mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-12-18 13:12:16 +00:00
Compare commits
5 Commits
4b96d6d9b3
...
7add2faeb6
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7add2faeb6 | ||
|
|
854bd88e7f | ||
|
|
8177ee5bc6 | ||
|
|
f134d60bcc | ||
|
|
5f7e7ed289 |
@ -36,6 +36,8 @@ In this repository, we present **Wan2.1**, a comprehensive and open suite of vid
|
||||
|
||||
## Community Works
|
||||
If your work has improved **Wan2.1** and you would like more people to see it, please inform us.
|
||||
- [LightX2V](https://github.com/ModelTC/LightX2V), a lightweight and efficient video generation framework that integrates **Wan2.1** and **Wan2.2**, supports multiple engineering acceleration techniques for fast inference, which can run on RTX 5090 and RTX 4060 (8GB VRAM).
|
||||
- [DriVerse](https://github.com/shalfun/DriVerse), an autonomous driving world model based on **Wan2.1-14B-I2V**, generates future driving videos conditioned on any scene frame and given trajectory. Refer to the [project page](https://github.com/shalfun/DriVerse/tree/main) for more examples.
|
||||
- [Training-Free-WAN-Editing](https://github.com/KyujinHan/Awesome-Training-Free-WAN2.1-Editing), built on **Wan2.1-T2V-1.3B**, allows training-free video editing with image-based training-free methods, such as [FlowEdit](https://arxiv.org/abs/2412.08629) and [FlowAlign](https://arxiv.org/abs/2505.23145).
|
||||
- [Wan-Move](https://github.com/ali-vilab/Wan-Move), accepted to NeurIPS 2025, a framework that brings **Wan2.1-I2V-14B** to SOTA fine-grained, point-level motion control! Refer to [their project page](https://wan-move.github.io/) for more information.
|
||||
- [EchoShot](https://github.com/JoHnneyWang/EchoShot), a native multi-shot portrait video generation model based on **Wan2.1-T2V-1.3B**, allows generation of multiple video clips featuring the same character as well as highly flexible content controllability. Refer to [their project page](https://johnneywang.github.io/EchoShot-webpage/) for more information.
|
||||
|
||||
@ -79,6 +79,7 @@ def flash_attention(
|
||||
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
|
||||
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
|
||||
|
||||
try:
|
||||
q = q.to(v.dtype)
|
||||
k = k.to(v.dtype)
|
||||
|
||||
@ -126,6 +127,53 @@ def flash_attention(
|
||||
window_size=window_size,
|
||||
deterministic=deterministic).unflatten(0, (b, lq))
|
||||
|
||||
except RuntimeError as e:
|
||||
if "FlashAttention only supports Ampere GPUs or newer" in str(e):
|
||||
#for cards like 2080ti that aren't Ampere structure
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
q = q.to(half(k).dtype)
|
||||
|
||||
# 转置维度,保证形状为 [B, N, L, C]
|
||||
q = q.view(b, lq, q.size(1), q.size(2)).transpose(1, 2)
|
||||
k = k.view(b, lk, k.size(1), k.size(2)).transpose(1, 2)
|
||||
v = v.view(b, lk, v.size(1), v.size(2)).transpose(1, 2)
|
||||
|
||||
# 计算注意力
|
||||
# 注意:确保 Q、K、V 的形状为 [B, N, L, C]
|
||||
# 设置默认缩放因子
|
||||
if softmax_scale is None:
|
||||
softmax_scale = 1.0 / q.size(-1) ** 0.5
|
||||
|
||||
# 如果 q_scale 存在,则应用缩放
|
||||
if q_scale is not None:
|
||||
q = q * q_scale
|
||||
|
||||
# 创建掩码
|
||||
if causal:
|
||||
attn_mask = torch.triu(torch.full((q.size(2), k.size(2)), -torch.inf), diagonal=1).to(q.device)
|
||||
else:
|
||||
attn_mask = None
|
||||
|
||||
# 计算注意力
|
||||
# 使用 scaled_dot_product_attention
|
||||
x = F.scaled_dot_product_attention(
|
||||
q, k, v,
|
||||
attn_mask=attn_mask,
|
||||
dropout_p=dropout_p,
|
||||
is_causal=causal,
|
||||
)
|
||||
|
||||
# 转换回原形状 [B, L, N, C]
|
||||
x = x.transpose(1, 2).contiguous()
|
||||
|
||||
# 对输出应用 Dropout
|
||||
dropout = nn.Dropout(dropout_p)
|
||||
x = dropout(x)
|
||||
else:
|
||||
raise
|
||||
|
||||
# output
|
||||
return x.type(out_dtype)
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user