# Modified from ``https://github.com/wyhsirius/LIA`` # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import torch import torch.nn as nn from torch.nn import functional as F import math def custom_qr(input_tensor): original_dtype = input_tensor.dtype if original_dtype in [torch.bfloat16, torch.float16]: q, r = torch.linalg.qr(input_tensor.to(torch.float32)) return q.to(original_dtype), r.to(original_dtype) return torch.linalg.qr(input_tensor) def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5): return F.leaky_relu(input + bias, negative_slope) * scale def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): _, minor, in_h, in_w = input.shape kernel_h, kernel_w = kernel.shape out = input.view(-1, minor, in_h, 1, in_w, 1) out = F.pad(out, [0, up_x - 1, 0, 0, 0, up_y - 1, 0, 0]) out = out.view(-1, minor, in_h * up_y, in_w * up_x) out = F.pad(out, [max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) out = out[:, :, max(-pad_y0, 0): out.shape[2] - max(-pad_y1, 0), max(-pad_x0, 0): out.shape[3] - max(-pad_x1, 0), ] out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, ) return out[:, :, ::down_y, ::down_x] def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) def make_kernel(k): k = torch.tensor(k, dtype=torch.float32) if k.ndim == 1: k = k[None, :] * k[:, None] k /= k.sum() return k class FusedLeakyReLU(nn.Module): def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5): super().__init__() self.bias = nn.Parameter(torch.zeros(1, channel, 1, 1)) self.negative_slope = negative_slope self.scale = scale def forward(self, input): out = fused_leaky_relu(input, self.bias, self.negative_slope, self.scale) return out class Blur(nn.Module): def __init__(self, kernel, pad, upsample_factor=1): super().__init__() kernel = make_kernel(kernel) if upsample_factor > 1: kernel = kernel * (upsample_factor ** 2) self.register_buffer('kernel', kernel) self.pad = pad def forward(self, input): return upfirdn2d(input, self.kernel, pad=self.pad) class ScaledLeakyReLU(nn.Module): def __init__(self, negative_slope=0.2): super().__init__() self.negative_slope = negative_slope def forward(self, input): return F.leaky_relu(input, negative_slope=self.negative_slope) class EqualConv2d(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True): super().__init__() self.weight = nn.Parameter(torch.randn(out_channel, in_channel, kernel_size, kernel_size)) self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2) self.stride = stride self.padding = padding if bias: self.bias = nn.Parameter(torch.zeros(out_channel)) else: self.bias = None def forward(self, input): return F.conv2d(input, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding) def __repr__(self): return ( f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},' f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})' ) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None): super().__init__() self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul)) if bias: self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init)) else: self.bias = None self.activation = activation self.scale = (1 / math.sqrt(in_dim)) * lr_mul self.lr_mul = lr_mul def forward(self, input): if self.activation: out = F.linear(input, self.weight * self.scale) out = fused_leaky_relu(out, self.bias * self.lr_mul) else: out = F.linear(input, self.weight * self.scale, bias=self.bias * self.lr_mul) return out def __repr__(self): return (f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})') class ConvLayer(nn.Sequential): def __init__( self, in_channel, out_channel, kernel_size, downsample=False, blur_kernel=[1, 3, 3, 1], bias=True, activate=True, ): layers = [] if downsample: factor = 2 p = (len(blur_kernel) - factor) + (kernel_size - 1) pad0 = (p + 1) // 2 pad1 = p // 2 layers.append(Blur(blur_kernel, pad=(pad0, pad1))) stride = 2 self.padding = 0 else: stride = 1 self.padding = kernel_size // 2 layers.append(EqualConv2d(in_channel, out_channel, kernel_size, padding=self.padding, stride=stride, bias=bias and not activate)) if activate: if bias: layers.append(FusedLeakyReLU(out_channel)) else: layers.append(ScaledLeakyReLU(0.2)) super().__init__(*layers) class ResBlock(nn.Module): def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]): super().__init__() self.conv1 = ConvLayer(in_channel, in_channel, 3) self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True) self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False) def forward(self, input): out = self.conv1(input) out = self.conv2(out) skip = self.skip(input) out = (out + skip) / math.sqrt(2) return out class EncoderApp(nn.Module): def __init__(self, size, w_dim=512): super(EncoderApp, self).__init__() channels = { 4: 512, 8: 512, 16: 512, 32: 512, 64: 256, 128: 128, 256: 64, 512: 32, 1024: 16 } self.w_dim = w_dim log_size = int(math.log(size, 2)) self.convs = nn.ModuleList() self.convs.append(ConvLayer(3, channels[size], 1)) in_channel = channels[size] for i in range(log_size, 2, -1): out_channel = channels[2 ** (i - 1)] self.convs.append(ResBlock(in_channel, out_channel)) in_channel = out_channel self.convs.append(EqualConv2d(in_channel, self.w_dim, 4, padding=0, bias=False)) def forward(self, x): res = [] h = x for conv in self.convs: h = conv(h) res.append(h) return res[-1].squeeze(-1).squeeze(-1), res[::-1][2:] class Encoder(nn.Module): def __init__(self, size, dim=512, dim_motion=20): super(Encoder, self).__init__() # appearance netmork self.net_app = EncoderApp(size, dim) # motion network fc = [EqualLinear(dim, dim)] for i in range(3): fc.append(EqualLinear(dim, dim)) fc.append(EqualLinear(dim, dim_motion)) self.fc = nn.Sequential(*fc) def enc_app(self, x): h_source = self.net_app(x) return h_source def enc_motion(self, x): h, _ = self.net_app(x) h_motion = self.fc(h) return h_motion class Direction(nn.Module): def __init__(self, motion_dim): super(Direction, self).__init__() self.weight = nn.Parameter(torch.randn(512, motion_dim)) def forward(self, input): weight = self.weight + 1e-8 Q, R = custom_qr(weight) if input is None: return Q else: input_diag = torch.diag_embed(input) # alpha, diagonal matrix out = torch.matmul(input_diag, Q.T) out = torch.sum(out, dim=1) return out class Synthesis(nn.Module): def __init__(self, motion_dim): super(Synthesis, self).__init__() self.direction = Direction(motion_dim) class Generator(nn.Module): def __init__(self, size, style_dim=512, motion_dim=20): super().__init__() self.enc = Encoder(size, style_dim, motion_dim) self.dec = Synthesis(motion_dim) def get_motion(self, img): #motion_feat = self.enc.enc_motion(img) # motion_feat = torch.utils.checkpoint.checkpoint((self.enc.enc_motion), img, use_reentrant=True) with torch.cuda.amp.autocast(dtype=torch.float32): motion_feat = self.enc.enc_motion(img) motion = self.dec.direction(motion_feat) return motion