Compare commits

...

3 Commits

Author SHA1 Message Date
yupeng1111
6ca4b174b2
Merge c5a6d87db7 into ae487cc653 2025-12-22 18:33:47 +05:00
Yuxuan BIAN
ae487cc653
Add Wan2.1-related community project Video-As-Prompt (#561)
Co-authored-by: Shiwei Zhang <134917139+Steven-SWZhang@users.noreply.github.com>
2025-12-16 00:18:50 +08:00
澎鹏
c5a6d87db7 fix frame size bug 2025-04-30 14:44:10 +08:00
2 changed files with 8 additions and 1 deletions

View File

@ -36,6 +36,7 @@ In this repository, we present **Wan2.1**, a comprehensive and open suite of vid
## Community Works
If your work has improved **Wan2.1** and you would like more people to see it, please inform us.
- [Video-As-Prompt](https://github.com/bytedance/Video-As-Prompt), the first unified semantic-controlled video generation model based on **Wan2.1-14B-I2V** with a Mixture-of-Transformers architecture and in-context controls (e.g., concept, style, motion, camera). Refer to the [project page](https://bytedance.github.io/Video-As-Prompt/) for more examples.
- [LightX2V](https://github.com/ModelTC/LightX2V), a lightweight and efficient video generation framework that integrates **Wan2.1** and **Wan2.2**, supports multiple engineering acceleration techniques for fast inference, which can run on RTX 5090 and RTX 4060 (8GB VRAM).
- [DriVerse](https://github.com/shalfun/DriVerse), an autonomous driving world model based on **Wan2.1-14B-I2V**, generates future driving videos conditioned on any scene frame and given trajectory. Refer to the [project page](https://github.com/shalfun/DriVerse/tree/main) for more examples.
- [Training-Free-WAN-Editing](https://github.com/KyujinHan/Awesome-Training-Free-WAN2.1-Editing), built on **Wan2.1-T2V-1.3B**, allows training-free video editing with image-based training-free methods, such as [FlowEdit](https://arxiv.org/abs/2412.08629) and [FlowAlign](https://arxiv.org/abs/2505.23145).

View File

@ -13,6 +13,7 @@ import numpy as np
import torch
import torch.cuda.amp as amp
import torch.distributed as dist
import torchvision
import torchvision.transforms.functional as TF
from tqdm import tqdm
@ -211,7 +212,12 @@ class WanFLF2V:
round(last_frame_size[1] * last_frame_resize_ratio),
]
# 2. center crop
last_frame = TF.center_crop(last_frame, last_frame_size)
transform = torchvision.transforms.Compose([
torchvision.transforms.Resize((last_frame_size[0], last_frame_size[1])),
torchvision.transforms.CenterCrop((first_frame_size[0], first_frame_size[1]))
])
last_frame = transform(last_frame)
max_seq_len = ((F - 1) // self.vae_stride[0] + 1) * lat_h * lat_w // (
self.patch_size[1] * self.patch_size[2])