vace_multitalk_14B"]
 | 
			
		||||
        phantom = model_type in ["phantom_1.3B", "phantom_14B"]
 | 
			
		||||
 | 
			
		||||
@ -45,7 +45,7 @@ class DTT2V:
 | 
			
		||||
        self.dtype = dtype
 | 
			
		||||
        self.num_train_timesteps = config.num_train_timesteps
 | 
			
		||||
        self.param_dtype = config.param_dtype
 | 
			
		||||
 | 
			
		||||
        self.text_len = config.text_len 
 | 
			
		||||
        self.text_encoder = T5EncoderModel(
 | 
			
		||||
            text_len=config.text_len,
 | 
			
		||||
            dtype=config.t5_dtype,
 | 
			
		||||
@ -250,11 +250,15 @@ class DTT2V:
 | 
			
		||||
 | 
			
		||||
        if self._interrupt:
 | 
			
		||||
            return None
 | 
			
		||||
        text_len = self.text_len
 | 
			
		||||
        prompt_embeds = self.text_encoder([input_prompt], self.device)[0]
 | 
			
		||||
        prompt_embeds  = prompt_embeds.to(self.dtype).to(self.device)
 | 
			
		||||
        prompt_embeds = torch.cat([prompt_embeds, prompt_embeds.new_zeros(text_len -prompt_embeds.size(0), prompt_embeds.size(1)) ]).unsqueeze(0) 
 | 
			
		||||
 | 
			
		||||
        if self.do_classifier_free_guidance:
 | 
			
		||||
            negative_prompt_embeds = self.text_encoder([n_prompt], self.device)[0]
 | 
			
		||||
            negative_prompt_embeds  = negative_prompt_embeds.to(self.dtype).to(self.device)
 | 
			
		||||
            negative_prompt_embeds = torch.cat([negative_prompt_embeds, negative_prompt_embeds.new_zeros(text_len -negative_prompt_embeds.size(0), negative_prompt_embeds.size(1)) ]).unsqueeze(0) 
 | 
			
		||||
 | 
			
		||||
        if self._interrupt:
 | 
			
		||||
            return None
 | 
			
		||||
 | 
			
		||||
@ -1,4 +1,7 @@
 | 
			
		||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
			
		||||
##### Enjoy this spagheti VRAM optimizations done by DeepBeepMeep !
 | 
			
		||||
# I am sure you are a nice person and as you copy this code, you will give me officially proper credits:
 | 
			
		||||
# Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter  
 | 
			
		||||
import math
 | 
			
		||||
from einops import rearrange
 | 
			
		||||
import torch
 | 
			
		||||
@ -176,6 +179,70 @@ class WanSelfAttention(nn.Module):
 | 
			
		||||
        self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    def text_cross_attention(self, xlist, context, return_q = False):
 | 
			
		||||
        x = xlist[0]
 | 
			
		||||
        xlist.clear()
 | 
			
		||||
        b, n, d = x.size(0), self.num_heads, self.head_dim
 | 
			
		||||
        nag_scale = offload.shared_state.get("_nag_scale",0)
 | 
			
		||||
        # compute query, key, value
 | 
			
		||||
        q = self.q(x)
 | 
			
		||||
        del x
 | 
			
		||||
        self.norm_q(q)
 | 
			
		||||
        q= q.view(b, -1, n, d)
 | 
			
		||||
        k = self.k(context)
 | 
			
		||||
        self.norm_k(k)
 | 
			
		||||
        k = k.view(context.shape[0], -1, n, d)
 | 
			
		||||
        v = self.v(context).view(context.shape[0], -1, n, d)
 | 
			
		||||
 | 
			
		||||
        if nag_scale <= 1 or len(k)==1:
 | 
			
		||||
            qvl_list=[q, k, v]
 | 
			
		||||
            if not return_q: del q
 | 
			
		||||
            del k, v
 | 
			
		||||
            x = pay_attention(qvl_list,  cross_attn= True)
 | 
			
		||||
            x = x.flatten(2, 3)
 | 
			
		||||
        else:
 | 
			
		||||
            nag_tau = offload.shared_state["_nag_tau"]
 | 
			
		||||
            nag_alpha = offload.shared_state["_nag_alpha"]
 | 
			
		||||
            qvl_list=[q, k[:1], v[:1]]
 | 
			
		||||
            x_pos = pay_attention(qvl_list,  cross_attn= True)
 | 
			
		||||
            qvl_list=[q, k[1:], v[1:]]
 | 
			
		||||
            if not return_q: del q
 | 
			
		||||
            del k, v
 | 
			
		||||
            x_neg = pay_attention(qvl_list,  cross_attn= True)
 | 
			
		||||
 | 
			
		||||
            x_pos = x_pos.flatten(2, 3)
 | 
			
		||||
            x_neg = x_neg.flatten(2, 3)
 | 
			
		||||
            # Behold DeepBeepMeep as the NAG Butcher !: reduce highly VRAM consumption while at the same time turn the source in gibberish
 | 
			
		||||
            x_neg.mul_(1-nag_scale)
 | 
			
		||||
            x_neg.add_(x_pos, alpha= nag_scale)
 | 
			
		||||
            x_guidance = x_neg
 | 
			
		||||
            del x_neg
 | 
			
		||||
            norm_positive = torch.norm(x_pos, p=1, dim=-1, keepdim=True)
 | 
			
		||||
            norm_guidance = torch.norm(x_guidance, p=1, dim=-1, keepdim=True)
 | 
			
		||||
            scale = norm_guidance / norm_positive
 | 
			
		||||
            scale = torch.nan_to_num(scale, 10)
 | 
			
		||||
            factor = 1 / (norm_guidance + 1e-7) * norm_positive * nag_tau
 | 
			
		||||
            x_guidance = torch.where(scale > nag_tau, x_guidance * factor, x_guidance )
 | 
			
		||||
            del norm_positive, norm_guidance 
 | 
			
		||||
            x_pos.mul_(1 - nag_alpha)
 | 
			
		||||
            x_guidance.mul_(nag_alpha)
 | 
			
		||||
            x_guidance.add_(x_pos)
 | 
			
		||||
            x = x_guidance
 | 
			
		||||
 | 
			
		||||
            # x_guidance = x_pos * nag_scale - x_neg * (nag_scale - 1)
 | 
			
		||||
            # norm_positive = torch.norm(x_pos, p=1, dim=-1, keepdim=True).expand(*x_pos.shape)
 | 
			
		||||
            # norm_guidance = torch.norm(x_guidance, p=1, dim=-1, keepdim=True).expand(*x_guidance.shape)
 | 
			
		||||
 | 
			
		||||
            # scale = norm_guidance / norm_positive
 | 
			
		||||
            # scale = torch.nan_to_num(scale, 10)
 | 
			
		||||
            # x_guidance[scale > nag_tau] =  x_guidance[scale > nag_tau] / (norm_guidance[scale > nag_tau] + 1e-7) * norm_positive[scale > nag_tau] * nag_tau
 | 
			
		||||
 | 
			
		||||
            # x = x_guidance * nag_alpha + x_pos * (1 - nag_alpha)
 | 
			
		||||
        if return_q:
 | 
			
		||||
            return x, q
 | 
			
		||||
        else:
 | 
			
		||||
            return x, None
 | 
			
		||||
    
 | 
			
		||||
    def forward(self, xlist, grid_sizes, freqs, block_mask = None, ref_target_masks = None, ref_images_count = 0):
 | 
			
		||||
        r"""
 | 
			
		||||
        Args:
 | 
			
		||||
@ -246,28 +313,7 @@ class WanT2VCrossAttention(WanSelfAttention):
 | 
			
		||||
            x(Tensor): Shape [B, L1, C]
 | 
			
		||||
            context(Tensor): Shape [B, L2, C]
 | 
			
		||||
        """
 | 
			
		||||
        x = xlist[0]
 | 
			
		||||
        xlist.clear()
 | 
			
		||||
        b, n, d = x.size(0), self.num_heads, self.head_dim
 | 
			
		||||
 | 
			
		||||
        # compute query, key, value
 | 
			
		||||
        q = self.q(x)
 | 
			
		||||
        del x
 | 
			
		||||
        self.norm_q(q)
 | 
			
		||||
        q= q.view(b, -1, n, d)
 | 
			
		||||
        k = self.k(context)
 | 
			
		||||
        self.norm_k(k)
 | 
			
		||||
        k = k.view(b, -1, n, d)
 | 
			
		||||
        v = self.v(context).view(b, -1, n, d)
 | 
			
		||||
 | 
			
		||||
        # compute attention
 | 
			
		||||
        v = v.contiguous().clone()
 | 
			
		||||
        qvl_list=[q, k, v]
 | 
			
		||||
        del q, k, v
 | 
			
		||||
        x = pay_attention(qvl_list,  cross_attn= True)
 | 
			
		||||
 | 
			
		||||
        # output
 | 
			
		||||
        x = x.flatten(2)
 | 
			
		||||
        x, _ = self.text_cross_attention( xlist, context)
 | 
			
		||||
        x = self.o(x)
 | 
			
		||||
        return x
 | 
			
		||||
 | 
			
		||||
@ -295,30 +341,14 @@ class WanI2VCrossAttention(WanSelfAttention):
 | 
			
		||||
            context(Tensor): Shape [B, L2, C]
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
        ##### Enjoy this spagheti VRAM optimizations done by DeepBeepMeep !
 | 
			
		||||
        # I am sure you are a nice person and as you copy this code, you will give me officially proper credits:
 | 
			
		||||
        # Please link to https://github.com/deepbeepmeep/Wan2GP and @deepbeepmeep on twitter  
 | 
			
		||||
 | 
			
		||||
        x = xlist[0]
 | 
			
		||||
        xlist.clear()
 | 
			
		||||
 | 
			
		||||
        context_img = context[:, :257]
 | 
			
		||||
        context = context[:, 257:]
 | 
			
		||||
        b, n, d = x.size(0), self.num_heads, self.head_dim
 | 
			
		||||
 | 
			
		||||
        # compute query, key, value
 | 
			
		||||
        q = self.q(x)
 | 
			
		||||
        del x
 | 
			
		||||
        self.norm_q(q)
 | 
			
		||||
        q= q.view(b, -1, n, d)
 | 
			
		||||
        k = self.k(context)
 | 
			
		||||
        self.norm_k(k)
 | 
			
		||||
        k = k.view(b, -1, n, d)
 | 
			
		||||
        v = self.v(context).view(b, -1, n, d)
 | 
			
		||||
 | 
			
		||||
        qkv_list = [q, k, v]
 | 
			
		||||
        del k,v
 | 
			
		||||
        x = pay_attention(qkv_list)
 | 
			
		||||
        
 | 
			
		||||
        x, q = self.text_cross_attention( xlist, context, return_q = True)
 | 
			
		||||
        if len(q) != len(context_img):
 | 
			
		||||
            context_img = context_img[:len(q)]
 | 
			
		||||
        b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
 | 
			
		||||
 | 
			
		||||
        if audio_scale != None:
 | 
			
		||||
            audio_x = self.processor(q, audio_proj, grid_sizes[0], audio_context_lens)
 | 
			
		||||
@ -329,12 +359,9 @@ class WanI2VCrossAttention(WanSelfAttention):
 | 
			
		||||
        qkv_list = [q, k_img, v_img]
 | 
			
		||||
        del q, k_img, v_img
 | 
			
		||||
        img_x = pay_attention(qkv_list)
 | 
			
		||||
        # compute attention
 | 
			
		||||
 | 
			
		||||
        img_x = img_x.flatten(2)
 | 
			
		||||
 | 
			
		||||
        # output
 | 
			
		||||
        x = x.flatten(2)
 | 
			
		||||
        img_x = img_x.flatten(2)
 | 
			
		||||
        x += img_x
 | 
			
		||||
        del img_x
 | 
			
		||||
        if audio_scale != None:
 | 
			
		||||
@ -1187,11 +1214,18 @@ class WanModel(ModelMixin, ConfigMixin):
 | 
			
		||||
                e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim))
 | 
			
		||||
 | 
			
		||||
        # context
 | 
			
		||||
        context = [self.text_embedding( torch.cat( [u, u.new_zeros(self.text_len - u.size(0), u.size(1))] ).unsqueeze(0) ) for u in context  ] 
 | 
			
		||||
        context = [self.text_embedding( u ) for u in context  ] 
 | 
			
		||||
        
 | 
			
		||||
        if clip_fea is not None:
 | 
			
		||||
            context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
 | 
			
		||||
            context = [ torch.cat( [context_clip, u ], dim=1 ) for u in context  ] 
 | 
			
		||||
            context_list = []
 | 
			
		||||
            for one_context in context: 
 | 
			
		||||
                if len(one_context) != len(context_clip):
 | 
			
		||||
                    context_list.append( torch.cat( [context_clip.repeat(len(one_context), 1, 1), one_context ], dim=1 ))
 | 
			
		||||
                else:
 | 
			
		||||
                    context_list.append( torch.cat( [context_clip, one_context ], dim=1 ))
 | 
			
		||||
        else:
 | 
			
		||||
            context_list = context
 | 
			
		||||
 | 
			
		||||
        if multitalk_audio != None:
 | 
			
		||||
            multitalk_audio_list = []
 | 
			
		||||
@ -1208,7 +1242,6 @@ class WanModel(ModelMixin, ConfigMixin):
 | 
			
		||||
        else:
 | 
			
		||||
            multitalk_masks_list = [None] * len(x_list)
 | 
			
		||||
 | 
			
		||||
        context_list = context
 | 
			
		||||
        if audio_scale != None: 
 | 
			
		||||
            audio_scale_list = audio_scale
 | 
			
		||||
        else:
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										169
									
								
								wgp.py
									
									
									
									
									
								
							
							
						
						
									
										169
									
								
								wgp.py
									
									
									
									
									
								
							@ -50,8 +50,8 @@ AUTOSAVE_FILENAME = "queue.zip"
 | 
			
		||||
PROMPT_VARS_MAX = 10
 | 
			
		||||
 | 
			
		||||
target_mmgp_version = "3.5.1"
 | 
			
		||||
WanGP_version = "6.6"
 | 
			
		||||
settings_version = 2.21
 | 
			
		||||
WanGP_version = "6.7"
 | 
			
		||||
settings_version = 2.22
 | 
			
		||||
max_source_video_frames = 1000
 | 
			
		||||
prompt_enhancer_image_caption_model, prompt_enhancer_image_caption_processor, prompt_enhancer_llm_model, prompt_enhancer_llm_tokenizer = None, None, None, None
 | 
			
		||||
 | 
			
		||||
@ -1675,7 +1675,7 @@ model_types = [ "t2v_1.3B", "t2v", "i2v", "i2v_720p",  "vace_1.3B", "phantom_1.3
 | 
			
		||||
               "hunyuan", "hunyuan_i2v", "hunyuan_custom", "hunyuan_custom_audio", "hunyuan_custom_edit", "hunyuan_avatar"] 
 | 
			
		||||
 | 
			
		||||
model_signatures = {"t2v": "text2video_14B", "t2v_1.3B" : "text2video_1.3B",   "fun_inp_1.3B" : "Fun_InP_1.3B",  "fun_inp" :  "Fun_InP_14B", 
 | 
			
		||||
                    "i2v" : "image2video_480p", "i2v_720p" : "image2video_720p" , "vace_1.3B" : "Vace_1.3B","recam_1.3B": "recammaster_1.3B", 
 | 
			
		||||
                    "i2v" : "image2video_480p", "i2v_720p" : "image2video_720p" , "vace_1.3B" : "Vace_1.3B", "vace_14B": "Vace_14B", "recam_1.3B": "recammaster_1.3B", 
 | 
			
		||||
                    "sky_df_1.3B" : "sky_reels2_diffusion_forcing_1.3B", "sky_df_14B" : "sky_reels2_diffusion_forcing_14B", 
 | 
			
		||||
                    "sky_df_720p_14B" : "sky_reels2_diffusion_forcing_720p_14B",
 | 
			
		||||
                    "phantom_1.3B" : "phantom_1.3B", "phantom_14B" : "phantom_14B", "ltxv_13B" : "ltxv_0.9.7_13B_dev", "ltxv_13B_distilled" : "ltxv_0.9.7_13B_distilled", 
 | 
			
		||||
@ -1736,6 +1736,8 @@ def get_model_family(model_type):
 | 
			
		||||
        return "hunyuan"
 | 
			
		||||
    elif "ltxv" in model_type:
 | 
			
		||||
        return "ltxv"
 | 
			
		||||
    elif "flux" in model_type:
 | 
			
		||||
        return "flux"
 | 
			
		||||
    else:
 | 
			
		||||
        return "wan"
 | 
			
		||||
 | 
			
		||||
@ -1866,6 +1868,22 @@ def get_model_name(model_type, description_container = [""]):
 | 
			
		||||
def get_model_record(model_name):
 | 
			
		||||
    return f"WanGP v{WanGP_version} by DeepBeepMeep - " +  model_name
 | 
			
		||||
 | 
			
		||||
def get_finetune_URLs(model_type, stack= []):
 | 
			
		||||
    finetune_def = finetunes.get(model_type, None)
 | 
			
		||||
    if finetune_def != None: 
 | 
			
		||||
        URLs = finetune_def["URLs"]
 | 
			
		||||
        if isinstance(URLs, str):
 | 
			
		||||
            if len(stack) > 10: raise Exception(f"Circular Reference in Model URLs dependencies: {stack}")
 | 
			
		||||
            return get_finetune_URLs(URLs, stack = stack + [URLs] )
 | 
			
		||||
        else:
 | 
			
		||||
            return URLs
 | 
			
		||||
    else:
 | 
			
		||||
        if model_type in model_types:
 | 
			
		||||
            return model_type
 | 
			
		||||
        else:
 | 
			
		||||
            raise Exception(f"Unknown model type '{model_type}'")
 | 
			
		||||
        
 | 
			
		||||
 | 
			
		||||
def get_model_filename(model_type, quantization ="int8", dtype_policy = "", is_module = False, stack=[]):
 | 
			
		||||
    if is_module:
 | 
			
		||||
        choices = modules_files.get(model_type, None)
 | 
			
		||||
@ -1969,13 +1987,13 @@ def fix_settings(model_type, ui_defaults):
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    remove_background_images_ref = ui_defaults.get("remove_background_images_ref", 0)
 | 
			
		||||
    if video_settings_version < 2.21:
 | 
			
		||||
    if video_settings_version < 2.22:
 | 
			
		||||
        if "I" in video_prompt_type:
 | 
			
		||||
            if remove_background_images_ref == 2:
 | 
			
		||||
                video_prompt_type = video_prompt_type.replace("I", "KI")
 | 
			
		||||
            if remove_background_images_ref != 0:
 | 
			
		||||
                remove_background_images_ref = 1
 | 
			
		||||
            ui_defaults["remove_background_images_ref"] = remove_background_images_ref
 | 
			
		||||
        if remove_background_images_ref != 0:
 | 
			
		||||
            remove_background_images_ref = 1
 | 
			
		||||
        ui_defaults["remove_background_images_ref"] = remove_background_images_ref
 | 
			
		||||
 | 
			
		||||
    ui_defaults["video_prompt_type"] = video_prompt_type
 | 
			
		||||
 | 
			
		||||
@ -2331,12 +2349,12 @@ def download_models(model_filename, model_type):
 | 
			
		||||
 | 
			
		||||
    shared_def = {
 | 
			
		||||
        "repoId" : "DeepBeepMeep/Wan2.1",
 | 
			
		||||
        "sourceFolderList" : [ "pose", "scribble", "flow", "depth", "mask", "wav2vec", "chinese-wav2vec2-base", "pyannote" ""  ],
 | 
			
		||||
        "sourceFolderList" : [ "pose", "scribble", "flow", "depth", "mask", "wav2vec", "chinese-wav2vec2-base", "pyannote", "" ],
 | 
			
		||||
        "fileList" : [ ["dw-ll_ucoco_384.onnx", "yolox_l.onnx"],["netG_A_latest.pth"],  ["raft-things.pth"], 
 | 
			
		||||
                      ["depth_anything_v2_vitl.pth","depth_anything_v2_vitb.pth"], ["sam_vit_h_4b8939_fp16.safetensors"], 
 | 
			
		||||
                      ["config.json", "feature_extractor_config.json", "model.safetensors", "preprocessor_config.json", "special_tokens_map.json", "tokenizer_config.json", "vocab.json"],
 | 
			
		||||
                      ["config.json", "pytorch_model.bin", "preprocessor_config.json"],
 | 
			
		||||
                      ["pyannote_model_wespeaker-voxceleb-resnet34-LM.bin", "pytorch_model_segmentation-3.0.bin"], [ "flownet.pkl"  ] ]
 | 
			
		||||
                      ["pyannote_model_wespeaker-voxceleb-resnet34-LM.bin", "pytorch_model_segmentation-3.0.bin"], [ "flownet.pkl" ] ]
 | 
			
		||||
    }
 | 
			
		||||
    process_files_def(**shared_def)
 | 
			
		||||
 | 
			
		||||
@ -2374,18 +2392,22 @@ def download_models(model_filename, model_type):
 | 
			
		||||
    finetune_def = get_model_finetune_def(model_type)
 | 
			
		||||
    if finetune_def != None and not model_type in modules_files:
 | 
			
		||||
        if not os.path.isfile(model_filename ):
 | 
			
		||||
            use_url = model_filename 
 | 
			
		||||
            for url in finetune_def["URLs"]:
 | 
			
		||||
                if os.path.basename(model_filename) in url:
 | 
			
		||||
                    use_url = url
 | 
			
		||||
                    break
 | 
			
		||||
            if not url.startswith("http"):
 | 
			
		||||
                raise Exception(f"Model '{model_filename}' was not found locally and no URL was provided to download it. Please add an URL in the finetune definition file.")
 | 
			
		||||
            try:
 | 
			
		||||
                download_file(use_url, model_filename)
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                if os.path.isfile(model_filename): os.remove(model_filename) 
 | 
			
		||||
                raise Exception(f"URL '{use_url}' is invalid for Model '{model_filename}' : {str(e)}'")
 | 
			
		||||
            URLs = get_finetune_URLs(model_type)
 | 
			
		||||
            if not isinstance(URLs, str): # dont download anything right now if a base type is referenced as the download will occur just after
 | 
			
		||||
                use_url = model_filename 
 | 
			
		||||
                for url in URLs:
 | 
			
		||||
                    if os.path.basename(model_filename) in url:
 | 
			
		||||
                        use_url = url
 | 
			
		||||
                        break
 | 
			
		||||
                if not url.startswith("http"):
 | 
			
		||||
                    raise Exception(f"Model '{model_filename}' was not found locally and no URL was provided to download it. Please add an URL in the finetune definition file.")
 | 
			
		||||
                try:
 | 
			
		||||
                    download_file(use_url, model_filename)
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    if os.path.isfile(model_filename): os.remove(model_filename) 
 | 
			
		||||
                    raise Exception(f"URL '{use_url}' is invalid for Model '{model_filename}' : {str(e)}'")
 | 
			
		||||
                model_filename = None
 | 
			
		||||
 | 
			
		||||
        for url in finetune_def.get("preload_URLs", []):
 | 
			
		||||
            filename = "ckpts/" + url.split("/")[-1]
 | 
			
		||||
            if not os.path.isfile(filename ): 
 | 
			
		||||
@ -2396,7 +2418,6 @@ def download_models(model_filename, model_type):
 | 
			
		||||
                except Exception as e:
 | 
			
		||||
                    if os.path.isfile(filename): os.remove(filename) 
 | 
			
		||||
                    raise Exception(f"Preload URL '{url}' is invalid: {str(e)}'")
 | 
			
		||||
        model_filename = None
 | 
			
		||||
    if model_family == "wan":        
 | 
			
		||||
        text_encoder_filename = get_wan_text_encoder_filename(text_encoder_quantization)    
 | 
			
		||||
        model_def = {
 | 
			
		||||
@ -3123,10 +3144,17 @@ def select_video(state, input_file_list, event_data: gr.EventData):
 | 
			
		||||
            video_video_prompt_type = configs.get("video_prompt_type", "")
 | 
			
		||||
            video_image_prompt_type = configs.get("image_prompt_type", "")
 | 
			
		||||
            video_audio_prompt_type = configs.get("audio_prompt_type", "")
 | 
			
		||||
            map_video_prompt  = {"V" : "Control Video", "A" : "Mask Video", "I" : "Reference Images"}
 | 
			
		||||
            def check(src, cond):
 | 
			
		||||
                pos, neg = cond if isinstance(cond, tuple) else (cond, None)
 | 
			
		||||
                if not all_letters(src, pos): return False
 | 
			
		||||
                if neg is not None and any_letters(src, neg): return False
 | 
			
		||||
                return True
 | 
			
		||||
            map_video_prompt  = {"V" : "Control Video", ("VA", "U") : "Mask Video", "I" : "Reference Images"}
 | 
			
		||||
            map_image_prompt  = {"V" : "Source Video", "L" : "Last Video", "S" : "Start Image", "E" : "End Image"}
 | 
			
		||||
            map_audio_prompt  = {"A" : "Audio Source", "B" : "Audio Source #2"}
 | 
			
		||||
            video_other_prompts =  [ v for s,v in map_image_prompt.items() if s in video_image_prompt_type] + [ v for s,v in map_video_prompt.items() if s in video_video_prompt_type]  + [ v for s,v in map_audio_prompt.items() if s in video_audio_prompt_type] 
 | 
			
		||||
            video_other_prompts =  [ v for s,v in map_image_prompt.items() if all_letters(video_image_prompt_type,s)] \
 | 
			
		||||
                                 + [ v for s,v in map_video_prompt.items() if check(video_video_prompt_type,s)] \
 | 
			
		||||
                                 + [ v for s,v in map_audio_prompt.items() if all_letters(video_audio_prompt_type,s)] 
 | 
			
		||||
            video_model_type =  configs.get("model_type", "t2v")
 | 
			
		||||
            video_other_prompts = ", ".join(video_other_prompts)
 | 
			
		||||
            video_resolution = configs.get("resolution", "") + f" (real: {width}x{height})"
 | 
			
		||||
@ -3138,24 +3166,31 @@ def select_video(state, input_file_list, event_data: gr.EventData):
 | 
			
		||||
            video_length_summary += " ("
 | 
			
		||||
            if video_length != frames_count: video_length_summary += f"real: {frames_count} frames, "
 | 
			
		||||
            video_length_summary += f"{frames_count/fps:.1f}s, {round(fps)} fps)"
 | 
			
		||||
            video_guidance_scale = configs.get("video_guidance_scale", 1)
 | 
			
		||||
            video_guidance_scale = configs.get("guidance_scale", 1)
 | 
			
		||||
            video_NAG_scale = configs.get("NAG_scale", 1)
 | 
			
		||||
            video_embedded_guidance_scale = configs.get("video_embedded_guidance_scale ", 1)
 | 
			
		||||
            if get_model_family(video_model_type) == "hunyuan":
 | 
			
		||||
                video_guidance_scale = video_embedded_guidance_scale
 | 
			
		||||
                video_guidance_label = "Embedded Guidance Scale"
 | 
			
		||||
            else:
 | 
			
		||||
                video_guidance_label = "Guidance Scale"
 | 
			
		||||
                video_guidance_label = "Guidance"
 | 
			
		||||
            video_flow_shift = configs.get("flow_shift", 1)
 | 
			
		||||
            video_video_guide_outpainting = configs.get("video_guide_outpainting", "")
 | 
			
		||||
            video_outpainting = ""
 | 
			
		||||
            if len(video_video_guide_outpainting) > 0 and not video_video_guide_outpainting.startswith("#"):
 | 
			
		||||
            if len(video_video_guide_outpainting) > 0  and not video_video_guide_outpainting.startswith("#") \
 | 
			
		||||
                    and (any_letters(video_video_prompt_type, "VFK") or any_letters(video_image_prompt_type, "VL")) :
 | 
			
		||||
                video_video_guide_outpainting = video_video_guide_outpainting.split(" ")
 | 
			
		||||
                video_outpainting = f"Top={video_video_guide_outpainting[0]}%, Bottom={video_video_guide_outpainting[1]}%, Left={video_video_guide_outpainting[2]}%, Right={video_video_guide_outpainting[3]}%" 
 | 
			
		||||
            video_num_inference_steps = configs.get("num_inference_steps", 0)
 | 
			
		||||
            video_creation_date = str(get_file_creation_date(file_name))
 | 
			
		||||
            if "." in video_creation_date: video_creation_date = video_creation_date[:video_creation_date.rfind(".")]
 | 
			
		||||
            video_generation_time =  str(configs.get("generation_time", "0")) + "s"
 | 
			
		||||
            video_activated_loras =  "<BR>".join(configs.get("activated_loras", []))
 | 
			
		||||
            video_activated_loras = configs.get("activated_loras", [])
 | 
			
		||||
            video_loras_multipliers = configs.get("loras_multipliers", "")
 | 
			
		||||
            video_loras_multipliers =  preparse_loras_multipliers(video_loras_multipliers)
 | 
			
		||||
            video_loras_multipliers += [""] * len(video_activated_loras)
 | 
			
		||||
            video_activated_loras = [ f"<TR><TD style='padding-top:0px;padding-left:0px'>{lora}</TD><TD>x{multiplier if len(multiplier)>0 else '1'}</TD></TR>" for lora, multiplier in zip(video_activated_loras, video_loras_multipliers) ]
 | 
			
		||||
            video_activated_loras_str = "<TABLE style='border:0px;padding:0px'>" + "".join(video_activated_loras) + "</TABLE>" if len(video_activated_loras) > 0 else ""
 | 
			
		||||
            values +=  misc_values + [video_prompt]
 | 
			
		||||
            labels +=  misc_labels + ["Text Prompt"]
 | 
			
		||||
            if len(video_other_prompts) >0 :
 | 
			
		||||
@ -3166,7 +3201,14 @@ def select_video(state, input_file_list, event_data: gr.EventData):
 | 
			
		||||
                labels += ["Outpainting"]        
 | 
			
		||||
            values += [video_resolution, video_length_summary, video_seed, video_guidance_scale, video_flow_shift, video_num_inference_steps]
 | 
			
		||||
            labels += [ "Resolution", "Video Length", "Seed", video_guidance_label, "Flow Shift", "Num Inference steps"]
 | 
			
		||||
 | 
			
		||||
            video_negative_prompt = configs.get("negative_prompt", "")
 | 
			
		||||
            if len(video_negative_prompt) > 0:
 | 
			
		||||
                values += [video_negative_prompt]
 | 
			
		||||
                labels += ["Negative Prompt"]        
 | 
			
		||||
            video_NAG_scale = configs.get("NAG_scale", 1)
 | 
			
		||||
            if video_NAG_scale > 1: 
 | 
			
		||||
                values += [video_NAG_scale]
 | 
			
		||||
                labels += ["NAG Scale"]        
 | 
			
		||||
            video_skip_steps_cache_type = configs.get("skip_steps_cache_type", "")
 | 
			
		||||
            video_skip_steps_multiplier = configs.get("skip_steps_multiplier", 0)
 | 
			
		||||
            video_skip_steps_cache_start_step_perc = configs.get("skip_steps_start_step_perc", 0)
 | 
			
		||||
@ -3180,8 +3222,8 @@ def select_video(state, input_file_list, event_data: gr.EventData):
 | 
			
		||||
            values += pp_values
 | 
			
		||||
            labels += pp_labels
 | 
			
		||||
 | 
			
		||||
            if len(video_activated_loras) > 0:
 | 
			
		||||
                values += [video_activated_loras]
 | 
			
		||||
            if len(video_activated_loras_str) > 0:
 | 
			
		||||
                values += [video_activated_loras_str]
 | 
			
		||||
                labels += ["Loras"] 
 | 
			
		||||
            if nb_audio_tracks  > 0:
 | 
			
		||||
                values +=[nb_audio_tracks]
 | 
			
		||||
@ -3649,6 +3691,13 @@ def get_available_filename(target_path, video_source, suffix = "", force_extensi
 | 
			
		||||
            return full_path
 | 
			
		||||
        counter += 1
 | 
			
		||||
 | 
			
		||||
def preparse_loras_multipliers(loras_multipliers):
 | 
			
		||||
    loras_multipliers = loras_multipliers.strip(" \r\n")
 | 
			
		||||
    loras_mult_choices_list = loras_multipliers.replace("\r", "").split("\n")
 | 
			
		||||
    loras_mult_choices_list = [multi for multi in loras_mult_choices_list if len(multi)>0 and not multi.startswith("#")]
 | 
			
		||||
    loras_multipliers = " ".join(loras_mult_choices_list)
 | 
			
		||||
    return loras_multipliers.split(" ")
 | 
			
		||||
 | 
			
		||||
def set_seed(seed):
 | 
			
		||||
    import random
 | 
			
		||||
    seed = random.randint(0, 99999999) if seed == None or seed < 0 else seed
 | 
			
		||||
@ -3839,6 +3888,9 @@ def generate_video(
 | 
			
		||||
    MMAudio_prompt,
 | 
			
		||||
    MMAudio_neg_prompt,    
 | 
			
		||||
    RIFLEx_setting,
 | 
			
		||||
    NAG_scale,
 | 
			
		||||
    NAG_tau,
 | 
			
		||||
    NAG_alpha,
 | 
			
		||||
    slg_switch,
 | 
			
		||||
    slg_layers,    
 | 
			
		||||
    slg_start_perc,
 | 
			
		||||
@ -3927,11 +3979,8 @@ def generate_video(
 | 
			
		||||
        loras_list_mult_choices_nums = []
 | 
			
		||||
        loras_multipliers = loras_multipliers.strip(" \r\n")
 | 
			
		||||
        if len(loras_multipliers) > 0:
 | 
			
		||||
            loras_mult_choices_list = loras_multipliers.replace("\r", "").split("\n")
 | 
			
		||||
            loras_mult_choices_list = [multi for multi in loras_mult_choices_list if len(multi)>0 and not multi.startswith("#")]
 | 
			
		||||
            loras_multipliers = " ".join(loras_mult_choices_list)
 | 
			
		||||
            list_mult_choices_str = loras_multipliers.split(" ")
 | 
			
		||||
            for i, mult in enumerate(list_mult_choices_str):
 | 
			
		||||
            list_mult_choices_list = preparse_loras_multipliers(loras_multipliers)
 | 
			
		||||
            for i, mult in enumerate(list_mult_choices_list):
 | 
			
		||||
                mult = mult.strip()
 | 
			
		||||
                if "," in mult:
 | 
			
		||||
                    multlist = mult.split(",")
 | 
			
		||||
@ -4446,6 +4495,9 @@ def generate_video(
 | 
			
		||||
                    model_filename = model_filename,
 | 
			
		||||
                    model_type = base_model_type,
 | 
			
		||||
                    loras_slists = loras_slists,
 | 
			
		||||
                    NAG_scale = NAG_scale,
 | 
			
		||||
                    NAG_tau = NAG_tau,
 | 
			
		||||
                    NAG_alpha = NAG_alpha,
 | 
			
		||||
                    offloadobj = offloadobj,
 | 
			
		||||
                )
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
@ -5820,6 +5872,9 @@ def save_inputs(
 | 
			
		||||
            MMAudio_prompt,
 | 
			
		||||
            MMAudio_neg_prompt,            
 | 
			
		||||
            RIFLEx_setting,
 | 
			
		||||
            NAG_scale,
 | 
			
		||||
            NAG_tau,
 | 
			
		||||
            NAG_alpha,
 | 
			
		||||
            slg_switch, 
 | 
			
		||||
            slg_layers,
 | 
			
		||||
            slg_start_perc,
 | 
			
		||||
@ -5975,6 +6030,18 @@ def unload_model_if_needed(state):
 | 
			
		||||
            gc.collect()
 | 
			
		||||
            reload_needed=  True
 | 
			
		||||
 | 
			
		||||
def all_letters(source_str, letters):
 | 
			
		||||
    for letter in letters:
 | 
			
		||||
        if not letter in source_str:
 | 
			
		||||
            return False
 | 
			
		||||
    return True    
 | 
			
		||||
 | 
			
		||||
def any_letters(source_str, letters):
 | 
			
		||||
    for letter in letters:
 | 
			
		||||
        if letter in source_str:
 | 
			
		||||
            return True
 | 
			
		||||
    return False
 | 
			
		||||
 | 
			
		||||
def filter_letters(source_str, letters):
 | 
			
		||||
    ret = ""
 | 
			
		||||
    for letter in letters:
 | 
			
		||||
@ -6301,10 +6368,10 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
 | 
			
		||||
                    image_prompt_type = gr.Radio( [("Start Video with Image", "S"),("Continue Video", "V"),("Text Prompt Only", "T")], value =image_prompt_type_value, label="Location", show_label= False, visible= True , scale= 3)
 | 
			
		||||
 | 
			
		||||
                    # image_start = gr.Image(label= "Image as a starting point for a new video", type ="pil",value= ui_defaults.get("image_start", None), visible= "S" in image_prompt_type_value )
 | 
			
		||||
                    image_start = gr.Gallery(
 | 
			
		||||
                    image_start = gr.Gallery(preview= True,
 | 
			
		||||
                            label="Images as starting points for new videos", type ="pil", #file_types= "image", 
 | 
			
		||||
                            columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, value= ui_defaults.get("image_start", None), visible= "S" in image_prompt_type_value) 
 | 
			
		||||
                    image_end  = gr.Gallery(
 | 
			
		||||
                    image_end  = gr.Gallery(preview= True,
 | 
			
		||||
                            label="Images as ending points for new videos", type ="pil", #file_types= "image", 
 | 
			
		||||
                            columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, visible="E" in image_prompt_type_value, value= ui_defaults.get("image_end", None))
 | 
			
		||||
                    video_source = gr.Video(label= "Video to Continue", visible= "V" in image_prompt_type_value, value= ui_defaults.get("video_source", None),)
 | 
			
		||||
@ -6355,11 +6422,11 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
 | 
			
		||||
                        image_prompt_type_choices += [("Use both a Start and an End Image", "SE")]
 | 
			
		||||
                        image_prompt_type = gr.Radio( image_prompt_type_choices, value =image_prompt_type_value, label="Location", show_label= False, visible= not hunyuan_i2v, scale= 3)
 | 
			
		||||
 | 
			
		||||
                        image_start = gr.Gallery(
 | 
			
		||||
                        image_start = gr.Gallery(preview= True,
 | 
			
		||||
                                label="Images as starting points for new videos", type ="pil", #file_types= "image", 
 | 
			
		||||
                                columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, value= ui_defaults.get("image_start", None), visible= "S" in image_prompt_type_value) 
 | 
			
		||||
 | 
			
		||||
                        image_end  = gr.Gallery(
 | 
			
		||||
                        image_end  = gr.Gallery(preview= True,
 | 
			
		||||
                                label="Images as ending points for new videos", type ="pil", #file_types= "image", 
 | 
			
		||||
                                columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, visible="E" in image_prompt_type_value, value= ui_defaults.get("image_end", None))
 | 
			
		||||
                    else:
 | 
			
		||||
@ -6495,7 +6562,7 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
 | 
			
		||||
 | 
			
		||||
                mask_expand = gr.Slider(-10, 50, value=ui_defaults.get("mask_expand", 0), step=1, label="Expand / Shrink Mask Area", visible= "V" in video_prompt_type_value and "A" in video_prompt_type_value and not "U" in video_prompt_type_value )
 | 
			
		||||
 | 
			
		||||
                image_refs = gr.Gallery( label ="Start Image" if hunyuan_video_avatar else "Reference Images",
 | 
			
		||||
                image_refs = gr.Gallery(preview= True, label ="Start Image" if hunyuan_video_avatar else "Reference Images",
 | 
			
		||||
                        type ="pil",   show_label= True,
 | 
			
		||||
                        columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, visible= "I" in video_prompt_type_value, 
 | 
			
		||||
                        value= ui_defaults.get("image_refs", None),
 | 
			
		||||
@ -6609,7 +6676,7 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
 | 
			
		||||
                    with gr.Column():
 | 
			
		||||
                        seed = gr.Slider(-1, 999999999, value=ui_defaults.get("seed",-1), step=1, label="Seed (-1 for random)") 
 | 
			
		||||
                        with gr.Row(visible = not ltxv):
 | 
			
		||||
                            guidance_scale = gr.Slider(1.0, 20.0, value=ui_defaults.get("guidance_scale",5), step=0.5, label="Guidance Scale", visible=not (hunyuan_t2v or hunyuan_i2v))
 | 
			
		||||
                            guidance_scale = gr.Slider(1.0, 20.0, value=ui_defaults.get("guidance_scale",5), step=0.5, label="Guidance (CFG)", visible=not (hunyuan_t2v or hunyuan_i2v))
 | 
			
		||||
                            audio_guidance_scale = gr.Slider(1.0, 20.0, value=ui_defaults.get("audio_guidance_scale", 5 if fantasy else 4), step=0.5, label="Audio Guidance", visible=fantasy or multitalk)
 | 
			
		||||
                            embedded_guidance_scale = gr.Slider(1.0, 20.0, value=6.0, step=0.5, label="Embedded Guidance Scale", visible=(hunyuan_t2v or hunyuan_i2v))
 | 
			
		||||
                            flow_shift = gr.Slider(1.0, 25.0, value=ui_defaults.get("flow_shift",3), step=0.1, label="Shift Scale") 
 | 
			
		||||
@ -6626,10 +6693,15 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
 | 
			
		||||
                        with gr.Row(visible = vace):
 | 
			
		||||
                            control_net_weight = gr.Slider(0.0, 2.0, value=ui_defaults.get("control_net_weight",1), step=0.1, label="Control Net Weight #1", visible=vace)
 | 
			
		||||
                            control_net_weight2 = gr.Slider(0.0, 2.0, value=ui_defaults.get("control_net_weight2",1), step=0.1, label="Control Net Weight #2", visible=vace)
 | 
			
		||||
                        negative_prompt = gr.Textbox(label="Negative Prompt (ignored if no Guidance that is if CFG = 1)", value=ui_defaults.get("negative_prompt", "") )
 | 
			
		||||
                        with gr.Column(visible = vace or t2v or test_class_i2v(model_type)) as NAG_col:
 | 
			
		||||
                            gr.Markdown("<B>NAG enforces Negative Prompt even if no Guidance is set (CFG = 1), set NAG Scale to > 1 to enable it</B>")
 | 
			
		||||
                            with gr.Row():
 | 
			
		||||
                                NAG_scale = gr.Slider(1.0, 20.0, value=ui_defaults.get("NAG_scale",1), step=0.1, label="NAG Scale", visible = True)
 | 
			
		||||
                                NAG_tau = gr.Slider(1.0, 5.0, value=ui_defaults.get("NAG_tau",3.5), step=0.1, label="NAG Tau", visible = True)
 | 
			
		||||
                                NAG_alpha = gr.Slider(1.0, 2.0, value=ui_defaults.get("NAG_alpha",.5), step=0.1, label="NAG Alpha", visible = True)
 | 
			
		||||
                        with gr.Row():
 | 
			
		||||
                            negative_prompt = gr.Textbox(label="Negative Prompt", value=ui_defaults.get("negative_prompt", "") )
 | 
			
		||||
                        with gr.Row():
 | 
			
		||||
                            repeat_generation = gr.Slider(1, 25.0, value=ui_defaults.get("repeat_generation",1), step=1, label="Default Number of Generated Videos per Prompt") 
 | 
			
		||||
                            repeat_generation = gr.Slider(1, 25.0, value=ui_defaults.get("repeat_generation",1), step=1, label="Num. of Generated Videos per Prompt") 
 | 
			
		||||
                            multi_images_gen_type = gr.Dropdown( value=ui_defaults.get("multi_images_gen_type",0), 
 | 
			
		||||
                                choices=[
 | 
			
		||||
                                    ("Generate every combination of images and texts", 0),
 | 
			
		||||
@ -6647,7 +6719,7 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
 | 
			
		||||
                            multiselect= True,
 | 
			
		||||
                            label="Activated Loras"
 | 
			
		||||
                        )
 | 
			
		||||
                        loras_multipliers = gr.Textbox(label="Loras Multipliers (1.0 by default) separated by space characters or carriage returns, lines that start with # are ignored", value=launch_multis_str)
 | 
			
		||||
                        loras_multipliers = gr.Textbox(label="Loras Multipliers (1.0 by default) separated by Space chars or CR, lines that start with # are ignored", value=launch_multis_str)
 | 
			
		||||
                with gr.Tab("Steps Skipping", visible = not ltxv) as speed_tab:
 | 
			
		||||
                    with gr.Column():
 | 
			
		||||
                        gr.Markdown("<B>Tea Cache and Mag Cache accelerate the Video Generation by skipping intelligently some steps, the more steps are skipped the lower the quality of the video.</B>")
 | 
			
		||||
@ -6894,7 +6966,7 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
 | 
			
		||||
                gen_status = gr.Text(interactive= False, label = "Status")
 | 
			
		||||
                status_trigger = gr.Text(interactive= False, visible=False)
 | 
			
		||||
                default_files = []
 | 
			
		||||
                output = gr.Gallery(value =default_files, label="Generated videos", show_label=False, elem_id="gallery" , columns=[3], rows=[1], object_fit="contain", height=450, selected_index=0, interactive= False)
 | 
			
		||||
                output = gr.Gallery(value =default_files, label="Generated videos", preview= True, show_label=False, elem_id="gallery" , columns=[3], rows=[1], object_fit="contain", height=450, selected_index=0, interactive= False)
 | 
			
		||||
                output_trigger = gr.Text(interactive= False, visible=False)
 | 
			
		||||
                refresh_form_trigger = gr.Text(interactive= False, visible=False)
 | 
			
		||||
                fill_wizard_prompt_trigger = gr.Text(interactive= False, visible=False)
 | 
			
		||||
@ -6973,7 +7045,8 @@ def generate_video_tab(update_form = False, state_dict = None, ui_defaults = Non
 | 
			
		||||
                                      sliding_window_tab, misc_tab, prompt_enhancer_row, inference_steps_row, skip_layer_guidance_row, audio_guide_row, RIFLEx_setting_col,
 | 
			
		||||
                                      video_prompt_type_video_guide, video_prompt_type_video_mask, video_prompt_type_image_refs, apg_col, audio_prompt_type_sources, audio_prompt_type_remux_row,
 | 
			
		||||
                                      video_guide_outpainting_col,video_guide_outpainting_top, video_guide_outpainting_bottom, video_guide_outpainting_left, video_guide_outpainting_right,
 | 
			
		||||
                                      video_guide_outpainting_checkbox, video_guide_outpainting_row, show_advanced, video_info_to_control_video_btn, video_info_to_video_source_btn, sample_solver_row] #  presets_column,
 | 
			
		||||
                                      video_guide_outpainting_checkbox, video_guide_outpainting_row, show_advanced, video_info_to_control_video_btn, video_info_to_video_source_btn, sample_solver_row,
 | 
			
		||||
                                      NAG_col] #  presets_column,
 | 
			
		||||
        if update_form:
 | 
			
		||||
            locals_dict = locals()
 | 
			
		||||
            gen_inputs = [state_dict if k=="state" else locals_dict[k]  for k in inputs_names] + [state_dict] + extra_inputs
 | 
			
		||||
 | 
			
		||||
		Loading…
	
		Reference in New Issue
	
	Block a user