# Wan2.1 Docker Quick Start Get Wan2.1 running in Docker in 5 minutes! ## Prerequisites - Docker 20.10+ installed ([Get Docker](https://docs.docker.com/get-docker/)) - NVIDIA GPU with 8GB+ VRAM (for GPU acceleration) - NVIDIA Docker runtime installed ([Install Guide](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html)) ## Quick Start (3 Steps) ### Step 1: Clone and Navigate ```bash git clone https://github.com/Wan-Video/Wan2.1.git cd Wan2.1 ``` ### Step 2: Build and Start **Option A: Using the helper script** (Recommended) ```bash ./docker-run.sh start ``` **Option B: Using Make** ```bash make docker-build make docker-up ``` **Option C: Using Docker Compose directly** ```bash docker compose up -d wan2-1 ``` ### Step 3: Download Models and Run ```bash # Enter the container ./docker-run.sh shell # OR make docker-shell # OR docker compose exec wan2-1 bash # Download a model (1.3B for consumer GPUs) pip install "huggingface_hub[cli]" huggingface-cli download Wan-AI/Wan2.1-T2V-1.3B --local-dir /app/models/Wan2.1-T2V-1.3B # Generate your first video! python generate.py \ --task t2v-1.3B \ --size 832*480 \ --ckpt_dir /app/models/Wan2.1-T2V-1.3B \ --offload_model True \ --t5_cpu \ --sample_shift 8 \ --sample_guide_scale 6 \ --prompt "A cute cat playing with a ball of yarn" # Your video will be in /app/outputs (accessible at ./outputs on your host) ``` ## Common Commands ### Container Management ```bash # Start container ./docker-run.sh start # Stop container ./docker-run.sh stop # Restart container ./docker-run.sh restart # View logs ./docker-run.sh logs # Enter shell ./docker-run.sh shell # Check status ./docker-run.sh status ``` ### Using Make Commands ```bash make docker-up # Start make docker-down # Stop make docker-shell # Enter shell make docker-logs # View logs make docker-status # Check status make help # Show all commands ``` ## Run Gradio Web Interface ```bash # Inside the container cd gradio python t2v_14B_singleGPU.py --ckpt_dir /app/models/Wan2.1-T2V-1.3B # Open browser to: http://localhost:7860 ``` ## Available Models | Model | VRAM | Resolution | Download Command | |-------|------|------------|------------------| | T2V-1.3B | 8GB+ | 480P | `huggingface-cli download Wan-AI/Wan2.1-T2V-1.3B --local-dir /app/models/Wan2.1-T2V-1.3B` | | T2V-14B | 24GB+ | 720P | `huggingface-cli download Wan-AI/Wan2.1-T2V-14B --local-dir /app/models/Wan2.1-T2V-14B` | | I2V-14B-720P | 24GB+ | 720P | `huggingface-cli download Wan-AI/Wan2.1-I2V-14B-720P --local-dir /app/models/Wan2.1-I2V-14B-720P` | | I2V-14B-480P | 16GB+ | 480P | `huggingface-cli download Wan-AI/Wan2.1-I2V-14B-480P --local-dir /app/models/Wan2.1-I2V-14B-480P` | ## Troubleshooting ### "CUDA out of memory" - Use the 1.3B model with `--offload_model True --t5_cpu` - Reduce resolution to 480P ### "nvidia-smi not found" - Ensure NVIDIA Docker runtime is installed - Run: `docker run --rm --gpus all nvidia/cuda:12.1.1-base-ubuntu22.04 nvidia-smi` ### Can't access Gradio interface - Check if port 7860 is exposed: `docker ps | grep 7860` - Try: `http://127.0.0.1:7860` instead of `localhost` ## Next Steps - Read the full [DOCKER_SETUP.md](DOCKER_SETUP.md) for advanced configuration - Check the main [README.md](README.md) for model details - Join the [Discord community](https://discord.gg/AKNgpMK4Yj) ## File Structure ``` Wan2.1/ ├── models/ # Downloaded models (created automatically) ├── outputs/ # Generated videos (accessible from host) ├── cache/ # Model cache ├── Dockerfile # Docker image definition ├── docker-compose.yml # Container orchestration ├── docker-run.sh # Helper script ├── Makefile # Make commands └── DOCKER_SETUP.md # Detailed documentation ``` **Happy Generating!** 🎬