# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import torch try: import flash_attn_interface FLASH_ATTN_3_AVAILABLE = True except ModuleNotFoundError: FLASH_ATTN_3_AVAILABLE = False try: import flash_attn FLASH_ATTN_2_AVAILABLE = True except ModuleNotFoundError: FLASH_ATTN_2_AVAILABLE = False import warnings __all__ = [ 'flash_attention', 'attention', ] def flash_attention( q, k, v, q_lens=None, k_lens=None, dropout_p=0., softmax_scale=None, q_scale=None, causal=False, window_size=(-1, -1), deterministic=False, dtype=torch.float32, version=None, ): """ Flash attention implementation with fallback for CPU and MPS devices """ half_dtypes = (torch.float16, torch.float32) assert dtype in half_dtypes assert q.size(-1) <= 256, "Sequence length exceeds the maximum limit." # Add CPU/MPS fallback implementation if not (FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE) or q.device.type in ['cpu', 'mps']: # Implement standard attention for CPU/MPS return attention(q, k, v, q_lens=q_lens, k_lens=k_lens, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=causal, window_size=window_size) # params b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype def half(x): return x if x.dtype in half_dtypes else x.to(dtype) # preprocess query if q_lens is None: q = half(q.flatten(0, 1)) q_lens = torch.tensor( [lq] * b, dtype=torch.int32).to( device=q.device, non_blocking=True) else: q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)])) # preprocess key, value if k_lens is None: k = half(k.flatten(0, 1)) v = half(v.flatten(0, 1)) k_lens = torch.tensor( [lk] * b, dtype=torch.int32).to( device=k.device, non_blocking=True) else: k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)])) v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)])) q = q.to(v.dtype) k = k.to(v.dtype) if q_scale is not None: q = q * q_scale if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE: warnings.warn( 'Flash attention 3 is not available, use flash attention 2 instead.' ) # apply attention if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE: # Note: dropout_p, window_size are not supported in FA3 now. x = flash_attn_interface.flash_attn_varlen_func( q=q, k=k, v=v, cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( 0, dtype=torch.int32).to(q.device, non_blocking=True), cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( 0, dtype=torch.int32).to(q.device, non_blocking=True), seqused_q=None, seqused_k=None, max_seqlen_q=lq, max_seqlen_k=lk, softmax_scale=softmax_scale, causal=causal, deterministic=deterministic)[0].unflatten(0, (b, lq)) else: assert FLASH_ATTN_2_AVAILABLE x = flash_attn.flash_attn_varlen_func( q=q, k=k, v=v, cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( 0, dtype=torch.int32).to(q.device, non_blocking=True), cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( 0, dtype=torch.int32).to(q.device, non_blocking=True), max_seqlen_q=lq, max_seqlen_k=lk, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=causal, window_size=window_size, deterministic=deterministic).unflatten(0, (b, lq)) # output return x.type(out_dtype) def attention( q, k, v, q_lens=None, k_lens=None, dropout_p=0., softmax_scale=None, q_scale=None, causal=False, window_size=(-1, -1), deterministic=False, dtype=torch.float32, fa_version=None, ): if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE: return flash_attention( q=q, k=k, v=v, q_lens=q_lens, k_lens=k_lens, dropout_p=dropout_p, softmax_scale=softmax_scale, q_scale=q_scale, causal=causal, window_size=window_size, deterministic=deterministic, dtype=dtype, version=fa_version, ) else: if q_lens is not None or k_lens is not None: warnings.warn( 'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.' ) attn_mask = None q = q.transpose(1, 2).to(dtype) k = k.transpose(1, 2).to(dtype) v = v.transpose(1, 2).to(dtype) out = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p) out = out.transpose(1, 2).contiguous() return out