From e5abb1b9bc27cfe7f05562651aa23f14bba3d5e9 Mon Sep 17 00:00:00 2001 From: DeepBeepMeep Date: Thu, 4 Sep 2025 01:10:42 +0200 Subject: [PATCH] fixed pytorch compilation --- models/wan/any2video.py | 7 ++++--- requirements.txt | 2 +- wgp.py | 6 +++--- 3 files changed, 8 insertions(+), 7 deletions(-) diff --git a/models/wan/any2video.py b/models/wan/any2video.py index 8eb2ffe..e7d54ef 100644 --- a/models/wan/any2video.py +++ b/models/wan/any2video.py @@ -454,7 +454,8 @@ class WanAny2V: timesteps.append(0.) timesteps = [torch.tensor([t], device=self.device) for t in timesteps] if self.use_timestep_transform: - timesteps = [timestep_transform(t, shift=shift, num_timesteps=self.num_timesteps) for t in timesteps][:-1] + timesteps = [timestep_transform(t, shift=shift, num_timesteps=self.num_timesteps) for t in timesteps][:-1] + timesteps = torch.tensor(timesteps) sample_scheduler = None elif sample_solver == 'causvid': sample_scheduler = FlowMatchScheduler(num_inference_steps=sampling_steps, shift=shift, sigma_min=0, extra_one_step=True) @@ -1016,8 +1017,8 @@ class WanAny2V: if sample_solver == "euler": dt = timesteps[i] if i == len(timesteps)-1 else (timesteps[i] - timesteps[i + 1]) - dt = dt / self.num_timesteps - latents = latents - noise_pred * dt[:, None, None, None, None] + dt = dt.item() / self.num_timesteps + latents = latents - noise_pred * dt else: latents = sample_scheduler.step( noise_pred[:, :, :target_shape[1]], diff --git a/requirements.txt b/requirements.txt index cdc21ad..0ae0ab3 100644 --- a/requirements.txt +++ b/requirements.txt @@ -44,7 +44,7 @@ pydantic==2.10.6 # Math & modeling torchdiffeq>=0.2.5 tensordict>=0.6.1 -mmgp==3.5.12 +mmgp==3.6.0 peft==0.15.0 matplotlib diff --git a/wgp.py b/wgp.py index a3cc510..c57cc48 100644 --- a/wgp.py +++ b/wgp.py @@ -59,8 +59,8 @@ global_queue_ref = [] AUTOSAVE_FILENAME = "queue.zip" PROMPT_VARS_MAX = 10 -target_mmgp_version = "3.5.12" -WanGP_version = "8.33" +target_mmgp_version = "3.6.0" +WanGP_version = "8.34" settings_version = 2.29 max_source_video_frames = 3000 prompt_enhancer_image_caption_model, prompt_enhancer_image_caption_processor, prompt_enhancer_llm_model, prompt_enhancer_llm_tokenizer = None, None, None, None @@ -8509,7 +8509,7 @@ def generate_configuration_tab(state, blocks, header, model_family, model_choice ("Off", "" ), ], value= compile, - label="Compile Transformer (up to 50% faster and 30% more frames but requires Linux / WSL and Flash or Sage attention)", + label="Compile Transformer : up to 10-20% faster, useful only if multiple gens at same frames no / resolution", interactive= not lock_ui_compile )