# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import logging import torch import torch.cuda.amp as amp import torch.nn as nn import torch.nn.functional as F from einops import rearrange __all__ = [ "Wan2_2_VAE", ] CACHE_T = 2 class CausalConv3d(nn.Conv3d): """ Causal 3d convolusion. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._padding = ( self.padding[2], self.padding[2], self.padding[1], self.padding[1], 2 * self.padding[0], 0, ) self.padding = (0, 0, 0) def forward(self, x, cache_x=None): padding = list(self._padding) if cache_x is not None and self._padding[4] > 0: cache_x = cache_x.to(x.device) x = torch.cat([cache_x, x], dim=2) padding[4] -= cache_x.shape[2] cache_x = None x = F.pad(x, padding) try: out = super().forward(x) return out except RuntimeError as e: if "miopenStatus" in str(e): print("⚠️ MIOpen fallback: AMD gets upset when trying to work with large areas, and so CPU will be " "used for this decoding (which is very slow). Consider using tiled VAE Decoding.") x_cpu = x.float().cpu() weight_cpu = self.weight.float().cpu() bias_cpu = self.bias.float().cpu() if self.bias is not None else None print(f"[Fallback] x shape: {x_cpu.shape}, weight shape: {weight_cpu.shape}") out = F.conv3d(x_cpu, weight_cpu, bias_cpu, self.stride, (0, 0, 0), # avoid double padding here self.dilation, self.groups) out = out.to(x.device) if x.dtype in (torch.float16, torch.bfloat16): out = out.half() if x.dtype != out.dtype: out = out.to(x.dtype) return out raise class RMS_norm(nn.Module): def __init__(self, dim, channel_first=True, images=True, bias=False): super().__init__() broadcastable_dims = (1, 1, 1) if not images else (1, 1) shape = (dim, *broadcastable_dims) if channel_first else (dim,) self.channel_first = channel_first self.scale = dim**0.5 self.gamma = nn.Parameter(torch.ones(shape)) self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0 def forward(self, x): return (F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias) class Upsample(nn.Upsample): def forward(self, x): """ Fix bfloat16 support for nearest neighbor interpolation. """ return super().forward(x.float()).type_as(x) class Resample(nn.Module): def __init__(self, dim, mode): assert mode in ( "none", "upsample2d", "upsample3d", "downsample2d", "downsample3d", ) super().__init__() self.dim = dim self.mode = mode # layers if mode == "upsample2d": self.resample = nn.Sequential( Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim, 3, padding=1), ) elif mode == "upsample3d": self.resample = nn.Sequential( Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim, 3, padding=1), # nn.Conv2d(dim, dim//2, 3, padding=1) ) self.time_conv = CausalConv3d( dim, dim * 2, (3, 1, 1), padding=(1, 0, 0)) elif mode == "downsample2d": self.resample = nn.Sequential( nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))) elif mode == "downsample3d": self.resample = nn.Sequential( nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))) self.time_conv = CausalConv3d( dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0)) else: self.resample = nn.Identity() def forward(self, x, feat_cache=None, feat_idx=[0]): b, c, t, h, w = x.size() if self.mode == "upsample3d": if feat_cache is not None: idx = feat_idx[0] if feat_cache[idx] is None: feat_cache[idx] = "Rep" feat_idx[0] += 1 else: cache_x = x[:, :, -CACHE_T:, :, :].clone() if (cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep"): # cache last frame of last two chunk cache_x = torch.cat( [ feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( cache_x.device), cache_x, ], dim=2, ) if (cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep"): cache_x = torch.cat( [ torch.zeros_like(cache_x).to(cache_x.device), cache_x ], dim=2, ) if feat_cache[idx] == "Rep": x = self.time_conv(x) else: x = self.time_conv(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 x = x.reshape(b, 2, c, t, h, w) x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3) x = x.reshape(b, c, t * 2, h, w) t = x.shape[2] x = rearrange(x, "b c t h w -> (b t) c h w") x = self.resample(x) x = rearrange(x, "(b t) c h w -> b c t h w", t=t) if self.mode == "downsample3d": if feat_cache is not None: idx = feat_idx[0] if feat_cache[idx] is None: feat_cache[idx] = x.clone() feat_idx[0] += 1 else: cache_x = x[:, :, -1:, :, :].clone() x = self.time_conv( torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2)) feat_cache[idx] = cache_x feat_idx[0] += 1 return x def init_weight(self, conv): conv_weight = conv.weight.detach().clone() nn.init.zeros_(conv_weight) c1, c2, t, h, w = conv_weight.size() one_matrix = torch.eye(c1, c2) init_matrix = one_matrix nn.init.zeros_(conv_weight) conv_weight.data[:, :, 1, 0, 0] = init_matrix # * 0.5 conv.weight = nn.Parameter(conv_weight) nn.init.zeros_(conv.bias.data) def init_weight2(self, conv): conv_weight = conv.weight.data.detach().clone() nn.init.zeros_(conv_weight) c1, c2, t, h, w = conv_weight.size() init_matrix = torch.eye(c1 // 2, c2) conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix conv.weight = nn.Parameter(conv_weight) nn.init.zeros_(conv.bias.data) class ResidualBlock(nn.Module): def __init__(self, in_dim, out_dim, dropout=0.0): super().__init__() self.in_dim = in_dim self.out_dim = out_dim # layers self.residual = nn.Sequential( RMS_norm(in_dim, images=False), nn.SiLU(), CausalConv3d(in_dim, out_dim, 3, padding=1), RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout), CausalConv3d(out_dim, out_dim, 3, padding=1), ) self.shortcut = ( CausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()) def forward(self, x, feat_cache=None, feat_idx=[0]): h = self.shortcut(x) for layer in self.residual: if isinstance(layer, CausalConv3d) and feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: # cache last frame of last two chunk cache_x = torch.cat( [ feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( cache_x.device), cache_x, ], dim=2, ) x = layer(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = layer(x) return x + h class AttentionBlock(nn.Module): """ Causal self-attention with a single head. """ def __init__(self, dim): super().__init__() self.dim = dim # layers self.norm = RMS_norm(dim) self.to_qkv = nn.Conv2d(dim, dim * 3, 1) self.proj = nn.Conv2d(dim, dim, 1) # zero out the last layer params nn.init.zeros_(self.proj.weight) def forward(self, x): identity = x b, c, t, h, w = x.size() x = rearrange(x, "b c t h w -> (b t) c h w") x = self.norm(x) # compute query, key, value q, k, v = ( self.to_qkv(x).reshape(b * t, 1, c * 3, -1).permute(0, 1, 3, 2).contiguous().chunk(3, dim=-1)) # apply attention x = F.scaled_dot_product_attention( q, k, v, ) x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w) # output x = self.proj(x) x = rearrange(x, "(b t) c h w-> b c t h w", t=t) return x + identity def patchify(x, patch_size): if patch_size == 1: return x if x.dim() == 4: x = rearrange( x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size, r=patch_size) elif x.dim() == 5: x = rearrange( x, "b c f (h q) (w r) -> b (c r q) f h w", q=patch_size, r=patch_size, ) else: raise ValueError(f"Invalid input shape: {x.shape}") return x def unpatchify(x, patch_size): if patch_size == 1: return x if x.dim() == 4: x = rearrange( x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size, r=patch_size) elif x.dim() == 5: x = rearrange( x, "b (c r q) f h w -> b c f (h q) (w r)", q=patch_size, r=patch_size, ) return x class AvgDown3D(nn.Module): def __init__( self, in_channels, out_channels, factor_t, factor_s=1, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.factor_t = factor_t self.factor_s = factor_s self.factor = self.factor_t * self.factor_s * self.factor_s assert in_channels * self.factor % out_channels == 0 self.group_size = in_channels * self.factor // out_channels def forward(self, x: torch.Tensor) -> torch.Tensor: pad_t = (self.factor_t - x.shape[2] % self.factor_t) % self.factor_t pad = (0, 0, 0, 0, pad_t, 0) x = F.pad(x, pad) B, C, T, H, W = x.shape x = x.view( B, C, T // self.factor_t, self.factor_t, H // self.factor_s, self.factor_s, W // self.factor_s, self.factor_s, ) x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous() x = x.view( B, C * self.factor, T // self.factor_t, H // self.factor_s, W // self.factor_s, ) x = x.view( B, self.out_channels, self.group_size, T // self.factor_t, H // self.factor_s, W // self.factor_s, ) x = x.mean(dim=2) return x class DupUp3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, factor_t, factor_s=1, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.factor_t = factor_t self.factor_s = factor_s self.factor = self.factor_t * self.factor_s * self.factor_s assert out_channels * self.factor % in_channels == 0 self.repeats = out_channels * self.factor // in_channels def forward(self, x: torch.Tensor, first_chunk=False) -> torch.Tensor: x = x.repeat_interleave(self.repeats, dim=1) x = x.view( x.size(0), self.out_channels, self.factor_t, self.factor_s, self.factor_s, x.size(2), x.size(3), x.size(4), ) x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous() x = x.view( x.size(0), self.out_channels, x.size(2) * self.factor_t, x.size(4) * self.factor_s, x.size(6) * self.factor_s, ) if first_chunk: x = x[:, :, self.factor_t - 1:, :, :] return x class Down_ResidualBlock(nn.Module): def __init__(self, in_dim, out_dim, dropout, mult, temperal_downsample=False, down_flag=False): super().__init__() # Shortcut path with downsample self.avg_shortcut = AvgDown3D( in_dim, out_dim, factor_t=2 if temperal_downsample else 1, factor_s=2 if down_flag else 1, ) # Main path with residual blocks and downsample downsamples = [] for _ in range(mult): downsamples.append(ResidualBlock(in_dim, out_dim, dropout)) in_dim = out_dim # Add the final downsample block if down_flag: mode = "downsample3d" if temperal_downsample else "downsample2d" downsamples.append(Resample(out_dim, mode=mode)) self.downsamples = nn.Sequential(*downsamples) def forward(self, x, feat_cache=None, feat_idx=[0]): x_copy = x.clone() for module in self.downsamples: x = module(x, feat_cache, feat_idx) return x + self.avg_shortcut(x_copy) class Up_ResidualBlock(nn.Module): def __init__(self, in_dim, out_dim, dropout, mult, temperal_upsample=False, up_flag=False): super().__init__() # Shortcut path with upsample if up_flag: self.avg_shortcut = DupUp3D( in_dim, out_dim, factor_t=2 if temperal_upsample else 1, factor_s=2 if up_flag else 1, ) else: self.avg_shortcut = None # Main path with residual blocks and upsample upsamples = [] for _ in range(mult): upsamples.append(ResidualBlock(in_dim, out_dim, dropout)) in_dim = out_dim # Add the final upsample block if up_flag: mode = "upsample3d" if temperal_upsample else "upsample2d" upsamples.append(Resample(out_dim, mode=mode)) self.upsamples = nn.Sequential(*upsamples) def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False): x_main = x.clone() for module in self.upsamples: x_main = module(x_main, feat_cache, feat_idx) if self.avg_shortcut is not None: x_shortcut = self.avg_shortcut(x, first_chunk) return x_main + x_shortcut else: return x_main class Encoder3d(nn.Module): def __init__( self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_downsample=[True, True, False], dropout=0.0, ): super().__init__() self.dim = dim self.z_dim = z_dim self.dim_mult = dim_mult self.num_res_blocks = num_res_blocks self.attn_scales = attn_scales self.temperal_downsample = temperal_downsample # dimensions dims = [dim * u for u in [1] + dim_mult] scale = 1.0 # init block self.conv1 = CausalConv3d(12, dims[0], 3, padding=1) # downsample blocks downsamples = [] for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): t_down_flag = ( temperal_downsample[i] if i < len(temperal_downsample) else False) downsamples.append( Down_ResidualBlock( in_dim=in_dim, out_dim=out_dim, dropout=dropout, mult=num_res_blocks, temperal_downsample=t_down_flag, down_flag=i != len(dim_mult) - 1, )) scale /= 2.0 self.downsamples = nn.Sequential(*downsamples) # middle blocks self.middle = nn.Sequential( ResidualBlock(out_dim, out_dim, dropout), AttentionBlock(out_dim), ResidualBlock(out_dim, out_dim, dropout), ) # # output blocks self.head = nn.Sequential( RMS_norm(out_dim, images=False), nn.SiLU(), CausalConv3d(out_dim, z_dim, 3, padding=1), ) def forward(self, x, feat_cache=None, feat_idx=[0]): if feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat( [ feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( cache_x.device), cache_x, ], dim=2, ) x = self.conv1(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = self.conv1(x) ## downsamples for layer in self.downsamples: if feat_cache is not None: x = layer(x, feat_cache, feat_idx) else: x = layer(x) ## middle for layer in self.middle: if isinstance(layer, ResidualBlock) and feat_cache is not None: x = layer(x, feat_cache, feat_idx) else: x = layer(x) ## head for layer in self.head: if isinstance(layer, CausalConv3d) and feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat( [ feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( cache_x.device), cache_x, ], dim=2, ) x = layer(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = layer(x) return x class Decoder3d(nn.Module): def __init__( self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_upsample=[False, True, True], dropout=0.0, ): super().__init__() self.dim = dim self.z_dim = z_dim self.dim_mult = dim_mult self.num_res_blocks = num_res_blocks self.attn_scales = attn_scales self.temperal_upsample = temperal_upsample # dimensions dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] scale = 1.0 / 2**(len(dim_mult) - 2) # init block self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1) # middle blocks self.middle = nn.Sequential( ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]), ResidualBlock(dims[0], dims[0], dropout), ) # upsample blocks upsamples = [] for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): t_up_flag = temperal_upsample[i] if i < len( temperal_upsample) else False upsamples.append( Up_ResidualBlock( in_dim=in_dim, out_dim=out_dim, dropout=dropout, mult=num_res_blocks + 1, temperal_upsample=t_up_flag, up_flag=i != len(dim_mult) - 1, )) self.upsamples = nn.Sequential(*upsamples) # output blocks self.head = nn.Sequential( RMS_norm(out_dim, images=False), nn.SiLU(), CausalConv3d(out_dim, 12, 3, padding=1), ) def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False): if feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat( [ feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( cache_x.device), cache_x, ], dim=2, ) x = self.conv1(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = self.conv1(x) for layer in self.middle: if isinstance(layer, ResidualBlock) and feat_cache is not None: x = layer(x, feat_cache, feat_idx) else: x = layer(x) ## upsamples for layer in self.upsamples: if feat_cache is not None: x = layer(x, feat_cache, feat_idx, first_chunk) else: x = layer(x) ## head for layer in self.head: if isinstance(layer, CausalConv3d) and feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat( [ feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( cache_x.device), cache_x, ], dim=2, ) x = layer(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = layer(x) return x def count_conv3d(model): count = 0 for m in model.modules(): if isinstance(m, CausalConv3d): count += 1 return count class WanVAE_(nn.Module): _offload_hooks = ['encode', 'decode'] def __init__( self, dim=160, dec_dim=256, z_dim=16, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_downsample=[True, True, False], dropout=0.0, ): super().__init__() self.dim = dim self.z_dim = z_dim self.dim_mult = dim_mult self.num_res_blocks = num_res_blocks self.attn_scales = attn_scales self.temperal_downsample = temperal_downsample self.temperal_upsample = temperal_downsample[::-1] # modules self.encoder = Encoder3d( dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout, ) self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1) self.conv2 = CausalConv3d(z_dim, z_dim, 1) self.decoder = Decoder3d( dec_dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout, ) def forward(self, x, scale=[0, 1]): mu = self.encode(x, scale) x_recon = self.decode(mu, scale) return x_recon, mu def encode(self, x, scale, any_end_frame = False): self.clear_cache() x = patchify(x, patch_size=2) t = x.shape[2] iter_ = 1 + (t - 1) // 4 for i in range(iter_): self._enc_conv_idx = [0] if i == 0: out = self.encoder( x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx, ) else: out_ = self.encoder( x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx, ) out = torch.cat([out, out_], 2) mu, log_var = self.conv1(out).chunk(2, dim=1) if isinstance(scale[0], torch.Tensor): mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view( 1, self.z_dim, 1, 1, 1) else: mu = (mu - scale[0]) * scale[1] self.clear_cache() return mu def decode(self, z, scale,any_end_frame = False): self.clear_cache() if isinstance(scale[0], torch.Tensor): z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view( 1, self.z_dim, 1, 1, 1) else: z = z / scale[1] + scale[0] iter_ = z.shape[2] x = self.conv2(z) for i in range(iter_): self._conv_idx = [0] if i == 0: out = self.decoder( x[:, :, i:i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx, first_chunk=True, ) else: out_ = self.decoder( x[:, :, i:i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx, ) out = torch.cat([out, out_], 2) out = unpatchify(out, patch_size=2) self.clear_cache() return out def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[-2], b.shape[-2], blend_extent) for y in range(blend_extent): b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent) return b def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[-1], b.shape[-1], blend_extent) for x in range(blend_extent): b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent) return b def spatial_tiled_decode(self, z, scale, tile_size, any_end_frame= False): tile_sample_min_size = tile_size tile_latent_min_size = int(tile_sample_min_size / 16) tile_overlap_factor = 0.25 # z: [b,c,t,h,w] if isinstance(scale[0], torch.Tensor): z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view( 1, self.z_dim, 1, 1, 1) else: z = z / scale[1] + scale[0] overlap_size = int(tile_latent_min_size * (1 - tile_overlap_factor)) #8 0.75 blend_extent = int(tile_sample_min_size * tile_overlap_factor) #256 0.25 row_limit = tile_sample_min_size - blend_extent # Split z into overlapping tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in range(0, z.shape[-2], overlap_size): row = [] for j in range(0, z.shape[-1], overlap_size): tile = z[:, :, :, i: i + tile_latent_min_size, j: j + tile_latent_min_size] decoded = self.decode(tile, scale, any_end_frame= any_end_frame) row.append(decoded) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent) result_row.append(tile[:, :, :, :row_limit, :row_limit]) result_rows.append(torch.cat(result_row, dim=-1)) return torch.cat(result_rows, dim=-2) def spatial_tiled_encode(self, x, scale, tile_size, any_end_frame = False) : tile_sample_min_size = tile_size tile_latent_min_size = int(tile_sample_min_size / 16) tile_overlap_factor = 0.25 overlap_size = int(tile_sample_min_size * (1 - tile_overlap_factor)) blend_extent = int(tile_latent_min_size * tile_overlap_factor) row_limit = tile_latent_min_size - blend_extent # Split video into tiles and encode them separately. rows = [] for i in range(0, x.shape[-2], overlap_size): row = [] for j in range(0, x.shape[-1], overlap_size): tile = x[:, :, :, i: i + tile_sample_min_size, j: j + tile_sample_min_size] tile = self.encode(tile, scale, any_end_frame= any_end_frame) row.append(tile) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent) result_row.append(tile[:, :, :, :row_limit, :row_limit]) result_rows.append(torch.cat(result_row, dim=-1)) mu = torch.cat(result_rows, dim=-2) if isinstance(scale[0], torch.Tensor): mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view( 1, self.z_dim, 1, 1, 1) else: mu = (mu - scale[0]) * scale[1] return mu def reparameterize(self, mu, log_var): std = torch.exp(0.5 * log_var) eps = torch.randn_like(std) return eps * std + mu def sample(self, imgs, deterministic=False): mu, log_var = self.encode(imgs) if deterministic: return mu std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0)) return mu + std * torch.randn_like(std) def clear_cache(self): self._conv_num = count_conv3d(self.decoder) self._conv_idx = [0] self._feat_map = [None] * self._conv_num # cache encode self._enc_conv_num = count_conv3d(self.encoder) self._enc_conv_idx = [0] self._enc_feat_map = [None] * self._enc_conv_num def _video_vae(pretrained_path=None, z_dim=16, dim=160, device="cpu", **kwargs): # params cfg = dict( dim=dim, z_dim=z_dim, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_downsample=[True, True, True], dropout=0.0, ) cfg.update(**kwargs) # init model with torch.device("meta"): model = WanVAE_(**cfg) from mmgp import offload # load checkpoint logging.info(f"loading {pretrained_path}") # model.load_state_dict( # torch.load(pretrained_path, map_location=device), assign=True) # offload.save_model(model, "Wan_vae_2_2.safetensors") # model.to(torch.bfloat16) # offload.save_model(model, "Wan_vae_2_2_bf16.safetensors") offload.load_model_data(model, pretrained_path.replace(".pth", ".safetensors"), writable_tensors= False) return model class Wan2_2_VAE: def __init__( self, z_dim=48, c_dim=160, vae_pth=None, dim_mult=[1, 2, 4, 4], temperal_downsample=[False, True, True], dtype=torch.float, device="cuda", ): self.dtype = dtype self.device = device mean = torch.tensor( [ -0.2289, -0.0052, -0.1323, -0.2339, -0.2799, 0.0174, 0.1838, 0.1557, -0.1382, 0.0542, 0.2813, 0.0891, 0.1570, -0.0098, 0.0375, -0.1825, -0.2246, -0.1207, -0.0698, 0.5109, 0.2665, -0.2108, -0.2158, 0.2502, -0.2055, -0.0322, 0.1109, 0.1567, -0.0729, 0.0899, -0.2799, -0.1230, -0.0313, -0.1649, 0.0117, 0.0723, -0.2839, -0.2083, -0.0520, 0.3748, 0.0152, 0.1957, 0.1433, -0.2944, 0.3573, -0.0548, -0.1681, -0.0667, ], dtype=dtype, device=device, ) std = torch.tensor( [ 0.4765, 1.0364, 0.4514, 1.1677, 0.5313, 0.4990, 0.4818, 0.5013, 0.8158, 1.0344, 0.5894, 1.0901, 0.6885, 0.6165, 0.8454, 0.4978, 0.5759, 0.3523, 0.7135, 0.6804, 0.5833, 1.4146, 0.8986, 0.5659, 0.7069, 0.5338, 0.4889, 0.4917, 0.4069, 0.4999, 0.6866, 0.4093, 0.5709, 0.6065, 0.6415, 0.4944, 0.5726, 1.2042, 0.5458, 1.6887, 0.3971, 1.0600, 0.3943, 0.5537, 0.5444, 0.4089, 0.7468, 0.7744, ], dtype=dtype, device=device, ) self.scale = [mean, 1.0 / std] # init model self.model = ( _video_vae( pretrained_path=vae_pth, z_dim=z_dim, dim=c_dim, dim_mult=dim_mult, temperal_downsample=temperal_downsample, ).eval().requires_grad_(False).to(device)) self.model._model_dtype = dtype @staticmethod def get_VAE_tile_size(vae_config, device_mem_capacity, mixed_precision): # VAE Tiling if vae_config == 0: if mixed_precision: device_mem_capacity = device_mem_capacity / 2 if device_mem_capacity >= 24000: use_vae_config = 1 elif device_mem_capacity >= 8000: use_vae_config = 2 else: use_vae_config = 3 else: use_vae_config = vae_config if use_vae_config == 1: VAE_tile_size = 0 elif use_vae_config == 2: VAE_tile_size = 256 else: VAE_tile_size = 128 return VAE_tile_size def encode(self, videos, tile_size = 256, any_end_frame = False): """ videos: A list of videos each with shape [C, T, H, W]. """ scale = [u.to(device = self.device) for u in self.scale] if tile_size > 0 and False: return [ self.model.spatial_tiled_encode(u.to(self.dtype).unsqueeze(0), scale, tile_size, any_end_frame=any_end_frame).float().squeeze(0) for u in videos ] else: return [ self.model.encode(u.to(self.dtype).unsqueeze(0), scale, any_end_frame=any_end_frame).float().squeeze(0) for u in videos ] def decode(self, zs, tile_size, any_end_frame = False): scale = [u.to(device = self.device) for u in self.scale] if tile_size > 0 and False: return [ self.model.spatial_tiled_decode(u.to(self.dtype).unsqueeze(0), scale, tile_size, any_end_frame=any_end_frame).clamp_(-1, 1).float().squeeze(0) for u in zs ] else: return [ self.model.decode(u.to(self.dtype).unsqueeze(0), scale, any_end_frame=any_end_frame).clamp_(-1, 1).float().squeeze(0) for u in zs ] # def encode(self, videos, VAE_tile_size = 0, any_end_frame = False ): # with amp.autocast(dtype=self.dtype): # return [ # self.model.encode(u.unsqueeze(0), # self.scale).float().squeeze(0) # for u in videos # ] # def decode(self, zs, VAE_tile_size = 0, any_end_frame = False): # with amp.autocast(dtype=self.dtype): # return [ # self.model.decode(u.unsqueeze(0), # self.scale).float().clamp_(-1, # 1).squeeze(0) # for u in zs # ]