Compare commits

...

7 Commits

Author SHA1 Message Date
zmey42
a8ef425b5f
Merge fe59c68fb4 into 854bd88e7f 2025-12-15 19:14:04 +08:00
Shiwei Zhang
854bd88e7f
update README 2025-12-15 17:03:42 +08:00
Yang Yong (雍洋)
8177ee5bc6
Add LightX2V Community Works (#558)
* Add LightX2V Community Works

* update

* update

* update
2025-12-15 16:59:29 +08:00
Shalfun
f134d60bcc
Update README.md (#487)
an open driving world model based on WAN!

Co-authored-by: Shiwei Zhang <134917139+Steven-SWZhang@users.noreply.github.com>
2025-12-15 11:51:44 +08:00
kyujinHan
bcc437daed
Update community works section in README.md (#557) 2025-12-14 19:09:54 +08:00
Shiwei Zhang
e4f90fa81f
Update community works section in README.md 2025-12-10 21:13:53 +08:00
zmey42
fe59c68fb4
Create Тг подарки 2025-03-14 20:51:20 +03:00
2 changed files with 63 additions and 0 deletions

View File

@ -36,6 +36,10 @@ In this repository, we present **Wan2.1**, a comprehensive and open suite of vid
## Community Works
If your work has improved **Wan2.1** and you would like more people to see it, please inform us.
- [LightX2V](https://github.com/ModelTC/LightX2V), a lightweight and efficient video generation framework that integrates **Wan2.1** and **Wan2.2**, supports multiple engineering acceleration techniques for fast inference, which can run on RTX 5090 and RTX 4060 (8GB VRAM).
- [DriVerse](https://github.com/shalfun/DriVerse), an autonomous driving world model based on **Wan2.1-14B-I2V**, generates future driving videos conditioned on any scene frame and given trajectory. Refer to the [project page](https://github.com/shalfun/DriVerse/tree/main) for more examples.
- [Training-Free-WAN-Editing](https://github.com/KyujinHan/Awesome-Training-Free-WAN2.1-Editing), built on **Wan2.1-T2V-1.3B**, allows training-free video editing with image-based training-free methods, such as [FlowEdit](https://arxiv.org/abs/2412.08629) and [FlowAlign](https://arxiv.org/abs/2505.23145).
- [Wan-Move](https://github.com/ali-vilab/Wan-Move), accepted to NeurIPS 2025, a framework that brings **Wan2.1-I2V-14B** to SOTA fine-grained, point-level motion control! Refer to [their project page](https://wan-move.github.io/) for more information.
- [EchoShot](https://github.com/JoHnneyWang/EchoShot), a native multi-shot portrait video generation model based on **Wan2.1-T2V-1.3B**, allows generation of multiple video clips featuring the same character as well as highly flexible content controllability. Refer to [their project page](https://johnneywang.github.io/EchoShot-webpage/) for more information.
- [AniCrafter](https://github.com/MyNiuuu/AniCrafter), a human-centric animation model based on **Wan2.1-14B-I2V**, controls the Video Diffusion Models with 3DGS Avatars to insert and animate anyone into any scene following given motion sequences. Refer to the [project page](https://myniuuu.github.io/AniCrafter) for more examples.
- [HyperMotion](https://vivocameraresearch.github.io/hypermotion/), a human image animation framework based on **Wan2.1**, addresses the challenge of generating complex human body motions in pose-guided animation. Refer to [their website](https://vivocameraresearch.github.io/magictryon/) for more examples.

59
Тг подарки Normal file
View File

@ -0,0 +1,59 @@
from manim import *
class NFTPresentation(Scene):
def construct(self):
# 1. Анимация отправки NFT-подарка
phone = SVGMobject("smartphone") # Загрузите SVG-изображение телефона
chat_bubble = Text("Отправляю NFT-подарок!", font_size=24)
nft_gift = ImageMobject("nft_gift.png") # Загрузите изображение NFT-подарка
phone.scale(0.8)
chat_bubble.next_to(phone, UP)
nft_gift.scale(0.5).next_to(chat_bubble, UP)
self.play(DrawBorderThenFill(phone))
self.play(Write(chat_bubble))
self.play(FadeIn(nft_gift))
self.wait(2)
# 2. Примеры уникальных цифровых подарков
art = ImageMobject("art.png") # Загрузите изображение арта
card = ImageMobject("card.png") # Загрузите изображение коллекционной карточки
animation = ImageMobject("animation.gif") # Загрузите GIF-анимацию
art.scale(0.5).to_edge(LEFT)
card.scale(0.5).next_to(art, RIGHT)
animation.scale(0.5).next_to(card, RIGHT)
self.play(FadeIn(art), FadeIn(card), FadeIn(animation))
self.wait(3)
# 3. Преимущества NFT-подарков
advantages = VGroup(
Text("Уникальность", font_size=24),
Text("Возможность перепродажи", font_size=24),
Text("Эмоциональная ценность", font_size=24)
).arrange(DOWN, aligned_edge=LEFT)
advantages.next_to(phone, DOWN)
self.play(Write(advantages))
self.wait(3)
# 4. Призыв
call_to_action = Text("Дарите уникальное! NFT-подарки в Telegram — тренд будущего!", font_size=28)
call_to_action.to_edge(UP)
self.play(Write(call_to_action))
self.wait(2)
# 5. Логотип Telegram и хэштег
telegram_logo = ImageMobject("telegram_logo.png") # Загрузите логотип Telegram
hashtag = Text("#https://t.me/TONNELNFT1", font_size=24)
telegram_logo.scale(0.5).to_edge(DOWN)
hashtag.next_to(telegram_logo, RIGHT)
self.play(FadeIn(telegram_logo), Write(hashtag))
self.wait(3)
# Для запуска анимации используйте команду:
# manim -pql script.py NFTPresentation