# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import logging from mmgp import offload import torch import torch.cuda.amp as amp import torch.nn as nn import torch.nn.functional as F from einops import rearrange __all__ = [ 'WanVAE', ] CACHE_T = 2 class CausalConv3d(nn.Conv3d): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._padding = (self.padding[2], self.padding[2], self.padding[1], self.padding[1], 2 * self.padding[0], 0) self.padding = (0, 0, 0) def forward(self, x, cache_x=None): padding = list(self._padding) if cache_x is not None and self._padding[4] > 0: cache_x = cache_x.to(x.device) x = torch.cat([cache_x, x], dim=2) padding[4] -= cache_x.shape[2] cache_x = None x = F.pad(x, padding) x = super().forward(x) return x class RMS_norm(nn.Module): def __init__(self, dim, channel_first=True, images=True, bias=False): super().__init__() broadcastable_dims = (1, 1, 1) if not images else (1, 1) shape = (dim, *broadcastable_dims) if channel_first else (dim,) self.channel_first = channel_first self.scale = dim**0.5 self.gamma = nn.Parameter(torch.ones(shape)) self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0. def forward(self, x): x = F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias return x class Upsample(nn.Upsample): def forward(self, x): return super().forward(x.float()).type_as(x) class Resample(nn.Module): def __init__(self, dim, mode): assert mode in ('none', 'upsample2d', 'upsample3d', 'downsample2d', 'downsample3d') super().__init__() self.dim = dim self.mode = mode if mode == 'upsample2d': self.resample = nn.Sequential( Upsample(scale_factor=(2., 2.), mode='nearest-exact'), nn.Conv2d(dim, dim // 2, 3, padding=1)) elif mode == 'upsample3d': self.resample = nn.Sequential( Upsample(scale_factor=(2., 2.), mode='nearest-exact'), nn.Conv2d(dim, dim // 2, 3, padding=1)) self.time_conv = CausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0)) elif mode == 'downsample2d': self.resample = nn.Sequential( nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))) elif mode == 'downsample3d': self.resample = nn.Sequential( nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2))) self.time_conv = CausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0)) else: self.resample = nn.Identity() def forward(self, x, feat_cache=None, feat_idx=[0]): b, c, t, h, w = x.size() if self.mode == 'upsample3d': if feat_cache is not None: idx = feat_idx[0] if feat_cache[idx] is None: feat_cache[idx] = 'Rep' feat_idx[0] += 1 else: clone = True cache_x = x[:, :, -CACHE_T:, :, :] if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != 'Rep': clone = False cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2) if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == 'Rep': clone = False cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2) if clone: cache_x = cache_x.clone() if feat_cache[idx] == 'Rep': x = self.time_conv(x) else: x = self.time_conv(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 x = x.reshape(b, 2, c, t, h, w) x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3) x = x.reshape(b, c, t * 2, h, w) t = x.shape[2] x = rearrange(x, 'b c t h w -> (b t) c h w') x = self.resample(x) x = rearrange(x, '(b t) c h w -> b c t h w', t=t) if self.mode == 'downsample3d': if feat_cache is not None: idx = feat_idx[0] if feat_cache[idx] is None: feat_cache[idx] = x feat_idx[0] += 1 else: cache_x = x[:, :, -1:, :, :].clone() x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2)) feat_cache[idx] = cache_x feat_idx[0] += 1 return x def init_weight(self, conv): conv_weight = conv.weight nn.init.zeros_(conv_weight) c1, c2, t, h, w = conv_weight.size() one_matrix = torch.eye(c1, c2) nn.init.zeros_(conv_weight) conv_weight.data[:, :, 1, 0, 0] = one_matrix conv.weight.data.copy_(conv_weight) nn.init.zeros_(conv.bias.data) def init_weight2(self, conv): conv_weight = conv.weight.data nn.init.zeros_(conv_weight) c1, c2, t, h, w = conv_weight.size() init_matrix = torch.eye(c1 // 2, c2) conv_weight[:c1 // 2, :, -1, 0, 0] = init_matrix conv_weight[c1 // 2:, :, -1, 0, 0] = init_matrix conv.weight.data.copy_(conv_weight) nn.init.zeros_(conv.bias.data) class ResidualBlock(nn.Module): def __init__(self, in_dim, out_dim, dropout=0.0): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.residual = nn.Sequential( RMS_norm(in_dim, images=False), nn.SiLU(), CausalConv3d(in_dim, out_dim, 3, padding=1), RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout), CausalConv3d(out_dim, out_dim, 3, padding=1)) self.shortcut = CausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity() def forward(self, x, feat_cache=None, feat_idx=[0]): h = self.shortcut(x) for layer in self.residual: if isinstance(layer, CausalConv3d) and feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(x.device), cache_x], dim=2) x = layer(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = layer(x) return x + h class AttentionBlock(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim self.norm = RMS_norm(dim) self.to_qkv = nn.Conv2d(dim, dim * 3, 1) self.proj = nn.Conv2d(dim, dim, 1) nn.init.zeros_(self.proj.weight) def forward(self, x): identity = x b, c, t, h, w = x.size() x = rearrange(x, 'b c t h w -> (b t) c h w') x = self.norm(x) q, k, v = self.to_qkv(x).reshape(b * t, 1, c * 3, -1).permute(0, 1, 3, 2).contiguous().chunk(3, dim=-1) x = F.scaled_dot_product_attention(q, k, v) x = x.squeeze(1).permute(0, 2, 1).reshape(b * t, c, h, w) x = self.proj(x) x = rearrange(x, '(b t) c h w -> b c t h w', t=t) return x + identity class Encoder3d(nn.Module): def __init__(self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_downsample=[True, True, False], dropout=0.0): super().__init__() self.dim = dim self.z_dim = z_dim self.dim_mult = dim_mult self.num_res_blocks = num_res_blocks self.attn_scales = attn_scales self.temperal_downsample = temperal_downsample dims = [dim * u for u in [1] + dim_mult] scale = 1.0 self.conv1 = CausalConv3d(3, dims[0], 3, padding=1) downsamples = [] for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): for _ in range(num_res_blocks): downsamples.append(ResidualBlock(in_dim, out_dim, dropout)) if scale in attn_scales: downsamples.append(AttentionBlock(out_dim)) in_dim = out_dim if i != len(dim_mult) - 1: mode = 'downsample3d' if temperal_downsample[i] else 'downsample2d' downsamples.append(Resample(out_dim, mode=mode)) scale /= 2.0 self.downsamples = nn.Sequential(*downsamples) self.middle = nn.Sequential( ResidualBlock(out_dim, out_dim, dropout), AttentionBlock(out_dim), ResidualBlock(out_dim, out_dim, dropout)) self.head = nn.Sequential( RMS_norm(out_dim, images=False), nn.SiLU(), CausalConv3d(out_dim, z_dim, 3, padding=1)) def forward(self, x, feat_cache=None, feat_idx=[0]): if feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(x.device), cache_x], dim=2) x = self.conv1(x, feat_cache[idx]) feat_cache[idx] = cache_x del cache_x feat_idx[0] += 1 else: x = self.conv1(x) for layer in self.downsamples: if feat_cache is not None: x = layer(x, feat_cache, feat_idx) else: x = layer(x) for layer in self.middle: if isinstance(layer, ResidualBlock) and feat_cache is not None: x = layer(x, feat_cache, feat_idx) else: x = layer(x) for layer in self.head: if isinstance(layer, CausalConv3d) and feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(x.device), cache_x], dim=2) x = layer(x, feat_cache[idx]) feat_cache[idx] = cache_x del cache_x feat_idx[0] += 1 else: x = layer(x) return x class Decoder3d(nn.Module): def __init__(self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_upsample=[False, True, True], dropout=0.0): super().__init__() self.dim = dim self.z_dim = z_dim self.dim_mult = dim_mult self.num_res_blocks = num_res_blocks self.attn_scales = attn_scales self.temperal_upsample = temperal_upsample dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] scale = 1.0 / 2**(len(dim_mult) - 2) self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1) self.middle = nn.Sequential( ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]), ResidualBlock(dims[0], dims[0], dropout)) upsamples = [] for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): if i == 1 or i == 2 or i == 3: in_dim = in_dim // 2 for _ in range(num_res_blocks + 1): upsamples.append(ResidualBlock(in_dim, out_dim, dropout)) if scale in attn_scales: upsamples.append(AttentionBlock(out_dim)) in_dim = out_dim if i != len(dim_mult) - 1: mode = 'upsample3d' if temperal_upsample[i] else 'upsample2d' upsamples.append(Resample(out_dim, mode=mode)) scale *= 2.0 self.upsamples = nn.Sequential(*upsamples) self.head = nn.Sequential( RMS_norm(out_dim, images=False), nn.SiLU(), CausalConv3d(out_dim, 3, 3, padding=1)) def forward(self, x, feat_cache=None, feat_idx=[0]): if feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(x.device), cache_x], dim=2) x = self.conv1(x, feat_cache[idx]) feat_cache[idx] = cache_x del cache_x feat_idx[0] += 1 else: x = self.conv1(x) for layer in self.middle: if isinstance(layer, ResidualBlock) and feat_cache is not None: x = layer(x, feat_cache, feat_idx) else: x = layer(x) for layer in self.upsamples: if feat_cache is not None: x = layer(x, feat_cache, feat_idx) else: x = layer(x) for layer in self.head: if isinstance(layer, CausalConv3d) and feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(x.device), cache_x], dim=2) x = layer(x, feat_cache[idx]) feat_cache[idx] = cache_x del cache_x feat_idx[0] += 1 else: x = layer(x) return x def count_conv3d(model): count = 0 for m in model.modules(): if isinstance(m, CausalConv3d): count += 1 return count class WanVAE_(nn.Module): def __init__(self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_downsample=[True, True, False], dropout=0.0): super().__init__() self.dim = dim self.z_dim = z_dim self.dim_mult = dim_mult self.num_res_blocks = num_res_blocks self.attn_scales = attn_scales self.temperal_downsample = temperal_downsample self.temperal_upsample = temperal_downsample[::-1] self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout) self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1) self.conv2 = CausalConv3d(z_dim, z_dim, 1) self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout) def forward(self, x): mu, log_var = self.encode(x) z = self.reparameterize(mu, log_var) x_recon = self.decode(z) return x_recon, mu, log_var def encode(self, x, scale=None): self.clear_cache() t = x.shape[2] iter_ = 1 + (t - 1) // 4 for i in range(iter_): self._enc_conv_idx = [0] if i == 0: out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx) else: out_ = self.encoder(x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx) out = torch.cat([out, out_], 2) mu, log_var = self.conv1(out).chunk(2, dim=1) if scale is not None: if isinstance(scale[0], torch.Tensor): mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1) else: mu = (mu - scale[0]) * scale[1] self.clear_cache() return mu def decode(self, z, scale=None): self.clear_cache() if scale is not None: if isinstance(scale[0], torch.Tensor): z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1) else: z = z / scale[1] + scale[0] iter_ = z.shape[2] x = self.conv2(z) for i in range(iter_): self._conv_idx = [0] if i == 0: out = self.decoder(x[:, :, i:i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx) else: out_ = self.decoder(x[:, :, i:i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx) out = torch.cat([out, out_], 2) self.clear_cache() return out def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[-2], b.shape[-2], blend_extent) for y in range(blend_extent): b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent) return b def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[-1], b.shape[-1], blend_extent) for x in range(blend_extent): b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent) return b def spatial_tiled_decode(self, z, scale, tile_size): tile_sample_min_size = tile_size tile_latent_min_size = int(tile_sample_min_size / 8) tile_overlap_factor = 0.25 if isinstance(scale[0], torch.Tensor): z = z / scale[1].view(1, self.z_dim, 1, 1, 1) + scale[0].view(1, self.z_dim, 1, 1, 1) else: z = z / scale[1] + scale[0] overlap_size = int(tile_latent_min_size * (1 - tile_overlap_factor)) blend_extent = int(tile_sample_min_size * tile_overlap_factor) row_limit = tile_sample_min_size - blend_extent rows = [] for i in range(0, z.shape[-2], overlap_size): row = [] for j in range(0, z.shape[-1], overlap_size): tile = z[:, :, :, i: i + tile_latent_min_size, j: j + tile_latent_min_size] decoded = self.decode(tile) row.append(decoded) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent) result_row.append(tile[:, :, :, :row_limit, :row_limit]) result_rows.append(torch.cat(result_row, dim=-1)) return torch.cat(result_rows, dim=-2) def spatial_tiled_encode(self, x, scale, tile_size): tile_sample_min_size = tile_size tile_latent_min_size = int(tile_sample_min_size / 8) tile_overlap_factor = 0.25 overlap_size = int(tile_sample_min_size * (1 - tile_overlap_factor)) blend_extent = int(tile_latent_min_size * tile_overlap_factor) row_limit = tile_latent_min_size - blend_extent rows = [] for i in range(0, x.shape[-2], overlap_size): row = [] for j in range(0, x.shape[-1], overlap_size): tile = x[:, :, :, i: i + tile_sample_min_size, j: j + tile_sample_min_size] tile = self.encode(tile) row.append(tile) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent) result_row.append(tile[:, :, :, :row_limit, :row_limit]) result_rows.append(torch.cat(result_row, dim=-1)) mu = torch.cat(result_rows, dim=-2) if isinstance(scale[0], torch.Tensor): mu = (mu - scale[0].view(1, self.z_dim, 1, 1, 1)) * scale[1].view(1, self.z_dim, 1, 1, 1) else: mu = (mu - scale[0]) * scale[1] return mu def reparameterize(self, mu, log_var): std = torch.exp(0.5 * log_var) eps = torch.randn_like(std) return eps * std + mu def sample(self, imgs, deterministic=False): mu, log_var = self.encode(imgs) if deterministic: return mu std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0)) return mu + std * torch.randn_like(std) def clear_cache(self): self._conv_num = count_conv3d(self.decoder) self._conv_idx = [0] self._feat_map = [None] * self._conv_num self._enc_conv_num = count_conv3d(self.encoder) self._enc_conv_idx = [0] self._enc_feat_map = [None] * self._enc_conv_num def _video_vae(pretrained_path=None, z_dim=None, device='cpu', **kwargs): cfg = dict(dim=96, z_dim=z_dim, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_downsample=[False, True, True], dropout=0.0) cfg.update(**kwargs) model = WanVAE_(**cfg) logging.info(f'loading {pretrained_path}') model.load_state_dict(torch.load(pretrained_path, map_location=device), assign=True) return model class WanVAE: def __init__(self, z_dim=16, vae_pth='cache/vae_step_411000.pth', dtype=torch.float, device="cuda"): self.dtype = dtype self.device = device mean = [-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508, 0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921] std = [2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743, 3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160] self.mean = torch.tensor(mean, dtype=dtype, device=device) self.std = torch.tensor(std, dtype=dtype, device=device) self.scale = [self.mean, 1.0 / self.std] self.model = _video_vae(pretrained_path=vae_pth, z_dim=z_dim, device=device) self.model = self.model.eval().requires_grad_(False).to(device) def encode(self, videos, tile_size=256): if tile_size > 0: return [self.model.spatial_tiled_encode(u.unsqueeze(0), self.scale, tile_size).float().squeeze(0) for u in videos] else: return [self.model.encode(u.unsqueeze(0), self.scale).float().squeeze(0) for u in videos] def decode(self, zs, tile_size): if tile_size > 0: return [self.model.spatial_tiled_decode(u.unsqueeze(0), self.scale, tile_size).float().clamp_(-1, 1).squeeze(0) for u in zs] else: return [self.model.decode(u.unsqueeze(0), self.scale).float().clamp_(-1, 1).squeeze(0) for u in zs]