import torch def get_ltxv_text_encoder_filename(text_encoder_quantization): text_encoder_filename = "ckpts/T5_xxl_1.1/T5_xxl_1.1_enc_bf16.safetensors" if text_encoder_quantization =="int8": text_encoder_filename = text_encoder_filename.replace("bf16", "quanto_bf16_int8") return text_encoder_filename class family_handler(): @staticmethod def query_model_def(base_model_type, model_def): flux_model = model_def.get("flux-model", "flux-dev") flux_schnell = flux_model == "flux-schnell" model_def_output = { "image_outputs" : True, "no_negative_prompt" : True, } if flux_schnell: model_def_output["no_guidance"] = True else: model_def_output["embedded_guidance"] = True return model_def_output @staticmethod def query_supported_types(): return ["flux"] @staticmethod def query_family_maps(): return {}, {} @staticmethod def get_rgb_factors(base_model_type ): from shared.RGB_factors import get_rgb_factors latent_rgb_factors, latent_rgb_factors_bias = get_rgb_factors("flux") return latent_rgb_factors, latent_rgb_factors_bias @staticmethod def query_model_family(): return "flux" @staticmethod def query_family_infos(): return {"flux":(30, "Flux 1")} @staticmethod def query_model_files(computeList, base_model_type, model_filename, text_encoder_quantization): text_encoder_filename = get_ltxv_text_encoder_filename(text_encoder_quantization) return [ { "repoId" : "DeepBeepMeep/Flux", "sourceFolderList" : [""], "fileList" : [ ["flux_vae.safetensors"] ] }, { "repoId" : "DeepBeepMeep/LTX_Video", "sourceFolderList" : ["T5_xxl_1.1"], "fileList" : [ ["added_tokens.json", "special_tokens_map.json", "spiece.model", "tokenizer_config.json"] + computeList(text_encoder_filename) ] }, { "repoId" : "DeepBeepMeep/HunyuanVideo", "sourceFolderList" : [ "clip_vit_large_patch14", ], "fileList" :[ ["config.json", "merges.txt", "model.safetensors", "preprocessor_config.json", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json"], ] } ] @staticmethod def load_model(model_filename, model_type, base_model_type, model_def, quantizeTransformer = False, text_encoder_quantization = None, dtype = torch.bfloat16, VAE_dtype = torch.float32, mixed_precision_transformer = False, save_quantized = False): from .flux_main import model_factory flux_model = model_factory( checkpoint_dir="ckpts", model_filename=model_filename, model_type = model_type, model_def = model_def, base_model_type=base_model_type, text_encoder_filename= get_ltxv_text_encoder_filename(text_encoder_quantization), quantizeTransformer = quantizeTransformer, dtype = dtype, VAE_dtype = VAE_dtype, mixed_precision_transformer = mixed_precision_transformer, save_quantized = save_quantized ) pipe = { "transformer": flux_model.model, "vae" : flux_model.vae, "text_encoder" : flux_model.clip, "text_encoder_2" : flux_model.t5} return flux_model, pipe @staticmethod def update_default_settings(base_model_type, model_def, ui_defaults): ui_defaults.update({ "embedded_guidance": 2.5, }) if model_def.get("reference_image", False): ui_defaults.update({ "video_prompt_type": "KI", })