import os
import time
import sys
import threading
import argparse
from mmgp import offload, safetensors2, profile_type
try:
import triton
except ImportError:
pass
from pathlib import Path
from datetime import datetime
import gradio as gr
import random
import json
import wan
from wan.configs import MAX_AREA_CONFIGS, WAN_CONFIGS, SUPPORTED_SIZES, VACE_SIZE_CONFIGS
from wan.utils.utils import cache_video
from wan.modules.attention import get_attention_modes, get_supported_attention_modes
import torch
import gc
import traceback
import math
import typing
import asyncio
import inspect
from wan.utils import prompt_parser
import base64
import io
from PIL import Image
import zipfile
import tempfile
import atexit
import shutil
import glob
from tqdm import tqdm
import requests
global_queue_ref = []
AUTOSAVE_FILENAME = "queue.zip"
PROMPT_VARS_MAX = 10
target_mmgp_version = "3.4.0"
from importlib.metadata import version
mmgp_version = version("mmgp")
if mmgp_version != target_mmgp_version:
print(f"Incorrect version of mmgp ({mmgp_version}), version {target_mmgp_version} is needed. Please upgrade with the command 'pip install -r requirements.txt'")
exit()
lock = threading.Lock()
current_task_id = None
task_id = 0
# progress_tracker = {}
# tracker_lock = threading.Lock()
# def download_ffmpeg():
# if os.name != 'nt': return
# exes = ['ffmpeg.exe', 'ffprobe.exe', 'ffplay.exe']
# if all(os.path.exists(e) for e in exes): return
# api_url = 'https://api.github.com/repos/GyanD/codexffmpeg/releases/latest'
# r = requests.get(api_url, headers={'Accept': 'application/vnd.github+json'})
# assets = r.json().get('assets', [])
# zip_asset = next((a for a in assets if 'essentials_build.zip' in a['name']), None)
# if not zip_asset: return
# zip_url = zip_asset['browser_download_url']
# zip_name = zip_asset['name']
# with requests.get(zip_url, stream=True) as resp:
# total = int(resp.headers.get('Content-Length', 0))
# with open(zip_name, 'wb') as f, tqdm(total=total, unit='B', unit_scale=True) as pbar:
# for chunk in resp.iter_content(chunk_size=8192):
# f.write(chunk)
# pbar.update(len(chunk))
# with zipfile.ZipFile(zip_name) as z:
# for f in z.namelist():
# if f.endswith(tuple(exes)) and '/bin/' in f:
# z.extract(f)
# os.rename(f, os.path.basename(f))
# os.remove(zip_name)
def format_time(seconds):
if seconds < 60:
return f"{seconds:.1f}s"
elif seconds < 3600:
minutes = seconds / 60
return f"{minutes:.1f}m"
else:
hours = int(seconds // 3600)
minutes = int((seconds % 3600) // 60)
return f"{hours}h {minutes}m"
def pil_to_base64_uri(pil_image, format="png", quality=75):
if pil_image is None:
return None
if isinstance(pil_image, str):
from wan.utils.utils import get_video_frame
pil_image = get_video_frame(pil_image, 0)
buffer = io.BytesIO()
try:
img_to_save = pil_image
if format.lower() == 'jpeg' and pil_image.mode == 'RGBA':
img_to_save = pil_image.convert('RGB')
elif format.lower() == 'png' and pil_image.mode not in ['RGB', 'RGBA', 'L', 'P']:
img_to_save = pil_image.convert('RGBA')
elif pil_image.mode == 'P':
img_to_save = pil_image.convert('RGBA' if 'transparency' in pil_image.info else 'RGB')
if format.lower() == 'jpeg':
img_to_save.save(buffer, format=format, quality=quality)
else:
img_to_save.save(buffer, format=format)
img_bytes = buffer.getvalue()
encoded_string = base64.b64encode(img_bytes).decode("utf-8")
return f"data:image/{format.lower()};base64,{encoded_string}"
except Exception as e:
print(f"Error converting PIL to base64: {e}")
return None
def process_prompt_and_add_tasks(state, model_choice):
if state.get("validate_success",0) != 1:
return
state["validate_success"] = 0
model_filename = state["model_filename"]
if model_choice != get_model_type(model_filename):
raise gr.Error("Webform can not be used as the App has been restarted since the form was displayed. Please refresh the page")
inputs = state.get(get_model_type(model_filename), None)
inputs["state"] = state
inputs.pop("lset_name")
if inputs == None:
gr.Warning("Internal state error: Could not retrieve inputs for the model.")
gen = get_gen_info(state)
queue = gen.get("queue", [])
return get_queue_table(queue)
prompt = inputs["prompt"]
if len(prompt) ==0:
gr.Info("Prompt cannot be empty.")
gen = get_gen_info(state)
queue = gen.get("queue", [])
return get_queue_table(queue)
prompt, errors = prompt_parser.process_template(prompt)
if len(errors) > 0:
gr.Info("Error processing prompt template: " + errors)
return
inputs["model_filename"] = model_filename
prompts = prompt.replace("\r", "").split("\n")
prompts = [prompt.strip() for prompt in prompts if len(prompt.strip())>0 and not prompt.startswith("#")]
if len(prompts) ==0:
gr.Info("Prompt cannot be empty.")
gen = get_gen_info(state)
queue = gen.get("queue", [])
return get_queue_table(queue)
resolution = inputs["resolution"]
width, height = resolution.split("x")
width, height = int(width), int(height)
if test_class_i2v(model_filename):
if "480p" in model_filename and not "Fun" in model_filename and width * height > 848*480:
gr.Info("You must use the 720P image to video model to generate videos with a resolution equivalent to 720P")
return
resolution = str(width) + "*" + str(height)
if resolution not in ['720*1280', '1280*720', '480*832', '832*480']:
gr.Info(f"Resolution {resolution} not supported by image 2 video")
return
if "1.3B" in model_filename and width * height > 848*480:
gr.Info("You must use the 14B model to generate videos with a resolution equivalent to 720P")
return
sliding_window_repeat = inputs["sliding_window_repeat"]
sliding_window = sliding_window_repeat > 0
if "recam" in model_filename:
video_source = inputs["video_source"]
if video_source == None:
gr.Info("You must provide a Source Video")
return
frames = get_resampled_video(video_source, 0, 81)
if len(frames)<81:
gr.Info("Recammaster source video should be at least 81 frames one the resampling at 16 fps has been done")
return
for single_prompt in prompts:
extra_inputs = {
"prompt" : single_prompt,
"video_source" : video_source,
}
inputs.update(extra_inputs)
add_video_task(**inputs)
elif "Vace" in model_filename:
video_prompt_type = inputs["video_prompt_type"]
image_refs = inputs["image_refs"]
video_guide = inputs["video_guide"]
video_mask = inputs["video_mask"]
if sliding_window:
if inputs["repeat_generation"]!=1:
gr.Info("Only one Video generated per Prompt is supported when Sliding windows is used")
return
if inputs["sliding_window_overlap"]>=inputs["video_length"] :
gr.Info("The number of frames of the Sliding Window Overlap must be less than the Number of Frames to Generate")
return
if "1.3B" in model_filename :
resolution_reformated = str(height) + "*" + str(width)
if not resolution_reformated in VACE_SIZE_CONFIGS:
res = (" and ").join(VACE_SIZE_CONFIGS.keys())
gr.Info(f"Video Resolution for Vace model is not supported. Only {res} resolutions are allowed.")
return
if "I" in video_prompt_type:
if image_refs == None:
gr.Info("You must provide at one Refererence Image")
return
else:
image_refs = None
if "V" in video_prompt_type:
if video_guide == None:
gr.Info("You must provide a Control Video")
return
else:
video_guide = None
if "M" in video_prompt_type:
if video_mask == None:
gr.Info("You must provide a Video Mask ")
return
else:
video_mask = None
if "O" in video_prompt_type :
keep_frames= inputs["keep_frames"]
video_length = inputs["video_length"]
if len(keep_frames) ==0:
gr.Info(f"Warning : you have asked to reuse all the frames of the control Video in the Alternate Video Ending it. Please make sure the number of frames of the control Video is lower than the total number of frames to generate otherwise it won't make a difference.")
# elif keep_frames >= video_length:
# gr.Info(f"The number of frames in the control Video to reuse ({keep_frames}) in Alternate Video Ending can not be bigger than the total number of frames ({video_length}) to generate.")
# return
elif "V" in video_prompt_type:
keep_frames= inputs["keep_frames"]
video_length = inputs["video_length"]
_, error = parse_keep_frames(keep_frames, video_length)
if len(error) > 0:
gr.Info(f"Invalid Keep Frames property: {error}")
return
if isinstance(image_refs, list):
image_refs = [ convert_image(tup[0]) for tup in image_refs ]
os.environ["U2NET_HOME"] = os.path.join(os.getcwd(), "ckpts", "rembg")
from wan.utils.utils import resize_and_remove_background
image_refs = resize_and_remove_background(image_refs, width, height, inputs["remove_background_image_ref"] ==1)
if sliding_window and len(prompts) > 0:
prompts = ["\n".join(prompts)]
for single_prompt in prompts:
extra_inputs = {
"prompt" : single_prompt,
"image_refs": image_refs,
"video_guide" : video_guide,
"video_mask" : video_mask ,
}
inputs.update(extra_inputs)
add_video_task(**inputs)
elif test_class_i2v(model_filename) :
image_prompt_type = inputs["image_prompt_type"]
image_start = inputs["image_start"]
image_end = inputs["image_end"]
if image_start == None or isinstance(image_start, list) and len(image_start) == 0:
return
if not "E" in image_prompt_type:
image_end = None
if isinstance(image_start, list):
image_start = [ convert_image(tup[0]) for tup in image_start ]
else:
image_start = [convert_image(image_start)]
if image_end != None:
if isinstance(image_end , list):
image_end = [ convert_image(tup[0]) for tup in image_end ]
else:
image_end = [convert_image(image_end) ]
if len(image_start) != len(image_end):
gr.Info("The number of start and end images should be the same ")
return
if inputs["multi_images_gen_type"] == 0:
new_prompts = []
new_image_start = []
new_image_end = []
for i in range(len(prompts) * len(image_start) ):
new_prompts.append( prompts[ i % len(prompts)] )
new_image_start.append(image_start[i // len(prompts)] )
if image_end != None:
new_image_end.append(image_end[i // len(prompts)] )
prompts = new_prompts
image_start = new_image_start
if image_end != None:
image_end = new_image_end
else:
if len(prompts) >= len(image_start):
if len(prompts) % len(image_start) != 0:
raise gr.Error("If there are more text prompts than input images the number of text prompts should be dividable by the number of images")
rep = len(prompts) // len(image_start)
new_image_start = []
new_image_end = []
for i, _ in enumerate(prompts):
new_image_start.append(image_start[i//rep] )
if image_end != None:
new_image_end.append(image_end[i//rep] )
image_start = new_image_start
if image_end != None:
image_end = new_image_end
else:
if len(image_start) % len(prompts) !=0:
raise gr.Error("If there are more input images than text prompts the number of images should be dividable by the number of text prompts")
rep = len(image_start) // len(prompts)
new_prompts = []
for i, _ in enumerate(image_start):
new_prompts.append( prompts[ i//rep] )
prompts = new_prompts
if image_start == None:
image_start = [None] * len(prompts)
if image_end == None:
image_end = [None] * len(prompts)
for single_prompt, start, end in zip(prompts, image_start, image_end) :
extra_inputs = {
"prompt" : single_prompt,
"image_start": start,
"image_end" : end,
}
inputs.update(extra_inputs)
add_video_task(**inputs)
else:
for single_prompt in prompts :
extra_inputs = {
"prompt" : single_prompt,
}
inputs.update(extra_inputs)
add_video_task(**inputs)
gen = get_gen_info(state)
gen["prompts_max"] = len(prompts) + gen.get("prompts_max",0)
state["validate_success"] = 1
queue= gen.get("queue", [])
return update_queue_data(queue)
def get_preview_images(inputs):
inputs_to_query = ["image_start", "image_end", "video_guide", "image_refs","video_mask", "video_source"]
start_image_data = None
end_image_data = None
for name in inputs_to_query:
image= inputs.get(name, None)
if image != None:
image= [image] if not isinstance(image, list) else image
if start_image_data == None:
start_image_data = image
else:
end_image_data = image
break
return start_image_data, end_image_data
def add_video_task(**inputs):
global task_id
state = inputs["state"]
gen = get_gen_info(state)
queue = gen["queue"]
task_id += 1
current_task_id = task_id
start_image_data, end_image_data = get_preview_images(inputs)
queue.append({
"id": current_task_id,
"params": inputs.copy(),
"repeats": inputs["repeat_generation"],
"length": inputs["video_length"],
"steps": inputs["num_inference_steps"],
"prompt": inputs["prompt"],
"start_image_data": start_image_data,
"end_image_data": end_image_data,
"start_image_data_base64": [pil_to_base64_uri(img, format="jpeg", quality=70) for img in start_image_data] if start_image_data != None else None,
"end_image_data_base64": [pil_to_base64_uri(img, format="jpeg", quality=70) for img in end_image_data] if end_image_data != None else None
})
return update_queue_data(queue)
def move_up(queue, selected_indices):
if not selected_indices or len(selected_indices) == 0:
return update_queue_data(queue)
idx = selected_indices[0]
if isinstance(idx, list):
idx = idx[0]
idx = int(idx)
with lock:
if idx > 0:
idx += 1
queue[idx], queue[idx-1] = queue[idx-1], queue[idx]
return update_queue_data(queue)
def move_down(queue, selected_indices):
if not selected_indices or len(selected_indices) == 0:
return update_queue_data(queue)
idx = selected_indices[0]
if isinstance(idx, list):
idx = idx[0]
idx = int(idx)
with lock:
idx += 1
if idx < len(queue)-1:
queue[idx], queue[idx+1] = queue[idx+1], queue[idx]
return update_queue_data(queue)
def remove_task(queue, selected_indices):
if not selected_indices or len(selected_indices) == 0:
return update_queue_data(queue)
idx = selected_indices[0]
if isinstance(idx, list):
idx = idx[0]
idx = int(idx) + 1
with lock:
if idx < len(queue):
if idx == 0:
wan_model._interrupt = True
del queue[idx]
return update_queue_data(queue)
def update_global_queue_ref(queue):
global global_queue_ref
with lock:
global_queue_ref = queue[:]
def save_queue_action(state):
gen = get_gen_info(state)
queue = gen.get("queue", [])
if not queue or len(queue) <=1 :
gr.Info("Queue is empty. Nothing to save.")
return ""
zip_buffer = io.BytesIO()
with tempfile.TemporaryDirectory() as tmpdir:
queue_manifest = []
file_paths_in_zip = {}
for task_index, task in enumerate(queue):
if task is None or not isinstance(task, dict) or task.get('id') is None: continue
params_copy = task.get('params', {}).copy()
task_id_s = task.get('id', f"task_{task_index}")
image_keys = ["image_start", "image_end", "image_refs"]
video_keys = ["video_guide", "video_mask", "video_source"]
for key in image_keys:
images_pil = params_copy.get(key)
if images_pil is None:
continue
is_originally_list = isinstance(images_pil, list)
if not is_originally_list:
images_pil = [images_pil]
image_filenames_for_json = []
for img_index, pil_image in enumerate(images_pil):
if not isinstance(pil_image, Image.Image):
print(f"Warning: Expected PIL Image for key '{key}' in task {task_id_s}, got {type(pil_image)}. Skipping image.")
continue
img_id = id(pil_image)
if img_id in file_paths_in_zip:
image_filenames_for_json.append(file_paths_in_zip[img_id])
continue
img_filename_in_zip = f"task{task_id_s}_{key}_{img_index}.png"
img_save_path = os.path.join(tmpdir, img_filename_in_zip)
try:
pil_image.save(img_save_path, "PNG")
image_filenames_for_json.append(img_filename_in_zip)
file_paths_in_zip[img_id] = img_filename_in_zip
print(f"Saved image: {img_filename_in_zip}")
except Exception as e:
print(f"Error saving image {img_filename_in_zip} for task {task_id_s}: {e}")
if image_filenames_for_json:
params_copy[key] = image_filenames_for_json if is_originally_list else image_filenames_for_json[0]
else:
pass
# params_copy.pop(key, None) #cant pop otherwise crash during reload
for key in video_keys:
video_path_orig = params_copy.get(key)
if video_path_orig is None or not isinstance(video_path_orig, str):
continue
if video_path_orig in file_paths_in_zip:
params_copy[key] = file_paths_in_zip[video_path_orig]
continue
if not os.path.isfile(video_path_orig):
print(f"Warning: Video file not found for key '{key}' in task {task_id_s}: {video_path_orig}. Skipping video.")
params_copy.pop(key, None)
continue
_, extension = os.path.splitext(video_path_orig)
vid_filename_in_zip = f"task{task_id_s}_{key}{extension if extension else '.mp4'}"
vid_save_path = os.path.join(tmpdir, vid_filename_in_zip)
try:
shutil.copy2(video_path_orig, vid_save_path)
params_copy[key] = vid_filename_in_zip
file_paths_in_zip[video_path_orig] = vid_filename_in_zip
print(f"Copied video: {video_path_orig} -> {vid_filename_in_zip}")
except Exception as e:
print(f"Error copying video {video_path_orig} to {vid_filename_in_zip} for task {task_id_s}: {e}")
params_copy.pop(key, None)
params_copy.pop('state', None)
params_copy.pop('start_image_data_base64', None)
params_copy.pop('end_image_data_base64', None)
params_copy.pop('start_image_data', None)
params_copy.pop('end_image_data', None)
task.pop('start_image_data', None)
task.pop('end_image_data', None)
manifest_entry = {
"id": task.get('id'),
"params": params_copy,
}
manifest_entry = {k: v for k, v in manifest_entry.items() if v is not None}
queue_manifest.append(manifest_entry)
manifest_path = os.path.join(tmpdir, "queue.json")
try:
with open(manifest_path, 'w', encoding='utf-8') as f:
json.dump(queue_manifest, f, indent=4)
except Exception as e:
print(f"Error writing queue.json: {e}")
gr.Warning("Failed to create queue manifest.")
return None
try:
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zf:
zf.write(manifest_path, arcname="queue.json")
for file_id, saved_file_rel_path in file_paths_in_zip.items():
saved_file_abs_path = os.path.join(tmpdir, saved_file_rel_path)
if os.path.exists(saved_file_abs_path):
zf.write(saved_file_abs_path, arcname=saved_file_rel_path)
print(f"Adding to zip: {saved_file_rel_path}")
else:
print(f"Warning: File {saved_file_rel_path} (ID: {file_id}) not found during zipping.")
zip_buffer.seek(0)
zip_binary_content = zip_buffer.getvalue()
zip_base64 = base64.b64encode(zip_binary_content).decode('utf-8')
print(f"Queue successfully prepared as base64 string ({len(zip_base64)} chars).")
return zip_base64
except Exception as e:
print(f"Error creating zip file in memory: {e}")
gr.Warning("Failed to create zip data for download.")
return None
finally:
zip_buffer.close()
def load_queue_action(filepath, state):
global task_id
gen = get_gen_info(state)
original_queue = gen.get("queue", [])
save_path_base = server_config.get("save_path", "outputs")
loaded_cache_dir = os.path.join(save_path_base, "_loaded_queue_cache")
if not filepath or not hasattr(filepath, 'name') or not Path(filepath.name).is_file():
print("[load_queue_action] Warning: No valid file selected or file not found.")
return update_queue_data(original_queue)
newly_loaded_queue = []
max_id_in_file = 0
error_message = ""
local_queue_copy_for_global_ref = None
try:
print(f"[load_queue_action] Attempting to load queue from: {filepath.name}")
os.makedirs(loaded_cache_dir, exist_ok=True)
print(f"[load_queue_action] Using cache directory: {loaded_cache_dir}")
with tempfile.TemporaryDirectory() as tmpdir:
with zipfile.ZipFile(filepath.name, 'r') as zf:
if "queue.json" not in zf.namelist(): raise ValueError("queue.json not found in zip file")
print(f"[load_queue_action] Extracting {filepath.name} to {tmpdir}")
zf.extractall(tmpdir)
print(f"[load_queue_action] Extraction complete.")
manifest_path = os.path.join(tmpdir, "queue.json")
print(f"[load_queue_action] Reading manifest: {manifest_path}")
with open(manifest_path, 'r', encoding='utf-8') as f:
loaded_manifest = json.load(f)
print(f"[load_queue_action] Manifest loaded. Processing {len(loaded_manifest)} tasks.")
for task_index, task_data in enumerate(loaded_manifest):
if task_data is None or not isinstance(task_data, dict):
print(f"[load_queue_action] Skipping invalid task data at index {task_index}")
continue
params = task_data.get('params', {})
task_id_loaded = task_data.get('id', 0)
max_id_in_file = max(max_id_in_file, task_id_loaded)
params['state'] = state
image_keys = ["image_start", "image_end", "image_refs"]
video_keys = ["video_guide", "video_mask", "video_source"]
loaded_pil_images = {}
loaded_video_paths = {}
for key in image_keys:
image_filenames = params.get(key)
if image_filenames is None: continue
is_list = isinstance(image_filenames, list)
if not is_list: image_filenames = [image_filenames]
loaded_pils = []
for img_filename_in_zip in image_filenames:
if not isinstance(img_filename_in_zip, str):
print(f"[load_queue_action] Warning: Non-string filename found for image key '{key}'. Skipping.")
continue
img_load_path = os.path.join(tmpdir, img_filename_in_zip)
if not os.path.exists(img_load_path):
print(f"[load_queue_action] Image file not found in extracted data: {img_load_path}. Skipping.")
continue
try:
pil_image = Image.open(img_load_path)
pil_image.load()
converted_image = convert_image(pil_image)
loaded_pils.append(converted_image)
pil_image.close()
print(f"Loaded image: {img_filename_in_zip} for key {key}")
except Exception as img_e:
print(f"[load_queue_action] Error loading image {img_filename_in_zip}: {img_e}")
if loaded_pils:
params[key] = loaded_pils if is_list else loaded_pils[0]
loaded_pil_images[key] = params[key]
else:
params.pop(key, None)
for key in video_keys:
video_filename_in_zip = params.get(key)
if video_filename_in_zip is None or not isinstance(video_filename_in_zip, str):
continue
video_load_path = os.path.join(tmpdir, video_filename_in_zip)
if not os.path.exists(video_load_path):
print(f"[load_queue_action] Video file not found in extracted data: {video_load_path}. Skipping.")
params.pop(key, None)
continue
persistent_video_path = os.path.join(loaded_cache_dir, video_filename_in_zip)
try:
shutil.copy2(video_load_path, persistent_video_path)
params[key] = persistent_video_path
loaded_video_paths[key] = persistent_video_path
print(f"Loaded video: {video_filename_in_zip} -> {persistent_video_path}")
except Exception as vid_e:
print(f"[load_queue_action] Error copying video {video_filename_in_zip} to cache: {vid_e}")
params.pop(key, None)
primary_preview_pil_list, secondary_preview_pil_list = get_preview_images(params)
start_b64 = [pil_to_base64_uri(primary_preview_pil_list[0], format="jpeg", quality=70)] if primary_preview_pil_list[0] else None
end_b64 = [pil_to_base64_uri(secondary_preview_pil_list[0], format="jpeg", quality=70)] if secondary_preview_pil_list[0] else None
top_level_start_image = params.get("image_start") or params.get("image_refs")
top_level_end_image = params.get("image_end")
runtime_task = {
"id": task_id_loaded,
"params": params.copy(),
"repeats": params.get('repeat_generation', 1),
"length": params.get('video_length'),
"steps": params.get('num_inference_steps'),
"prompt": params.get('prompt'),
"start_image_data": top_level_start_image,
"end_image_data": top_level_end_image,
"start_image_data_base64": start_b64,
"end_image_data_base64": end_b64,
}
newly_loaded_queue.append(runtime_task)
print(f"[load_queue_action] Reconstructed task {task_index+1}/{len(loaded_manifest)}, ID: {task_id_loaded}")
with lock:
print("[load_queue_action] Acquiring lock to update state...")
gen["queue"] = newly_loaded_queue[:]
local_queue_copy_for_global_ref = gen["queue"][:]
current_max_id_in_new_queue = max([t['id'] for t in newly_loaded_queue if 'id' in t] + [0])
if current_max_id_in_new_queue >= task_id:
new_task_id = current_max_id_in_new_queue + 1
print(f"[load_queue_action] Updating global task_id from {task_id} to {new_task_id}")
task_id = new_task_id
else:
print(f"[load_queue_action] Global task_id ({task_id}) is > max in file ({current_max_id_in_new_queue}). Not changing task_id.")
gen["prompts_max"] = len(newly_loaded_queue)
print("[load_queue_action] State update complete. Releasing lock.")
if local_queue_copy_for_global_ref is not None:
print("[load_queue_action] Updating global queue reference...")
update_global_queue_ref(local_queue_copy_for_global_ref)
else:
print("[load_queue_action] Warning: Skipping global ref update as local copy is None.")
print(f"[load_queue_action] Queue load successful. Returning DataFrame update for {len(newly_loaded_queue)} tasks.")
return update_queue_data(newly_loaded_queue)
except (ValueError, zipfile.BadZipFile, FileNotFoundError, Exception) as e:
error_message = f"Error during queue load: {e}"
print(f"[load_queue_action] Caught error: {error_message}")
traceback.print_exc()
gr.Warning(f"Failed to load queue: {error_message[:200]}")
print("[load_queue_action] Load failed. Returning DataFrame update for original queue.")
return update_queue_data(original_queue)
finally:
if filepath and hasattr(filepath, 'name') and filepath.name and os.path.exists(filepath.name):
if tempfile.gettempdir() in os.path.abspath(filepath.name):
try:
os.remove(filepath.name)
print(f"[load_queue_action] Removed temporary upload file: {filepath.name}")
except OSError as e:
print(f"[load_queue_action] Info: Could not remove temp file {filepath.name}: {e}")
else:
print(f"[load_queue_action] Info: Did not remove non-temporary file: {filepath.name}")
def clear_queue_action(state):
gen = get_gen_info(state)
queue = gen.get("queue", [])
aborted_current = False
cleared_pending = False
with lock:
if "in_progress" in gen and gen["in_progress"]:
print("Clear Queue: Signalling abort for in-progress task.")
gen["abort"] = True
gen["extra_orders"] = 0
if wan_model is not None:
wan_model._interrupt = True
aborted_current = True
if queue:
if len(queue) > 1 or (len(queue) == 1 and queue[0] is not None and queue[0].get('id') is not None):
print(f"Clear Queue: Clearing {len(queue)} tasks from queue.")
queue.clear()
cleared_pending = True
else:
pass
if aborted_current or cleared_pending:
gen["prompts_max"] = 0
if cleared_pending:
try:
if os.path.isfile(AUTOSAVE_FILENAME):
os.remove(AUTOSAVE_FILENAME)
print(f"Clear Queue: Deleted autosave file '{AUTOSAVE_FILENAME}'.")
except OSError as e:
print(f"Clear Queue: Error deleting autosave file '{AUTOSAVE_FILENAME}': {e}")
gr.Warning(f"Could not delete the autosave file '{AUTOSAVE_FILENAME}'. You may need to remove it manually.")
if aborted_current and cleared_pending:
gr.Info("Queue cleared and current generation aborted.")
elif aborted_current:
gr.Info("Current generation aborted.")
elif cleared_pending:
gr.Info("Queue cleared.")
else:
gr.Info("Queue is already empty or only contains the active task (which wasn't aborted now).")
return update_queue_data([])
def quit_application():
print("Save and Quit requested...")
autosave_queue()
import signal
os.kill(os.getpid(), signal.SIGINT)
def start_quit_process():
return 5, gr.update(visible=False), gr.update(visible=True)
def cancel_quit_process():
return -1, gr.update(visible=True), gr.update(visible=False)
def show_countdown_info_from_state(current_value: int):
if current_value > 0:
gr.Info(f"Quitting in {current_value}...")
return current_value - 1
return current_value
def autosave_queue():
global global_queue_ref
if not global_queue_ref:
print("Autosave: Queue is empty, nothing to save.")
return
print(f"Autosaving queue ({len(global_queue_ref)} items) to {AUTOSAVE_FILENAME}...")
temp_state_for_save = {"gen": {"queue": global_queue_ref}}
zip_file_path = None
try:
def _save_queue_to_file(queue_to_save, output_filename):
if not queue_to_save: return None
with tempfile.TemporaryDirectory() as tmpdir:
queue_manifest = []
file_paths_in_zip = {}
for task_index, task in enumerate(queue_to_save):
if task is None or not isinstance(task, dict) or task.get('id') is None: continue
params_copy = task.get('params', {}).copy()
task_id_s = task.get('id', f"task_{task_index}")
image_keys = ["image_start", "image_end", "image_refs"]
video_keys = ["video_guide", "video_mask", "video_source"]
for key in image_keys:
images_pil = params_copy.get(key)
if images_pil is None: continue
is_list = isinstance(images_pil, list)
if not is_list: images_pil = [images_pil]
image_filenames_for_json = []
for img_index, pil_image in enumerate(images_pil):
if not isinstance(pil_image, Image.Image): continue
img_id = id(pil_image)
if img_id in file_paths_in_zip:
image_filenames_for_json.append(file_paths_in_zip[img_id])
continue
img_filename_in_zip = f"task{task_id_s}_{key}_{img_index}.png"
img_save_path = os.path.join(tmpdir, img_filename_in_zip)
try:
pil_image.save(img_save_path, "PNG")
image_filenames_for_json.append(img_filename_in_zip)
file_paths_in_zip[img_id] = img_filename_in_zip
except Exception as e:
print(f"Autosave error saving image {img_filename_in_zip}: {e}")
if image_filenames_for_json:
params_copy[key] = image_filenames_for_json if is_list else image_filenames_for_json[0]
else:
params_copy.pop(key, None)
for key in video_keys:
video_path_orig = params_copy.get(key)
if video_path_orig is None or not isinstance(video_path_orig, str):
continue
if video_path_orig in file_paths_in_zip:
params_copy[key] = file_paths_in_zip[video_path_orig]
continue
if not os.path.isfile(video_path_orig):
print(f"Warning (Autosave): Video file not found for key '{key}' in task {task_id_s}: {video_path_orig}. Skipping.")
params_copy.pop(key, None)
continue
_, extension = os.path.splitext(video_path_orig)
vid_filename_in_zip = f"task{task_id_s}_{key}{extension if extension else '.mp4'}"
vid_save_path = os.path.join(tmpdir, vid_filename_in_zip)
try:
shutil.copy2(video_path_orig, vid_save_path)
params_copy[key] = vid_filename_in_zip
file_paths_in_zip[video_path_orig] = vid_filename_in_zip
except Exception as e:
print(f"Error (Autosave) copying video {video_path_orig} to {vid_filename_in_zip} for task {task_id_s}: {e}")
params_copy.pop(key, None)
params_copy.pop('state', None)
params_copy.pop('start_image_data_base64', None)
params_copy.pop('end_image_data_base64', None)
params_copy.pop('start_image_data', None)
params_copy.pop('end_image_data', None)
manifest_entry = {
"id": task.get('id'),
"params": params_copy,
}
manifest_entry = {k: v for k, v in manifest_entry.items() if v is not None}
queue_manifest.append(manifest_entry)
manifest_path = os.path.join(tmpdir, "queue.json")
with open(manifest_path, 'w', encoding='utf-8') as f: json.dump(queue_manifest, f, indent=4)
with zipfile.ZipFile(output_filename, 'w', zipfile.ZIP_DEFLATED) as zf:
zf.write(manifest_path, arcname="queue.json")
for saved_file_rel_path in file_paths_in_zip.values():
saved_file_abs_path = os.path.join(tmpdir, saved_file_rel_path)
if os.path.exists(saved_file_abs_path):
zf.write(saved_file_abs_path, arcname=saved_file_rel_path)
else:
print(f"Warning (Autosave): File {saved_file_rel_path} not found during zipping.")
return output_filename
return None
saved_path = _save_queue_to_file(global_queue_ref, AUTOSAVE_FILENAME)
if saved_path:
print(f"Queue autosaved successfully to {saved_path}")
else:
print("Autosave failed.")
except Exception as e:
print(f"Error during autosave: {e}")
traceback.print_exc()
def autoload_queue(state):
global task_id
try:
gen = get_gen_info(state)
original_queue = gen.get("queue", [])
except AttributeError:
print("[autoload_queue] Error: Initial state is not a dictionary. Cannot autoload.")
return gr.update(visible=False), False, state
loaded_flag = False
dataframe_update = update_queue_data(original_queue)
if not original_queue and Path(AUTOSAVE_FILENAME).is_file():
print(f"Autoloading queue from {AUTOSAVE_FILENAME}...")
class MockFile:
def __init__(self, name):
self.name = name
mock_filepath = MockFile(AUTOSAVE_FILENAME)
dataframe_update = load_queue_action(mock_filepath, state)
gen = get_gen_info(state)
loaded_queue_after_action = gen.get("queue", [])
if loaded_queue_after_action:
print(f"Autoload successful. Loaded {len(loaded_queue_after_action)} tasks into state.")
loaded_flag = True
else:
print("Autoload attempted but queue in state remains empty (file might be empty or invalid).")
with lock:
gen["queue"] = []
gen["prompts_max"] = 0
update_global_queue_ref([])
dataframe_update = update_queue_data([])
# need to remove queue otherwise every new tab will be processed it again
try:
if os.path.isfile(AUTOSAVE_FILENAME):
os.remove(AUTOSAVE_FILENAME)
print(f"Clear Queue: Deleted autosave file '{AUTOSAVE_FILENAME}'.")
except OSError as e:
print(f"Clear Queue: Error deleting autosave file '{AUTOSAVE_FILENAME}': {e}")
gr.Warning(f"Could not delete the autosave file '{AUTOSAVE_FILENAME}'. You may need to remove it manually.")
else:
if original_queue:
print("Autoload skipped: Queue is not empty.")
update_global_queue_ref(original_queue)
dataframe_update = update_queue_data(original_queue)
else:
# print(f"Autoload skipped: {AUTOSAVE_FILENAME} not found.")
update_global_queue_ref([])
dataframe_update = update_queue_data([])
return dataframe_update, loaded_flag, state
def run_autoload_and_prepare_ui(current_state):
df_update, loaded_flag, modified_state = autoload_queue(current_state)
should_start_processing = loaded_flag
accordion_update = gr.Accordion(open=True) if loaded_flag else gr.update()
return df_update, gr.update(visible=loaded_flag), accordion_update, should_start_processing, modified_state
def start_processing_if_needed(should_start, current_state):
if not isinstance(current_state, dict) or 'gen' not in current_state:
yield "Error: Invalid state received before processing."
return
if should_start:
yield from process_tasks(current_state)
else:
yield None
def finalize_generation_with_state(current_state):
if not isinstance(current_state, dict) or 'gen' not in current_state:
return gr.update(), gr.update(interactive=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False, value=""), gr.update(), current_state
gallery_update, abort_btn_update, gen_btn_update, add_queue_btn_update, current_gen_col_update, gen_info_update = finalize_generation(current_state)
accordion_update = gr.Accordion(open=False) if len(get_gen_info(current_state).get("queue", [])) <= 1 else gr.update()
return gallery_update, abort_btn_update, gen_btn_update, add_queue_btn_update, current_gen_col_update, gen_info_update, accordion_update, current_state
def get_queue_table(queue):
data = []
if len(queue) == 1:
return data
for i, item in enumerate(queue):
if i==0:
continue
truncated_prompt = (item['prompt'][:97] + '...') if len(item['prompt']) > 100 else item['prompt']
full_prompt = item['prompt'].replace('"', '"')
prompt_cell = f'{truncated_prompt}'
start_img_uri =item.get('start_image_data_base64')
start_img_uri = start_img_uri[0] if start_img_uri !=None else None
end_img_uri = item.get('end_image_data_base64')
end_img_uri = end_img_uri[0] if end_img_uri !=None else None
thumbnail_size = "50px"
num_steps = item.get('steps')
length = item.get('length')
start_img_md = ""
end_img_md = ""
if start_img_uri:
start_img_md = f'
'
if end_img_uri:
end_img_md = f'
'
data.append([item.get('repeats', "1"),
prompt_cell,
length,
num_steps,
start_img_md,
end_img_md,
"↑",
"↓",
"✖"
])
return data
def update_queue_data(queue):
update_global_queue_ref(queue)
data = get_queue_table(queue)
# if len(data) == 0:
# return gr.HTML(visible=False)
# else:
# return gr.HTML(value=data, visible= True)
if len(data) == 0:
return gr.DataFrame(visible=False)
else:
return gr.DataFrame(value=data, visible= True)
def create_html_progress_bar(percentage=0.0, text="Idle", is_idle=True):
bar_class = "progress-bar-custom idle" if is_idle else "progress-bar-custom"
bar_text_html = f'
{text}
'
html = f"""
"""
return html
def update_generation_status(html_content):
if(html_content):
return gr.update(value=html_content)
def _parse_args():
parser = argparse.ArgumentParser(
description="Generate a video from a text prompt or image using Gradio")
parser.add_argument(
"--quantize-transformer",
action="store_true",
help="On the fly 'transformer' quantization"
)
parser.add_argument(
"--share",
action="store_true",
help="Create a shared URL to access webserver remotely"
)
parser.add_argument(
"--lock-config",
action="store_true",
help="Prevent modifying the configuration from the web interface"
)
parser.add_argument(
"--lock-model",
action="store_true",
help="Prevent switch models"
)
parser.add_argument(
"--preload",
type=str,
default="0",
help="Megabytes of the diffusion model to preload in VRAM"
)
parser.add_argument(
"--multiple-images",
action="store_true",
help="Allow inputting multiple images with image to video"
)
parser.add_argument(
"--lora-dir-i2v",
type=str,
default="",
help="Path to a directory that contains Loras for i2v"
)
parser.add_argument(
"--lora-dir",
type=str,
default="",
help="Path to a directory that contains Loras"
)
parser.add_argument(
"--check-loras",
action="store_true",
help="Filter Loras that are not valid"
)
parser.add_argument(
"--lora-preset",
type=str,
default="",
help="Lora preset to preload"
)
parser.add_argument(
"--settings",
type=str,
default="settings",
help="Path to settings folder"
)
# parser.add_argument(
# "--lora-preset-i2v",
# type=str,
# default="",
# help="Lora preset to preload for i2v"
# )
parser.add_argument(
"--profile",
type=str,
default=-1,
help="Profile No"
)
parser.add_argument(
"--verbose",
type=str,
default=1,
help="Verbose level"
)
parser.add_argument(
"--steps",
type=int,
default=0,
help="default denoising steps"
)
parser.add_argument(
"--frames",
type=int,
default=0,
help="default number of frames"
)
parser.add_argument(
"--seed",
type=int,
default=-1,
help="default generation seed"
)
parser.add_argument(
"--advanced",
action="store_true",
help="Access advanced options by default"
)
parser.add_argument(
"--fp16",
action="store_true",
help="For using fp16 transformer model"
)
parser.add_argument(
"--server-port",
type=str,
default=0,
help="Server port"
)
parser.add_argument(
"--theme",
type=str,
default="",
help="set UI Theme"
)
parser.add_argument(
"--perc-reserved-mem-max",
type=float,
default=0,
help="% of RAM allocated to Reserved RAM"
)
parser.add_argument(
"--server-name",
type=str,
default="",
help="Server name"
)
parser.add_argument(
"--gpu",
type=str,
default="",
help="Default GPU Device"
)
parser.add_argument(
"--open-browser",
action="store_true",
help="open browser"
)
parser.add_argument(
"--t2v",
action="store_true",
help="text to video mode"
)
parser.add_argument(
"--i2v",
action="store_true",
help="image to video mode"
)
parser.add_argument(
"--t2v-14B",
action="store_true",
help="text to video mode 14B model"
)
parser.add_argument(
"--t2v-1-3B",
action="store_true",
help="text to video mode 1.3B model"
)
parser.add_argument(
"--vace-1-3B",
action="store_true",
help="Vace ControlNet 1.3B model"
)
parser.add_argument(
"--i2v-1-3B",
action="store_true",
help="Fun InP image to video mode 1.3B model"
)
parser.add_argument(
"--i2v-14B",
action="store_true",
help="image to video mode 14B model"
)
parser.add_argument(
"--compile",
action="store_true",
help="Enable pytorch compilation"
)
parser.add_argument(
"--listen",
action="store_true",
help="Server accessible on local network"
)
# parser.add_argument(
# "--fast",
# action="store_true",
# help="use Fast model"
# )
# parser.add_argument(
# "--fastest",
# action="store_true",
# help="activate the best config"
# )
parser.add_argument(
"--attention",
type=str,
default="",
help="attention mode"
)
parser.add_argument(
"--vae-config",
type=str,
default="",
help="vae config mode"
)
args = parser.parse_args()
return args
def get_lora_dir(model_filename):
lora_dir =args.lora_dir
i2v = test_class_i2v(model_filename)
if i2v and len(lora_dir)==0:
lora_dir =args.lora_dir_i2v
if len(lora_dir) > 0:
return lora_dir
root_lora_dir = "loras_i2v" if i2v else "loras"
if "1.3B" in model_filename :
lora_dir_1_3B = os.path.join(root_lora_dir, "1.3B")
if os.path.isdir(lora_dir_1_3B ):
return lora_dir_1_3B
else:
lora_dir_14B = os.path.join(root_lora_dir, "14B")
if os.path.isdir(lora_dir_14B ):
return lora_dir_14B
return root_lora_dir
attention_modes_installed = get_attention_modes()
attention_modes_supported = get_supported_attention_modes()
args = _parse_args()
args.flow_reverse = True
processing_device = args.gpu
if len(processing_device) == 0:
processing_device ="cuda"
# torch.backends.cuda.matmul.allow_fp16_accumulation = True
lock_ui_attention = False
lock_ui_transformer = False
lock_ui_compile = False
preload =int(args.preload)
force_profile_no = int(args.profile)
verbose_level = int(args.verbose)
quantizeTransformer = args.quantize_transformer
check_loras = args.check_loras ==1
advanced = args.advanced
transformer_choices_t2v=["ckpts/wan2.1_text2video_1.3B_bf16.safetensors", "ckpts/wan2.1_text2video_14B_bf16.safetensors", "ckpts/wan2.1_text2video_14B_quanto_int8.safetensors", "ckpts/wan2.1_Vace_1.3B_preview_bf16.safetensors", "ckpts/wan2.1_recammaster_1.3B_bf16.safetensors"]
transformer_choices_i2v=["ckpts/wan2.1_image2video_480p_14B_bf16.safetensors", "ckpts/wan2.1_image2video_480p_14B_quanto_int8.safetensors", "ckpts/wan2.1_image2video_720p_14B_bf16.safetensors", "ckpts/wan2.1_image2video_720p_14B_quanto_int8.safetensors", "ckpts/wan2.1_Fun_InP_1.3B_bf16.safetensors", "ckpts/wan2.1_Fun_InP_14B_bf16.safetensors", "ckpts/wan2.1_Fun_InP_14B_quanto_int8.safetensors", "ckpts/wan2.1_FLF2V_720p_14B_bf16.safetensors", "ckpts/wan2.1_FLF2V_720p_14B_quanto_int8.safetensors"]
transformer_choices = transformer_choices_t2v + transformer_choices_i2v
text_encoder_choices = ["ckpts/models_t5_umt5-xxl-enc-bf16.safetensors", "ckpts/models_t5_umt5-xxl-enc-quanto_int8.safetensors"]
server_config_filename = "wgp_config.json"
if not os.path.isdir("settings"):
os.mkdir("settings")
if os.path.isfile("t2v_settings.json"):
for f in glob.glob(os.path.join(".", "*_settings.json*")):
target_file = os.path.join("settings", Path(f).parts[-1] )
shutil.move(f, target_file)
if not os.path.isfile(server_config_filename) and os.path.isfile("gradio_config.json"):
shutil.move("gradio_config.json", server_config_filename)
if not Path(server_config_filename).is_file():
server_config = {"attention_mode" : "auto",
"transformer_types": [],
"transformer_quantization": "int8",
"text_encoder_filename" : text_encoder_choices[1],
"save_path": "outputs", #os.path.join(os.getcwd(),
"compile" : "",
"metadata_type": "metadata",
"default_ui": "t2v",
"boost" : 1,
"clear_file_list" : 5,
"vae_config": 0,
"profile" : profile_type.LowRAM_LowVRAM,
"preload_model_policy": [],
"UI_theme": "default" }
with open(server_config_filename, "w", encoding="utf-8") as writer:
writer.write(json.dumps(server_config))
else:
with open(server_config_filename, "r", encoding="utf-8") as reader:
text = reader.read()
server_config = json.loads(text)
model_types = [ "t2v_1.3B", "vace_1.3B", "fun_inp_1.3B", "t2v", "i2v", "i2v_720p", "fun_inp", "recam_1.3B", "flf2v_720p"]
model_signatures = {"t2v": "text2video_14B", "t2v_1.3B" : "text2video_1.3B", "fun_inp_1.3B" : "Fun_InP_1.3B", "fun_inp" : "Fun_InP_14B",
"i2v" : "image2video_480p", "i2v_720p" : "image2video_720p" , "vace_1.3B" : "Vace_1.3B", "recam_1.3B": "recammaster_1.3B",
"flf2v_720p" : "FLF2V_720p" }
def get_model_type(model_filename):
for model_type, signature in model_signatures.items():
if signature in model_filename:
return model_type
raise Exception("Unknown model:" + model_filename)
def test_class_i2v(model_filename):
return "image2video" in model_filename or "Fun_InP" in model_filename or "FLF2V" in model_filename
def get_model_name(model_filename):
if "Fun" in model_filename:
model_name = "Fun InP image2video"
model_name += " 14B" if "14B" in model_filename else " 1.3B"
elif "Vace" in model_filename:
model_name = "Vace ControlNet"
model_name += " 14B" if "14B" in model_filename else " 1.3B"
elif "image" in model_filename:
model_name = "Wan2.1 image2video"
model_name += " 720p" if "720p" in model_filename else " 480p"
elif "recam" in model_filename:
model_name = "ReCamMaster"
model_name += " 14B" if "14B" in model_filename else " 1.3B"
elif "FLF2V" in model_filename:
model_name = "Wan2.1 FLF2V"
model_name += " 720p" if "720p" in model_filename else " 480p"
else:
model_name = "Wan2.1 text2video"
model_name += " 14B" if "14B" in model_filename else " 1.3B"
return model_name
def get_model_filename(model_type, quantization):
signature = model_signatures[model_type]
choices = [ name for name in transformer_choices if signature in name]
if len(quantization) == 0:
quantization = "bf16"
if len(choices) <= 1:
return choices[0]
sub_choices = [ name for name in choices if quantization in name]
if len(sub_choices) > 0:
return sub_choices[0]
else:
return choices[0]
def get_settings_file_name(model_filename):
return os.path.join(args.settings, get_model_type(model_filename) + "_settings.json")
def get_default_settings(filename):
def get_default_prompt(i2v):
if i2v:
return "Several giant wooly mammoths approach treading through a snowy meadow, their long wooly fur lightly blows in the wind as they walk, snow covered trees and dramatic snow capped mountains in the distance, mid afternoon light with wispy clouds and a sun high in the distance creates a warm glow, the low camera view is stunning capturing the large furry mammal with beautiful photography, depth of field."
else:
return "A large orange octopus is seen resting on the bottom of the ocean floor, blending in with the sandy and rocky terrain. Its tentacles are spread out around its body, and its eyes are closed. The octopus is unaware of a king crab that is crawling towards it from behind a rock, its claws raised and ready to attack. The crab is brown and spiny, with long legs and antennae. The scene is captured from a wide angle, showing the vastness and depth of the ocean. The water is clear and blue, with rays of sunlight filtering through. The shot is sharp and crisp, with a high dynamic range. The octopus and the crab are in focus, while the background is slightly blurred, creating a depth of field effect."
i2v = test_class_i2v(filename)
defaults_filename = get_settings_file_name(filename)
if not Path(defaults_filename).is_file():
ui_defaults = {
"prompt": get_default_prompt(i2v),
"resolution": "1280x720" if "720p" in filename else "832x480",
"video_length": 81,
"num_inference_steps": 30,
"seed": -1,
"repeat_generation": 1,
"multi_images_gen_type": 0,
"guidance_scale": 5.0,
"flow_shift": get_default_flow(filename, i2v),
"negative_prompt": "",
"activated_loras": [],
"loras_multipliers": "",
"tea_cache": 0.0,
"tea_cache_start_step_perc": 0,
"RIFLEx_setting": 0,
"slg_switch": 0,
"slg_layers": [9],
"slg_start_perc": 10,
"slg_end_perc": 90
}
with open(defaults_filename, "w", encoding="utf-8") as f:
json.dump(ui_defaults, f, indent=4)
else:
with open(defaults_filename, "r", encoding="utf-8") as f:
ui_defaults = json.load(f)
prompts = ui_defaults.get("prompts", "")
if len(prompts) > 0:
ui_defaults["prompt"] = prompts
image_prompt_type = ui_defaults.get("image_prompt_type", None)
if image_prompt_type !=None and not isinstance(image_prompt_type, str):
ui_defaults["image_prompt_type"] = "S" if image_prompt_type == 0 else "SE"
default_seed = args.seed
if default_seed > -1:
ui_defaults["seed"] = default_seed
default_number_frames = args.frames
if default_number_frames > 0:
ui_defaults["video_length"] = default_number_frames
default_number_steps = args.steps
if default_number_steps > 0:
ui_defaults["num_inference_steps"] = default_number_steps
return ui_defaults
transformer_types = server_config.get("transformer_types", [])
transformer_type = transformer_types[0] if len(transformer_types) > 0 else model_types[0]
transformer_quantization =server_config.get("transformer_quantization", "int8")
transformer_filename = get_model_filename(transformer_type, transformer_quantization)
text_encoder_filename = server_config["text_encoder_filename"]
attention_mode = server_config["attention_mode"]
if len(args.attention)> 0:
if args.attention in ["auto", "sdpa", "sage", "sage2", "flash", "xformers"]:
attention_mode = args.attention
lock_ui_attention = True
else:
raise Exception(f"Unknown attention mode '{args.attention}'")
profile = force_profile_no if force_profile_no >=0 else server_config["profile"]
compile = server_config.get("compile", "")
boost = server_config.get("boost", 1)
vae_config = server_config.get("vae_config", 0)
if len(args.vae_config) > 0:
vae_config = int(args.vae_config)
reload_needed = False
default_ui = server_config.get("default_ui", "t2v")
save_path = server_config.get("save_path", os.path.join(os.getcwd(), "gradio_outputs"))
preload_model_policy = server_config.get("preload_model_policy", [])
if args.t2v_14B or args.t2v:
transformer_filename = get_model_filename("t2v", transformer_quantization)
if args.i2v_14B or args.i2v:
transformer_filename = get_model_filename("i2v", transformer_quantization)
if args.t2v_1_3B:
transformer_filename = get_model_filename("t2v_1.3B", transformer_quantization)
if args.i2v_1_3B:
transformer_filename = get_model_filename("fun_inp_1.3B", transformer_quantization)
if args.vace_1_3B:
transformer_filename = get_model_filename("vace_1.3B", transformer_quantization)
only_allow_edit_in_advanced = False
lora_preselected_preset = args.lora_preset
lora_preset_model = transformer_filename
if args.compile: #args.fastest or
compile="transformer"
lock_ui_compile = True
model_filename = ""
#attention_mode="sage"
#attention_mode="sage2"
#attention_mode="flash"
#attention_mode="sdpa"
#attention_mode="xformers"
# compile = "transformer"
def preprocess_loras(sd):
if wan_model == None:
return sd
model_filename = wan_model._model_file_name
first = next(iter(sd), None)
if first == None:
return sd
if first.startswith("lora_unet_"):
new_sd = {}
print("Converting Lora Safetensors format to Lora Diffusers format")
alphas = {}
repl_list = ["cross_attn", "self_attn", "ffn"]
src_list = ["_" + k + "_" for k in repl_list]
tgt_list = ["." + k + "." for k in repl_list]
for k,v in sd.items():
k = k.replace("lora_unet_blocks_","diffusion_model.blocks.")
for s,t in zip(src_list, tgt_list):
k = k.replace(s,t)
k = k.replace("lora_up","lora_B")
k = k.replace("lora_down","lora_A")
if "alpha" in k:
alphas[k] = v
else:
new_sd[k] = v
new_alphas = {}
for k,v in new_sd.items():
if "lora_B" in k:
dim = v.shape[1]
elif "lora_A" in k:
dim = v.shape[0]
else:
continue
alpha_key = k[:-len("lora_X.weight")] +"alpha"
if alpha_key in alphas:
scale = alphas[alpha_key] / dim
new_alphas[alpha_key] = scale
else:
print(f"Lora alpha'{alpha_key}' is missing")
new_sd.update(new_alphas)
sd = new_sd
if "text2video" in model_filename:
new_sd = {}
# convert loras for i2v to t2v
for k,v in sd.items():
if any(layer in k for layer in ["cross_attn.k_img", "cross_attn.v_img"]):
continue
new_sd[k] = v
sd = new_sd
return sd
def download_models(transformer_filename, text_encoder_filename):
def computeList(filename):
pos = filename.rfind("/")
filename = filename[pos+1:]
return [filename]
from huggingface_hub import hf_hub_download, snapshot_download
repoId = "DeepBeepMeep/Wan2.1"
sourceFolderList = ["xlm-roberta-large", "pose", "depth", "mask", "", ]
fileList = [ [], [],[], ["sam_vit_h_4b8939_fp16.safetensors"], ["Wan2.1_VAE_bf16.safetensors", "models_clip_open-clip-xlm-roberta-large-vit-huge-14-bf16.safetensors", "flownet.pkl" ] + computeList(text_encoder_filename) + computeList(transformer_filename) ]
targetRoot = "ckpts/"
for sourceFolder, files in zip(sourceFolderList,fileList ):
if len(files)==0:
if not Path(targetRoot + sourceFolder).exists():
snapshot_download(repo_id=repoId, allow_patterns=sourceFolder +"/*", local_dir= targetRoot)
else:
for onefile in files:
if len(sourceFolder) > 0:
if not os.path.isfile(targetRoot + sourceFolder + "/" + onefile ):
hf_hub_download(repo_id=repoId, filename=onefile, local_dir = targetRoot, subfolder=sourceFolder)
else:
if not os.path.isfile(targetRoot + onefile ):
hf_hub_download(repo_id=repoId, filename=onefile, local_dir = targetRoot)
offload.default_verboseLevel = verbose_level
to_remove = ["models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth", "Wan2.1_VAE.pth"]
for file_name in to_remove:
file_name = os.path.join("ckpts",file_name)
if os.path.isfile(file_name):
try:
os.remove(file_name)
except:
pass
download_models(transformer_filename, text_encoder_filename)
def sanitize_file_name(file_name, rep =""):
return file_name.replace("/",rep).replace("\\",rep).replace(":",rep).replace("|",rep).replace("?",rep).replace("<",rep).replace(">",rep).replace("\"",rep)
def extract_preset(model_filename, lset_name, loras):
loras_choices = []
loras_choices_files = []
loras_mult_choices = ""
prompt =""
full_prompt =""
lset_name = sanitize_file_name(lset_name)
lora_dir = get_lora_dir(model_filename)
if not lset_name.endswith(".lset"):
lset_name_filename = os.path.join(lora_dir, lset_name + ".lset" )
else:
lset_name_filename = os.path.join(lora_dir, lset_name )
error = ""
if not os.path.isfile(lset_name_filename):
error = f"Preset '{lset_name}' not found "
else:
missing_loras = []
with open(lset_name_filename, "r", encoding="utf-8") as reader:
text = reader.read()
lset = json.loads(text)
loras_choices_files = lset["loras"]
for lora_file in loras_choices_files:
choice = os.path.join(lora_dir, lora_file)
if choice not in loras:
missing_loras.append(lora_file)
else:
loras_choice_no = loras.index(choice)
loras_choices.append(str(loras_choice_no))
if len(missing_loras) > 0:
error = f"Unable to apply Lora preset '{lset_name} because the following Loras files are missing or invalid: {missing_loras}"
loras_mult_choices = lset["loras_mult"]
prompt = lset.get("prompt", "")
full_prompt = lset.get("full_prompt", False)
return loras_choices, loras_mult_choices, prompt, full_prompt, error
def setup_loras(model_filename, transformer, lora_dir, lora_preselected_preset, split_linear_modules_map = None):
loras =[]
loras_names = []
default_loras_choices = []
default_loras_multis_str = ""
loras_presets = []
default_lora_preset = ""
default_lora_preset_prompt = ""
from pathlib import Path
lora_dir = get_lora_dir(model_filename)
if lora_dir != None :
if not os.path.isdir(lora_dir):
raise Exception("--lora-dir should be a path to a directory that contains Loras")
if lora_dir != None:
dir_loras = glob.glob( os.path.join(lora_dir , "*.sft") ) + glob.glob( os.path.join(lora_dir , "*.safetensors") )
dir_loras.sort()
loras += [element for element in dir_loras if element not in loras ]
dir_presets = glob.glob( os.path.join(lora_dir , "*.lset") )
dir_presets.sort()
loras_presets = [ Path(Path(file_path).parts[-1]).stem for file_path in dir_presets]
if transformer !=None:
loras = offload.load_loras_into_model(transformer, loras, activate_all_loras=False, check_only= True, preprocess_sd=preprocess_loras, split_linear_modules_map = split_linear_modules_map) #lora_multiplier,
if len(loras) > 0:
loras_names = [ Path(lora).stem for lora in loras ]
if len(lora_preselected_preset) > 0:
if not os.path.isfile(os.path.join(lora_dir, lora_preselected_preset + ".lset")):
raise Exception(f"Unknown preset '{lora_preselected_preset}'")
default_lora_preset = lora_preselected_preset
default_loras_choices, default_loras_multis_str, default_lora_preset_prompt, _ , error = extract_preset(model_filename, default_lora_preset, loras)
if len(error) > 0:
print(error[:200])
return loras, loras_names, loras_presets, default_loras_choices, default_loras_multis_str, default_lora_preset_prompt, default_lora_preset
def load_t2v_model(model_filename, value, quantizeTransformer = False, dtype = torch.bfloat16):
cfg = WAN_CONFIGS['t2v-14B']
# cfg = WAN_CONFIGS['t2v-1.3B']
print(f"Loading '{model_filename}' model...")
wan_model = wan.WanT2V(
config=cfg,
checkpoint_dir="ckpts",
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_usp=False,
model_filename=model_filename,
text_encoder_filename= text_encoder_filename,
quantizeTransformer = quantizeTransformer,
dtype = dtype
)
pipe = {"transformer": wan_model.model, "text_encoder" : wan_model.text_encoder.model, "vae": wan_model.vae.model }
return wan_model, pipe
def load_i2v_model(model_filename, value, quantizeTransformer = False, dtype = torch.bfloat16):
print(f"Loading '{model_filename}' model...")
if value == '720P':
cfg = WAN_CONFIGS['i2v-14B']
wan_model = wan.WanI2V(
config=cfg,
checkpoint_dir="ckpts",
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_usp=False,
i2v720p= True,
model_filename=model_filename,
text_encoder_filename=text_encoder_filename,
quantizeTransformer = quantizeTransformer,
dtype = dtype
)
pipe = {"transformer": wan_model.model, "text_encoder" : wan_model.text_encoder.model, "text_encoder_2": wan_model.clip.model, "vae": wan_model.vae.model } #
elif value == '480P':
cfg = WAN_CONFIGS['i2v-14B']
wan_model = wan.WanI2V(
config=cfg,
checkpoint_dir="ckpts",
rank=0,
t5_fsdp=False,
dit_fsdp=False,
use_usp=False,
i2v720p= False,
model_filename=model_filename,
text_encoder_filename=text_encoder_filename,
quantizeTransformer = quantizeTransformer,
dtype = dtype
)
pipe = {"transformer": wan_model.model, "text_encoder" : wan_model.text_encoder.model, "text_encoder_2": wan_model.clip.model, "vae": wan_model.vae.model } #
else:
raise Exception("Model i2v {value} not supported")
return wan_model, pipe
def load_models(model_filename):
global transformer_filename
transformer_filename = model_filename
perc_reserved_mem_max = args.perc_reserved_mem_max
major, minor = torch.cuda.get_device_capability(args.gpu if len(args.gpu) > 0 else None)
default_dtype = torch.float16 if major < 8 else torch.bfloat16
# default_dtype = torch.bfloat16
if default_dtype == torch.float16 or args.fp16:
print("Switching to f16 model as GPU architecture doesn't support bf16")
if "quanto" in model_filename:
model_filename = model_filename.replace("quanto_int8", "quanto_fp16_int8")
download_models(model_filename, text_encoder_filename)
if test_class_i2v(model_filename):
res720P = "720p" in model_filename
wan_model, pipe = load_i2v_model(model_filename, "720P" if res720P else "480P", quantizeTransformer = quantizeTransformer, dtype = default_dtype )
else:
wan_model, pipe = load_t2v_model(model_filename, "", quantizeTransformer = quantizeTransformer, dtype = default_dtype)
wan_model._model_file_name = model_filename
kwargs = { "extraModelsToQuantize": None}
if profile == 2 or profile == 4:
kwargs["budgets"] = { "transformer" : 100 if preload == 0 else preload, "text_encoder" : 100, "*" : 1000 }
# if profile == 4:
# kwargs["partialPinning"] = True
elif profile == 3:
kwargs["budgets"] = { "*" : "70%" }
offloadobj = offload.profile(pipe, profile_no= profile, compile = compile, quantizeTransformer = quantizeTransformer, loras = "transformer", coTenantsMap= {}, perc_reserved_mem_max = perc_reserved_mem_max , convertWeightsFloatTo = default_dtype, **kwargs)
if len(args.gpu) > 0:
torch.set_default_device(args.gpu)
return wan_model, offloadobj, pipe["transformer"]
if not "P" in preload_model_policy:
wan_model, offloadobj, transformer = None, None, None
reload_needed = True
else:
wan_model, offloadobj, transformer = load_models(transformer_filename)
if check_loras:
setup_loras(model_filename, transformer, get_lora_dir(transformer_filename), "", None)
exit()
del transformer
gen_in_progress = False
def get_auto_attention():
for attn in ["sage2","sage","sdpa"]:
if attn in attention_modes_supported:
return attn
return "sdpa"
def get_default_flow(filename, i2v):
return 7.0 if "480p" in filename and i2v else 5.0
def generate_header(model_filename, compile, attention_mode):
header = "Attention mode " + (attention_mode if attention_mode!="auto" else "auto/" + get_auto_attention() )
if attention_mode not in attention_modes_installed:
header += " -NOT INSTALLED-"
elif attention_mode not in attention_modes_supported:
header += " -NOT SUPPORTED-"
header += ""
if compile:
header += ", Pytorch compilation ON"
if "int8" in model_filename:
header += ", Quantization Int8"
header += "
"
return header
def apply_changes( state,
transformer_types_choices,
text_encoder_choice,
save_path_choice,
attention_choice,
compile_choice,
profile_choice,
vae_config_choice,
metadata_choice,
quantization_choice,
boost_choice = 1,
clear_file_list = 0,
preload_model_policy_choice = 1,
UI_theme_choice = "default"
):
if args.lock_config:
return
if gen_in_progress:
return "Unable to change config when a generation is in progress
"
global offloadobj, wan_model, server_config, loras, loras_names, default_loras_choices, default_loras_multis_str, default_lora_preset_prompt, default_lora_preset, loras_presets
server_config = {"attention_mode" : attention_choice,
"transformer_types": transformer_types_choices,
"text_encoder_filename" : text_encoder_choices[text_encoder_choice],
"save_path" : save_path_choice,
"compile" : compile_choice,
"profile" : profile_choice,
"vae_config" : vae_config_choice,
"metadata_choice": metadata_choice,
"transformer_quantization" : quantization_choice,
"boost" : boost_choice,
"clear_file_list" : clear_file_list,
"preload_model_policy" : preload_model_policy_choice,
"UI_theme" : UI_theme_choice
}
if Path(server_config_filename).is_file():
with open(server_config_filename, "r", encoding="utf-8") as reader:
text = reader.read()
old_server_config = json.loads(text)
if lock_ui_transformer:
server_config["transformer_filename"] = old_server_config["transformer_filename"]
if lock_ui_attention:
server_config["attention_mode"] = old_server_config["attention_mode"]
if lock_ui_compile:
server_config["compile"] = old_server_config["compile"]
with open(server_config_filename, "w", encoding="utf-8") as writer:
writer.write(json.dumps(server_config))
changes = []
for k, v in server_config.items():
v_old = old_server_config.get(k, None)
if v != v_old:
changes.append(k)
global attention_mode, profile, compile, text_encoder_filename, vae_config, boost, lora_dir, reload_needed, preload_model_policy, transformer_quantization, transformer_types
attention_mode = server_config["attention_mode"]
profile = server_config["profile"]
compile = server_config["compile"]
text_encoder_filename = server_config["text_encoder_filename"]
vae_config = server_config["vae_config"]
boost = server_config["boost"]
preload_model_policy = server_config["preload_model_policy"]
transformer_quantization = server_config["transformer_quantization"]
transformer_types = server_config["transformer_types"]
model_filename = state["model_filename"]
model_transformer_type = get_model_type(model_filename)
if not model_transformer_type in transformer_types:
model_transformer_type = transformer_types[0] if len(transformer_types) > 0 else model_types[0]
model_filename = get_model_filename(model_transformer_type, transformer_quantization)
state["model_filename"] = model_filename
if all(change in ["attention_mode", "vae_config", "boost", "save_path", "metadata_choice", "clear_file_list"] for change in changes ):
model_choice = gr.Dropdown()
else:
reload_needed = True
model_choice = generate_dropdown_model_list()
header = generate_header(transformer_filename, compile=compile, attention_mode= attention_mode)
return "The new configuration has been succesfully applied
", header, model_choice
from moviepy.editor import ImageSequenceClip
import numpy as np
def save_video(final_frames, output_path, fps=24):
assert final_frames.ndim == 4 and final_frames.shape[3] == 3, f"invalid shape: {final_frames} (need t h w c)"
if final_frames.dtype != np.uint8:
final_frames = (final_frames * 255).astype(np.uint8)
ImageSequenceClip(list(final_frames), fps=fps).write_videofile(output_path, verbose= False, logger = None)
def get_gen_info(state):
cache = state.get("gen", None)
if cache == None:
cache = dict()
state["gen"] = cache
return cache
def build_callback(state, pipe, progress, status, num_inference_steps):
def callback(step_idx, force_refresh, read_state = False):
gen = get_gen_info(state)
refresh_id = gen.get("refresh", -1)
if force_refresh or step_idx >= 0:
pass
else:
refresh_id = gen.get("refresh", -1)
if refresh_id < 0:
return
UI_refresh = state.get("refresh", 0)
if UI_refresh >= refresh_id:
return
status = gen["progress_status"]
state["refresh"] = refresh_id
if read_state:
phase, step_idx = gen["progress_phase"]
else:
step_idx += 1
if gen.get("abort", False):
# pipe._interrupt = True
phase = " - Aborting"
elif step_idx == num_inference_steps:
phase = " - VAE Decoding"
else:
phase = " - Denoising"
gen["progress_phase"] = (phase, step_idx)
status_msg = status + phase
if step_idx >= 0:
progress_args = [(step_idx , num_inference_steps) , status_msg , num_inference_steps]
else:
progress_args = [0, status_msg]
progress(*progress_args)
gen["progress_args"] = progress_args
return callback
def abort_generation(state):
gen = get_gen_info(state)
if "in_progress" in gen:
gen["abort"] = True
gen["extra_orders"] = 0
if wan_model != None:
wan_model._interrupt= True
msg = "Processing Request to abort Current Generation"
gr.Info(msg)
return msg, gr.Button(interactive= False)
else:
return "", gr.Button(interactive= True)
def refresh_gallery(state, msg):
gen = get_gen_info(state)
gen["last_msg"] = msg
file_list = gen.get("file_list", None)
choice = gen.get("selected",0)
in_progress = "in_progress" in gen
if in_progress:
if gen.get("last_selected", True):
choice = max(len(file_list) - 1,0)
queue = gen.get("queue", [])
abort_interactive = not gen.get("abort", False)
if not in_progress or len(queue) == 0:
return gr.Gallery(selected_index=choice, value = file_list), gr.HTML("", visible= False), gr.Button(visible=True), gr.Button(visible=False), gr.Row(visible=False), update_queue_data(queue), gr.Button(interactive= abort_interactive)
else:
task = queue[0]
start_img_md = ""
end_img_md = ""
prompt = task["prompt"]
params = task["params"]
if "\n" in prompt and params.get("sliding_window_repeat", 0) > 0:
prompts = prompt.split("\n")
repeat_no= gen.get("repeat_no",1)
if repeat_no > len(prompts):
repeat_no = len(prompts)
repeat_no -= 1
prompts[repeat_no]="" + prompts[repeat_no] + ""
prompt = "
".join(prompts)
start_img_uri = task.get('start_image_data_base64')
start_img_uri = start_img_uri[0] if start_img_uri !=None else None
end_img_uri = task.get('end_image_data_base64')
end_img_uri = end_img_uri[0] if end_img_uri !=None else None
thumbnail_size = "100px"
if start_img_uri:
start_img_md = f'
'
if end_img_uri:
end_img_md = f'
'
label = f"Prompt of Video being Generated"
html = "| " + prompt + " | "
if start_img_md != "":
html += "" + start_img_md + " | "
if end_img_md != "":
html += "" + end_img_md + " | "
html += "
"
html_output = gr.HTML(html, visible= True)
return gr.Gallery(selected_index=choice, value = file_list), html_output, gr.Button(visible=False), gr.Button(visible=True), gr.Row(visible=True), update_queue_data(queue), gr.Button(interactive= abort_interactive)
def finalize_generation(state):
gen = get_gen_info(state)
choice = gen.get("selected",0)
if "in_progress" in gen:
del gen["in_progress"]
if gen.get("last_selected", True):
file_list = gen.get("file_list", [])
choice = len(file_list) - 1
gen["extra_orders"] = 0
time.sleep(0.2)
global gen_in_progress
gen_in_progress = False
return gr.Gallery(selected_index=choice), gr.Button(interactive= True), gr.Button(visible= True), gr.Button(visible= False), gr.Column(visible= False), gr.HTML(visible= False, value="")
def refresh_gallery_on_trigger(state):
gen = get_gen_info(state)
if(gen.get("update_gallery", False)):
gen['update_gallery'] = False
return gr.update(value=gen.get("file_list", []))
def select_video(state , event_data: gr.EventData):
data= event_data._data
gen = get_gen_info(state)
if data!=None:
choice = data.get("index",0)
file_list = gen.get("file_list", [])
gen["last_selected"] = (choice + 1) >= len(file_list)
gen["selected"] = choice
return
def expand_slist(slist, num_inference_steps ):
new_slist= []
inc = len(slist) / num_inference_steps
pos = 0
for i in range(num_inference_steps):
new_slist.append(slist[ int(pos)])
pos += inc
return new_slist
def convert_image(image):
from PIL import ImageOps
from typing import cast
image = image.convert('RGB')
return cast(Image, ImageOps.exif_transpose(image))
def get_resampled_video(video_in, start_frame, max_frames):
from wan.utils.utils import resample
import decord
decord.bridge.set_bridge('torch')
reader = decord.VideoReader(video_in)
fps = reader.get_avg_fps()
frame_nos = resample(fps, len(reader), max_target_frames_count= max_frames, target_fps=16, start_target_frame= start_frame)
frames_list = reader.get_batch(frame_nos)
return frames_list
def preprocess_video(process_type, height, width, video_in, max_frames, start_frame=0, fit_canvas = False):
frames_list = get_resampled_video(video_in, start_frame, max_frames)
if len(frames_list) == 0:
return None
frame_height, frame_width, _ = frames_list[0].shape
if fit_canvas :
scale = min(height / frame_height, width / frame_width)
else:
scale = ((height * width ) / (frame_height * frame_width))**(1/2)
new_height = (int(frame_height * scale) // 16) * 16
new_width = (int(frame_width * scale) // 16) * 16
# if fit_canvas :
# new_height = height
# new_width = width
processed_frames_list = []
for frame in frames_list:
frame = Image.fromarray(np.clip(frame.cpu().numpy(), 0, 255).astype(np.uint8))
frame = frame.resize((new_width,new_height), resample=Image.Resampling.LANCZOS)
processed_frames_list.append(frame)
if process_type=="pose":
from preprocessing.dwpose.pose import PoseBodyFaceVideoAnnotator
cfg_dict = {
"DETECTION_MODEL": "ckpts/pose/yolox_l.onnx",
"POSE_MODEL": "ckpts/pose/dw-ll_ucoco_384.onnx",
"RESIZE_SIZE": 1024
}
anno_ins = PoseBodyFaceVideoAnnotator(cfg_dict)
elif process_type=="depth":
from preprocessing.midas.depth import DepthVideoAnnotator
cfg_dict = {
"PRETRAINED_MODEL": "ckpts/depth/dpt_hybrid-midas-501f0c75.pt"
}
anno_ins = DepthVideoAnnotator(cfg_dict)
elif process_type=="gray":
from preprocessing.gray import GrayVideoAnnotator
cfg_dict = {}
anno_ins = GrayVideoAnnotator(cfg_dict)
else:
anno_ins = None
if anno_ins == None:
np_frames = [np.array(frame) for frame in processed_frames_list]
else:
np_frames = anno_ins.forward(processed_frames_list)
# from preprocessing.dwpose.pose import save_one_video
# save_one_video("test.mp4", np_frames, fps=8, quality=8, macro_block_size=None)
torch_frames = []
for np_frame in np_frames:
torch_frame = torch.from_numpy(np_frame)
torch_frames.append(torch_frame)
return torch.stack(torch_frames)
def parse_keep_frames(keep_frames, video_length):
def is_integer(n):
try:
float(n)
except ValueError:
return False
else:
return float(n).is_integer()
def absolute(n):
if n==0:
return 0
elif n < 0:
return max(0, video_length + n)
else:
return min(n-1, video_length-1)
if len(keep_frames) == 0:
return [True] *video_length, ""
frames =[False] *video_length
error = ""
sections = keep_frames.split(" ")
for section in sections:
section = section.strip()
if ":" in section:
parts = section.split(":")
if not is_integer(parts[0]):
error =f"Invalid integer {parts[0]}"
break
start_range = absolute(int(parts[0]))
if not is_integer(parts[1]):
error =f"Invalid integer {parts[1]}"
break
end_range = absolute(int(parts[1]))
for i in range(start_range, end_range + 1):
frames[i] = True
else:
if not is_integer(section):
error =f"Invalid integer {section}"
break
index = absolute(int(section))
frames[index] = True
if len(error ) > 0:
return [], error
for i in range(len(frames)-1, 0, -1):
if frames[i]:
break
frames= frames[0: i+1]
return frames, error
def generate_video(
task_id,
progress,
prompt,
negative_prompt,
resolution,
video_length,
seed,
num_inference_steps,
guidance_scale,
flow_shift,
embedded_guidance_scale,
repeat_generation,
multi_images_gen_type,
tea_cache_setting,
tea_cache_start_step_perc,
activated_loras,
loras_multipliers,
image_prompt_type,
image_start,
image_end,
video_prompt_type,
image_refs,
video_guide,
video_mask,
camera_type,
video_source,
keep_frames,
sliding_window_repeat,
sliding_window_overlap,
sliding_window_discard_last_frames,
remove_background_image_ref,
temporal_upsampling,
spatial_upsampling,
RIFLEx_setting,
slg_switch,
slg_layers,
slg_start_perc,
slg_end_perc,
cfg_star_switch,
cfg_zero_step,
state,
model_filename
):
global wan_model, offloadobj, reload_needed
gen = get_gen_info(state)
file_list = gen["file_list"]
prompt_no = gen["prompt_no"]
# if wan_model == None:
# gr.Info("Unable to generate a Video while a new configuration is being applied.")
# return
if "P" in preload_model_policy and not "U" in preload_model_policy:
while wan_model == None:
time.sleep(1)
if model_filename != transformer_filename or reload_needed:
wan_model = None
if offloadobj is not None:
offloadobj.release()
offloadobj = None
gc.collect()
yield f"Loading model {get_model_name(model_filename)}..."
wan_model, offloadobj, trans = load_models(model_filename)
yield f"Model loaded"
reload_needed= False
if attention_mode == "auto":
attn = get_auto_attention()
elif attention_mode in attention_modes_supported:
attn = attention_mode
else:
gr.Info(f"You have selected attention mode '{attention_mode}'. However it is not installed or supported on your system. You should either install it or switch to the default 'sdpa' attention.")
return
width, height = resolution.split("x")
width, height = int(width), int(height)
resolution_reformated = str(height) + "*" + str(width)
if slg_switch == 0:
slg_layers = None
offload.shared_state["_attention"] = attn
# VAE Tiling
device_mem_capacity = torch.cuda.get_device_properties(0).total_memory / 1048576
if vae_config == 0:
if device_mem_capacity >= 24000:
use_vae_config = 1
elif device_mem_capacity >= 8000:
use_vae_config = 2
else:
use_vae_config = 3
else:
use_vae_config = vae_config
if use_vae_config == 1:
VAE_tile_size = 0
elif use_vae_config == 2:
VAE_tile_size = 256
else:
VAE_tile_size = 128
trans = wan_model.model
temp_filename = None
loras = state["loras"]
if len(loras) > 0:
def is_float(element: any) -> bool:
if element is None:
return False
try:
float(element)
return True
except ValueError:
return False
list_mult_choices_nums = []
if len(loras_multipliers) > 0:
loras_mult_choices_list = loras_multipliers.replace("\r", "").split("\n")
loras_mult_choices_list = [multi for multi in loras_mult_choices_list if len(multi)>0 and not multi.startswith("#")]
loras_multipliers = " ".join(loras_mult_choices_list)
list_mult_choices_str = loras_multipliers.split(" ")
for i, mult in enumerate(list_mult_choices_str):
mult = mult.strip()
if "," in mult:
multlist = mult.split(",")
slist = []
for smult in multlist:
if not is_float(smult):
raise gr.Error(f"Lora sub value no {i+1} ({smult}) in Multiplier definition '{multlist}' is invalid")
slist.append(float(smult))
slist = expand_slist(slist, num_inference_steps )
list_mult_choices_nums.append(slist)
else:
if not is_float(mult):
raise gr.Error(f"Lora Multiplier no {i+1} ({mult}) is invalid")
list_mult_choices_nums.append(float(mult))
if len(list_mult_choices_nums ) < len(activated_loras):
list_mult_choices_nums += [1.0] * ( len(activated_loras) - len(list_mult_choices_nums ) )
loras_selected = [ lora for lora in loras if os.path.basename(lora) in activated_loras]
pinnedLora = profile !=5 #False # # #
offload.load_loras_into_model(trans, loras_selected, list_mult_choices_nums, activate_all_loras=True, preprocess_sd=preprocess_loras, pinnedLora=pinnedLora, split_linear_modules_map = None)
errors = trans._loras_errors
if len(errors) > 0:
error_files = [msg for _ , msg in errors]
raise gr.Error("Error while loading Loras: " + ", ".join(error_files))
seed = None if seed == -1 else seed
# negative_prompt = "" # not applicable in the inference
image2video = test_class_i2v(model_filename)
enable_RIFLEx = RIFLEx_setting == 0 and video_length > (6* 16) or RIFLEx_setting == 1
# VAE Tiling
device_mem_capacity = torch.cuda.get_device_properties(None).total_memory / 1048576
joint_pass = boost ==1 #and profile != 1 and profile != 3
# TeaCache
trans.enable_teacache = tea_cache_setting > 0
if trans.enable_teacache:
trans.teacache_multiplier = tea_cache_setting
trans.rel_l1_thresh = 0
trans.teacache_start_step = int(tea_cache_start_step_perc*num_inference_steps/100)
if image2video:
if '480p' in model_filename:
# teacache_thresholds = [0.13, .19, 0.26]
trans.coefficients = [-3.02331670e+02, 2.23948934e+02, -5.25463970e+01, 5.87348440e+00, -2.01973289e-01]
elif '720p' in model_filename:
teacache_thresholds = [0.18, 0.2 , 0.3]
trans.coefficients = [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683]
else:
raise gr.Error("Teacache not supported for this model")
else:
if '1.3B' in model_filename:
# teacache_thresholds= [0.05, 0.07, 0.08]
trans.coefficients = [2.39676752e+03, -1.31110545e+03, 2.01331979e+02, -8.29855975e+00, 1.37887774e-01]
elif '14B' in model_filename:
# teacache_thresholds = [0.14, 0.15, 0.2]
trans.coefficients = [-5784.54975374, 5449.50911966, -1811.16591783, 256.27178429, -13.02252404]
else:
raise gr.Error("Teacache not supported for this model")
source_video = None
target_camera = None
if "recam" in model_filename:
source_video = preprocess_video("", width=width, height=height,video_in=video_source, max_frames= video_length, start_frame = 0, fit_canvas= True)
target_camera = camera_type
import random
if seed == None or seed <0:
seed = random.randint(0, 999999999)
global save_path
os.makedirs(save_path, exist_ok=True)
video_no = 0
abort = False
gc.collect()
torch.cuda.empty_cache()
wan_model._interrupt = False
gen["abort"] = False
gen["prompt"] = prompt
repeat_no = 0
extra_generation = 0
start_frame = 0
sliding_window = sliding_window_repeat > 0
if sliding_window:
reuse_frames = sliding_window_overlap
discard_last_frames = sliding_window_discard_last_frames #4
repeat_generation = sliding_window_repeat
prompts = prompt.split("\n")
prompts = [part for part in prompts if len(prompt)>0]
gen["sliding_window"] = sliding_window
frames_already_processed = None
pre_video_guide = None
while True:
extra_generation += gen.get("extra_orders",0)
gen["extra_orders"] = 0
total_generation = repeat_generation + extra_generation
gen["total_generation"] = total_generation
if abort or repeat_no >= total_generation:
break
if "Vace" in model_filename and (repeat_no == 0 or sliding_window):
if sliding_window:
prompt = prompts[repeat_no] if repeat_no < len(prompts) else prompts[-1]
# video_prompt_type = video_prompt_type +"G"
image_refs_copy = image_refs.copy() if image_refs != None else None # required since prepare_source do inplace modifications
video_guide_copy = video_guide
video_mask_copy = video_mask
if any(process in video_prompt_type for process in ("P", "D", "G")) :
prompts_max = gen["prompts_max"]
status = get_generation_status(prompt_no, prompts_max, 1, 1, sliding_window)
preprocess_type = None
if "P" in video_prompt_type :
progress_args = [0, status + " - Extracting Open Pose Information"]
preprocess_type = "pose"
elif "D" in video_prompt_type :
progress_args = [0, status + " - Extracting Depth Information"]
preprocess_type = "depth"
elif "G" in video_prompt_type :
progress_args = [0, status + " - Extracting Gray Level Information"]
preprocess_type = "gray"
if preprocess_type != None :
progress(*progress_args )
gen["progress_args"] = progress_args
video_guide_copy = preprocess_video(preprocess_type, width=width, height=height,video_in=video_guide, max_frames= video_length if repeat_no ==0 else video_length - reuse_frames, start_frame = start_frame)
keep_frames_parsed, error = parse_keep_frames(keep_frames, video_length)
if len(error) > 0:
raise gr.Error(f"invalid keep frames {keep_frames}")
if repeat_no == 0:
image_size = VACE_SIZE_CONFIGS[resolution_reformated] # default frame dimensions until it is set by video_src (if there is any)
src_video, src_mask, src_ref_images = wan_model.prepare_source([video_guide_copy],
[video_mask_copy ],
[image_refs_copy],
video_length, image_size = image_size, device ="cpu",
original_video= "O" in video_prompt_type,
keep_frames=keep_frames_parsed,
start_frame = start_frame,
pre_src_video = [pre_video_guide]
)
if repeat_no == 0 and src_video != None and len(src_video) > 0:
image_size = src_video[0].shape[-2:]
else:
src_video, src_mask, src_ref_images = None, None, None
repeat_no +=1
gen["repeat_no"] = repeat_no
prompts_max = gen["prompts_max"]
status = get_generation_status(prompt_no, prompts_max, repeat_no, total_generation, sliding_window)
gen["progress_status"] = status
gen["progress_phase"] = (" - Encoding Prompt", -1 )
callback = build_callback(state, trans, progress, status, num_inference_steps)
progress_args = [0, status + " - Encoding Prompt"]
progress(*progress_args )
gen["progress_args"] = progress_args
try:
start_time = time.time()
if trans.enable_teacache:
trans.teacache_counter = 0
trans.num_steps = num_inference_steps
trans.teacache_skipped_steps = 0
trans.previous_residual_uncond = None
trans.previous_residual_cond = None
video_no += 1
if image2video:
samples = wan_model.generate(
prompt,
image_start,
image_end if image_end != None else None,
frame_num=(video_length // 4)* 4 + 1,
max_area=MAX_AREA_CONFIGS[resolution_reformated],
shift=flow_shift,
sampling_steps=num_inference_steps,
guide_scale=guidance_scale,
n_prompt=negative_prompt,
seed=seed,
offload_model=False,
callback=callback,
enable_RIFLEx = enable_RIFLEx,
VAE_tile_size = VAE_tile_size,
joint_pass = joint_pass,
slg_layers = slg_layers,
slg_start = slg_start_perc/100,
slg_end = slg_end_perc/100,
cfg_star_switch = cfg_star_switch,
cfg_zero_step = cfg_zero_step,
add_frames_for_end_image = "image2video" in model_filename
)
else:
samples = wan_model.generate(
prompt,
input_frames = src_video,
input_ref_images= src_ref_images,
input_masks = src_mask,
source_video= source_video,
target_camera= target_camera,
frame_num=(video_length // 4)* 4 + 1,
size=(width, height),
shift=flow_shift,
sampling_steps=num_inference_steps,
guide_scale=guidance_scale,
n_prompt=negative_prompt,
seed=seed,
offload_model=False,
callback=callback,
enable_RIFLEx = enable_RIFLEx,
VAE_tile_size = VAE_tile_size,
joint_pass = joint_pass,
slg_layers = slg_layers,
slg_start = slg_start_perc/100,
slg_end = slg_end_perc/100,
cfg_star_switch = cfg_star_switch,
cfg_zero_step = cfg_zero_step,
)
# samples = torch.empty( (1,2)) #for testing
except Exception as e:
if temp_filename!= None and os.path.isfile(temp_filename):
os.remove(temp_filename)
offload.last_offload_obj.unload_all()
offload.unload_loras_from_model(trans)
# if compile:
# cache_size = torch._dynamo.config.cache_size_limit
# torch.compiler.reset()
# torch._dynamo.config.cache_size_limit = cache_size
gc.collect()
torch.cuda.empty_cache()
s = str(e)
keyword_list = {"CUDA out of memory" : "VRAM", "Tried to allocate":"VRAM", "CUDA error: out of memory": "RAM", "CUDA error: too many resources requested": "RAM"}
crash_type = ""
for keyword, tp in keyword_list.items():
if keyword in s:
crash_type = tp
break
state["prompt"] = ""
if crash_type == "VRAM":
new_error = "The generation of the video has encountered an error: it is likely that you have unsufficient VRAM and you should therefore reduce the video resolution or its number of frames."
elif crash_type == "RAM":
new_error = "The generation of the video has encountered an error: it is likely that you have unsufficient RAM and / or Reserved RAM allocation should be reduced using 'perc_reserved_mem_max' or using a different Profile."
else:
new_error = gr.Error(f"The generation of the video has encountered an error, please check your terminal for more information. '{s}'")
tb = traceback.format_exc().split('\n')[:-1]
print('\n'.join(tb))
raise gr.Error(new_error, print_exception= False)
finally:
pass
# with tracker_lock:
# if task_id in progress_tracker:
# del progress_tracker[task_id]
if trans.enable_teacache:
print(f"Teacache Skipped Steps:{trans.teacache_skipped_steps}/{num_inference_steps}" )
trans.previous_residual_uncond = None
trans.previous_residual_cond = None
if samples != None:
samples = samples.to("cpu")
offload.last_offload_obj.unload_all()
gc.collect()
torch.cuda.empty_cache()
if samples == None:
end_time = time.time()
abort = True
state["prompt"] = ""
# yield f"Video generation was aborted. Total Generation Time: {end_time-start_time:.1f}s"
else:
sample = samples.cpu()
if sliding_window :
start_frame += video_length
if discard_last_frames > 0:
sample = sample[: , :-discard_last_frames]
start_frame -= discard_last_frames
pre_video_guide = sample[:, -reuse_frames:]
if repeat_no > 1:
sample = sample[: , reuse_frames:]
start_frame -= reuse_frames
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%Hh%Mm%Ss")
if os.name == 'nt':
file_name = f"{time_flag}_seed{seed}_{sanitize_file_name(prompt[:50]).strip()}.mp4"
else:
file_name = f"{time_flag}_seed{seed}_{sanitize_file_name(prompt[:100]).strip()}.mp4"
video_path = os.path.join(save_path, file_name)
# if False: # for testing
# torch.save(sample, "output.pt")
# else:
# sample =torch.load("output.pt")
exp = 0
fps = 16
if len(temporal_upsampling) > 0 or len(spatial_upsampling) > 0:
progress_args = [(num_inference_steps , num_inference_steps) , status + " - Upsampling" , num_inference_steps]
progress(*progress_args )
gen["progress_args"] = progress_args
if temporal_upsampling == "rife2":
exp = 1
elif temporal_upsampling == "rife4":
exp = 2
if exp > 0:
from rife.inference import temporal_interpolation
if sliding_window and repeat_no > 1:
sample = torch.cat([frames_already_processed[:, -2:-1], sample], dim=1)
sample = temporal_interpolation( os.path.join("ckpts", "flownet.pkl"), sample, exp, device=processing_device)
sample = sample[:, 1:]
else:
sample = temporal_interpolation( os.path.join("ckpts", "flownet.pkl"), sample, exp, device=processing_device)
fps = fps * 2**exp
if len(spatial_upsampling) > 0:
from wan.utils.utils import resize_lanczos # need multithreading or to do lanczos with cuda
if spatial_upsampling == "lanczos1.5":
scale = 1.5
else:
scale = 2
sample = (sample + 1) / 2
h, w = sample.shape[-2:]
h *= scale
w *= scale
h = int(h)
w = int(w)
new_frames =[]
for i in range( sample.shape[1] ):
frame = sample[:, i]
frame = resize_lanczos(frame, h, w)
frame = frame.unsqueeze(1)
new_frames.append(frame)
sample = torch.cat(new_frames, dim=1)
new_frames = None
sample = sample * 2 - 1
if sliding_window :
if repeat_no == 1:
frames_already_processed = sample
else:
sample = torch.cat([frames_already_processed, sample], dim=1)
frames_already_processed = sample
cache_video(
tensor=sample[None],
save_file=video_path,
fps=fps,
nrow=1,
normalize=True,
value_range=(-1, 1))
inputs = get_function_arguments(generate_video, locals())
inputs.pop("progress")
configs = prepare_inputs_dict("metadata", inputs)
metadata_choice = server_config.get("metadata_choice","metadata")
if metadata_choice == "json":
with open(video_path.replace('.mp4', '.json'), 'w') as f:
json.dump(configs, f, indent=4)
elif metadata_choice == "metadata":
from mutagen.mp4 import MP4
file = MP4(video_path)
file.tags['©cmt'] = [json.dumps(configs)]
file.save()
print(f"New video saved to Path: "+video_path)
file_list.append(video_path)
state['update_gallery'] = True
if not sliding_window:
seed += 1
yield status
if temp_filename!= None and os.path.isfile(temp_filename):
os.remove(temp_filename)
offload.unload_loras_from_model(trans)
def prepare_generate_video(state):
if state.get("validate_success",0) != 1:
return gr.Button(visible= True), gr.Button(visible= False), gr.Column(visible= False)
else:
return gr.Button(visible= False), gr.Button(visible= True), gr.Column(visible= True)
def process_tasks(state, progress=gr.Progress()):
gen = get_gen_info(state)
queue = gen.get("queue", [])
if len(queue) == 0:
return
gen = get_gen_info(state)
clear_file_list = server_config.get("clear_file_list", 0)
file_list = gen.get("file_list", [])
if clear_file_list > 0:
file_list_current_size = len(file_list)
keep_file_from = max(file_list_current_size - clear_file_list, 0)
files_removed = keep_file_from
choice = gen.get("selected",0)
choice = max(choice- files_removed, 0)
file_list = file_list[ keep_file_from: ]
else:
file_list = []
choice = 0
gen["selected"] = choice
gen["file_list"] = file_list
start_time = time.time()
global gen_in_progress
gen_in_progress = True
gen["in_progress"] = True
yield "Generating Video"
prompt_no = 0
while len(queue) > 0:
prompt_no += 1
gen["prompt_no"] = prompt_no
task = queue[0]
task_id = task["id"]
params = task['params']
iterator = iter(generate_video(task_id, progress, **params))
while True:
try:
ok = False
status = next(iterator, "#")
ok = True
if status == "#":
break
except Exception as e:
_ , exc_value, exc_traceback = sys.exc_info()
raise exc_value.with_traceback(exc_traceback)
finally:
if not ok:
queue.clear()
gen["prompts_max"] = 0
gen["prompt"] = ""
yield status
abort = gen.get("abort", False)
if abort:
gen["abort"] = False
yield "Video Generation Aborted"
queue[:] = [item for item in queue if item['id'] != task['id']]
update_global_queue_ref(queue)
gen["prompts_max"] = 0
gen["prompt"] = ""
end_time = time.time()
if abort:
yield f"Video generation was aborted. Total Generation Time: {end_time-start_time:.1f}s"
else:
yield f"Total Generation Time: {end_time-start_time:.1f}s"
def get_generation_status(prompt_no, prompts_max, repeat_no, repeat_max, sliding_window):
item = "Sliding Window" if sliding_window else "Sample"
if prompts_max == 1:
if repeat_max == 1:
return "Video"
else:
return f"{item} {repeat_no}/{repeat_max}"
else:
if repeat_max == 1:
return f"Prompt {prompt_no}/{prompts_max}"
else:
return f"Prompt {prompt_no}/{prompts_max}, {item} {repeat_no}/{repeat_max}"
refresh_id = 0
def get_new_refresh_id():
global refresh_id
refresh_id += 1
return refresh_id
def update_status(state):
gen = get_gen_info(state)
prompt_no = gen["prompt_no"]
prompts_max = gen.get("prompts_max",0)
total_generation = gen.get("total_generation", 1)
repeat_no = gen["repeat_no"]
sliding_window = gen["sliding_window"]
status = get_generation_status(prompt_no, prompts_max, repeat_no, total_generation, sliding_window)
gen["progress_status"] = status
gen["refresh"] = get_new_refresh_id()
def one_more_sample(state):
gen = get_gen_info(state)
extra_orders = gen.get("extra_orders", 0)
extra_orders += 1
gen["extra_orders"] = extra_orders
in_progress = gen.get("in_progress", False)
if not in_progress :
return state
prompt_no = gen["prompt_no"]
prompts_max = gen.get("prompts_max",0)
total_generation = gen["total_generation"] + extra_orders
repeat_no = gen["repeat_no"]
status = get_generation_status(prompt_no, prompts_max, repeat_no, total_generation, gen.get("sliding_window",False))
gen["progress_status"] = status
gen["refresh"] = get_new_refresh_id()
gr.Info(f"An extra sample generation is planned for a total of {total_generation} videos for this prompt")
return state
def get_new_preset_msg(advanced = True):
if advanced:
return "Enter here a Name for a Lora Preset or Choose one in the List"
else:
return "Choose a Lora Preset in this List to Apply a Special Effect"
def validate_delete_lset(lset_name):
if len(lset_name) == 0 or lset_name == get_new_preset_msg(True) or lset_name == get_new_preset_msg(False):
gr.Info(f"Choose a Preset to delete")
return gr.Button(visible= True), gr.Checkbox(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= False), gr.Button(visible= False)
else:
return gr.Button(visible= False), gr.Checkbox(visible= False), gr.Button(visible= False), gr.Button(visible= False), gr.Button(visible= True), gr.Button(visible= True)
def validate_save_lset(lset_name):
if len(lset_name) == 0 or lset_name == get_new_preset_msg(True) or lset_name == get_new_preset_msg(False):
gr.Info("Please enter a name for the preset")
return gr.Button(visible= True), gr.Checkbox(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= False), gr.Button(visible= False),gr.Checkbox(visible= False)
else:
return gr.Button(visible= False), gr.Button(visible= False), gr.Button(visible= False), gr.Button(visible= False), gr.Button(visible= True), gr.Button(visible= True),gr.Checkbox(visible= True)
def cancel_lset():
return gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= False), gr.Button(visible= False), gr.Button(visible= False), gr.Checkbox(visible= False)
def save_lset(state, lset_name, loras_choices, loras_mult_choices, prompt, save_lset_prompt_cbox):
loras_presets = state["loras_presets"]
loras = state["loras"]
if state.get("validate_success",0) == 0:
pass
if len(lset_name) == 0 or lset_name == get_new_preset_msg(True) or lset_name == get_new_preset_msg(False):
gr.Info("Please enter a name for the preset")
lset_choices =[("Please enter a name for a Lora Preset","")]
else:
lset_name = sanitize_file_name(lset_name)
loras_choices_files = [ Path(loras[int(choice_no)]).parts[-1] for choice_no in loras_choices ]
lset = {"loras" : loras_choices_files, "loras_mult" : loras_mult_choices}
if save_lset_prompt_cbox!=1:
prompts = prompt.replace("\r", "").split("\n")
prompts = [prompt for prompt in prompts if len(prompt)> 0 and prompt.startswith("#")]
prompt = "\n".join(prompts)
if len(prompt) > 0:
lset["prompt"] = prompt
lset["full_prompt"] = save_lset_prompt_cbox ==1
lset_name_filename = lset_name + ".lset"
full_lset_name_filename = os.path.join(get_lora_dir(state["model_filename"]), lset_name_filename)
with open(full_lset_name_filename, "w", encoding="utf-8") as writer:
writer.write(json.dumps(lset, indent=4))
if lset_name in loras_presets:
gr.Info(f"Lora Preset '{lset_name}' has been updated")
else:
gr.Info(f"Lora Preset '{lset_name}' has been created")
loras_presets.append(Path(Path(lset_name_filename).parts[-1]).stem )
lset_choices = [ ( preset, preset) for preset in loras_presets ]
lset_choices.append( (get_new_preset_msg(), ""))
state["loras_presets"] = loras_presets
return gr.Dropdown(choices=lset_choices, value= lset_name), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= False), gr.Button(visible= False), gr.Checkbox(visible= False)
def delete_lset(state, lset_name):
loras_presets = state["loras_presets"]
lset_name_filename = os.path.join( get_lora_dir(state["model_filename"]), sanitize_file_name(lset_name) + ".lset" )
if len(lset_name) > 0 and lset_name != get_new_preset_msg(True) and lset_name != get_new_preset_msg(False):
if not os.path.isfile(lset_name_filename):
raise gr.Error(f"Preset '{lset_name}' not found ")
os.remove(lset_name_filename)
pos = loras_presets.index(lset_name)
gr.Info(f"Lora Preset '{lset_name}' has been deleted")
loras_presets.remove(lset_name)
else:
pos = len(loras_presets)
gr.Info(f"Choose a Preset to delete")
state["loras_presets"] = loras_presets
lset_choices = [ (preset, preset) for preset in loras_presets]
lset_choices.append((get_new_preset_msg(), ""))
return gr.Dropdown(choices=lset_choices, value= lset_choices[pos][1]), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= True), gr.Button(visible= False), gr.Checkbox(visible= False)
def refresh_lora_list(state, lset_name, loras_choices):
loras_names = state["loras_names"]
prev_lora_names_selected = [ loras_names[int(i)] for i in loras_choices]
model_filename= state["model_filename"]
loras, loras_names, loras_presets, _, _, _, _ = setup_loras(model_filename, None, get_lora_dir(model_filename), lora_preselected_preset, None)
state["loras"] = loras
state["loras_names"] = loras_names
state["loras_presets"] = loras_presets
gc.collect()
new_loras_choices = [ (loras_name, str(i)) for i,loras_name in enumerate(loras_names)]
new_loras_dict = { loras_name: str(i) for i,loras_name in enumerate(loras_names) }
lora_names_selected = []
for lora in prev_lora_names_selected:
lora_id = new_loras_dict.get(lora, None)
if lora_id!= None:
lora_names_selected.append(lora_id)
lset_choices = [ (preset, preset) for preset in loras_presets]
lset_choices.append((get_new_preset_msg( state["advanced"]), ""))
if lset_name in loras_presets:
pos = loras_presets.index(lset_name)
else:
pos = len(loras_presets)
lset_name =""
if wan_model != None:
errors = getattr(wan_model.model, "_loras_errors", "")
if errors !=None and len(errors) > 0:
error_files = [path for path, _ in errors]
gr.Info("Error while refreshing Lora List, invalid Lora files: " + ", ".join(error_files))
else:
gr.Info("Lora List has been refreshed")
return gr.Dropdown(choices=lset_choices, value= lset_choices[pos][1]), gr.Dropdown(choices=new_loras_choices, value= lora_names_selected)
def apply_lset(state, wizard_prompt_activated, lset_name, loras_choices, loras_mult_choices, prompt):
state["apply_success"] = 0
if len(lset_name) == 0 or lset_name== get_new_preset_msg(True) or lset_name== get_new_preset_msg(False):
gr.Info("Please choose a preset in the list or create one")
else:
loras = state["loras"]
loras_choices, loras_mult_choices, preset_prompt, full_prompt, error = extract_preset(state["model_filename"], lset_name, loras)
if len(error) > 0:
gr.Info(error)
else:
if full_prompt:
prompt = preset_prompt
elif len(preset_prompt) > 0:
prompts = prompt.replace("\r", "").split("\n")
prompts = [prompt for prompt in prompts if len(prompt)>0 and not prompt.startswith("#")]
prompt = "\n".join(prompts)
prompt = preset_prompt + '\n' + prompt
gr.Info(f"Lora Preset '{lset_name}' has been applied")
state["apply_success"] = 1
wizard_prompt_activated = "on"
return wizard_prompt_activated, loras_choices, loras_mult_choices, prompt
def extract_prompt_from_wizard(state, variables_names, prompt, wizard_prompt, allow_null_values, *args):
prompts = wizard_prompt.replace("\r" ,"").split("\n")
new_prompts = []
macro_already_written = False
for prompt in prompts:
if not macro_already_written and not prompt.startswith("#") and "{" in prompt and "}" in prompt:
variables = variables_names.split("\n")
values = args[:len(variables)]
macro = "! "
for i, (variable, value) in enumerate(zip(variables, values)):
if len(value) == 0 and not allow_null_values:
return prompt, "You need to provide a value for '" + variable + "'"
sub_values= [ "\"" + sub_value + "\"" for sub_value in value.split("\n") ]
value = ",".join(sub_values)
if i>0:
macro += " : "
macro += "{" + variable + "}"+ f"={value}"
if len(variables) > 0:
macro_already_written = True
new_prompts.append(macro)
new_prompts.append(prompt)
else:
new_prompts.append(prompt)
prompt = "\n".join(new_prompts)
return prompt, ""
def validate_wizard_prompt(state, wizard_prompt_activated, wizard_variables_names, prompt, wizard_prompt, *args):
state["validate_success"] = 0
if wizard_prompt_activated != "on":
state["validate_success"] = 1
return prompt
prompt, errors = extract_prompt_from_wizard(state, wizard_variables_names, prompt, wizard_prompt, False, *args)
if len(errors) > 0:
gr.Info(errors)
return prompt
state["validate_success"] = 1
return prompt
def fill_prompt_from_wizard(state, wizard_prompt_activated, wizard_variables_names, prompt, wizard_prompt, *args):
if wizard_prompt_activated == "on":
prompt, errors = extract_prompt_from_wizard(state, wizard_variables_names, prompt, wizard_prompt, True, *args)
if len(errors) > 0:
gr.Info(errors)
wizard_prompt_activated = "off"
return wizard_prompt_activated, "", gr.Textbox(visible= True, value =prompt) , gr.Textbox(visible= False), gr.Column(visible = True), *[gr.Column(visible = False)] * 2, *[gr.Textbox(visible= False)] * PROMPT_VARS_MAX
def extract_wizard_prompt(prompt):
variables = []
values = {}
prompts = prompt.replace("\r" ,"").split("\n")
if sum(prompt.startswith("!") for prompt in prompts) > 1:
return "", variables, values, "Prompt is too complex for basic Prompt editor, switching to Advanced Prompt"
new_prompts = []
errors = ""
for prompt in prompts:
if prompt.startswith("!"):
variables, errors = prompt_parser.extract_variable_names(prompt)
if len(errors) > 0:
return "", variables, values, "Error parsing Prompt templace: " + errors
if len(variables) > PROMPT_VARS_MAX:
return "", variables, values, "Prompt is too complex for basic Prompt editor, switching to Advanced Prompt"
values, errors = prompt_parser.extract_variable_values(prompt)
if len(errors) > 0:
return "", variables, values, "Error parsing Prompt templace: " + errors
else:
variables_extra, errors = prompt_parser.extract_variable_names(prompt)
if len(errors) > 0:
return "", variables, values, "Error parsing Prompt templace: " + errors
variables += variables_extra
variables = [var for pos, var in enumerate(variables) if var not in variables[:pos]]
if len(variables) > PROMPT_VARS_MAX:
return "", variables, values, "Prompt is too complex for basic Prompt editor, switching to Advanced Prompt"
new_prompts.append(prompt)
wizard_prompt = "\n".join(new_prompts)
return wizard_prompt, variables, values, errors
def fill_wizard_prompt(state, wizard_prompt_activated, prompt, wizard_prompt):
def get_hidden_textboxes(num = PROMPT_VARS_MAX ):
return [gr.Textbox(value="", visible=False)] * num
hidden_column = gr.Column(visible = False)
visible_column = gr.Column(visible = True)
wizard_prompt_activated = "off"
if state["advanced"] or state.get("apply_success") != 1:
return wizard_prompt_activated, gr.Text(), prompt, wizard_prompt, gr.Column(), gr.Column(), hidden_column, *get_hidden_textboxes()
prompt_parts= []
wizard_prompt, variables, values, errors = extract_wizard_prompt(prompt)
if len(errors) > 0:
gr.Info( errors )
return wizard_prompt_activated, "", gr.Textbox(prompt, visible=True), gr.Textbox(wizard_prompt, visible=False), visible_column, *[hidden_column] * 2, *get_hidden_textboxes()
for variable in variables:
value = values.get(variable, "")
prompt_parts.append(gr.Textbox( placeholder=variable, info= variable, visible= True, value= "\n".join(value) ))
any_macro = len(variables) > 0
prompt_parts += get_hidden_textboxes(PROMPT_VARS_MAX-len(prompt_parts))
variables_names= "\n".join(variables)
wizard_prompt_activated = "on"
return wizard_prompt_activated, variables_names, gr.Textbox(prompt, visible = False), gr.Textbox(wizard_prompt, visible = True), hidden_column, visible_column, visible_column if any_macro else hidden_column, *prompt_parts
def switch_prompt_type(state, wizard_prompt_activated_var, wizard_variables_names, prompt, wizard_prompt, *prompt_vars):
if state["advanced"]:
return fill_prompt_from_wizard(state, wizard_prompt_activated_var, wizard_variables_names, prompt, wizard_prompt, *prompt_vars)
else:
state["apply_success"] = 1
return fill_wizard_prompt(state, wizard_prompt_activated_var, prompt, wizard_prompt)
visible= False
def switch_advanced(state, new_advanced, lset_name):
state["advanced"] = new_advanced
loras_presets = state["loras_presets"]
lset_choices = [ (preset, preset) for preset in loras_presets]
lset_choices.append((get_new_preset_msg(new_advanced), ""))
if lset_name== get_new_preset_msg(True) or lset_name== get_new_preset_msg(False) or lset_name=="":
lset_name = get_new_preset_msg(new_advanced)
if only_allow_edit_in_advanced:
return gr.Row(visible=new_advanced), gr.Row(visible=new_advanced), gr.Button(visible=new_advanced), gr.Row(visible= not new_advanced), gr.Dropdown(choices=lset_choices, value= lset_name)
else:
return gr.Row(visible=new_advanced), gr.Row(visible=True), gr.Button(visible=True), gr.Row(visible= False), gr.Dropdown(choices=lset_choices, value= lset_name)
def prepare_inputs_dict(target, inputs ):
state = inputs.pop("state")
loras = state["loras"]
if "loras_choices" in inputs:
loras_choices = inputs.pop("loras_choices")
inputs.pop("model_filename", None)
activated_loras = [Path( loras[int(no)]).parts[-1] for no in loras_choices ]
inputs["activated_loras"] = activated_loras
if target == "state":
return inputs
unsaved_params = ["image_start", "image_end", "image_refs", "video_guide", "video_source", "video_mask"]
for k in unsaved_params:
inputs.pop(k)
model_filename = state["model_filename"]
inputs["type"] = "Wan2.1GP by DeepBeepMeep - " + get_model_name(model_filename)
if target == "settings":
return inputs
if not test_class_i2v(model_filename):
inputs.pop("image_prompt_type")
if not "recam" in model_filename:
inputs.pop("camera_type")
if not "Vace" in model_filename:
unsaved_params = ["video_prompt_type", "keep_frames", "remove_background_image_ref", "sliding_window_repeat", "sliding_window_overlap", "sliding_window_discard_last_frames"]
for k in unsaved_params:
inputs.pop(k)
if target == "metadata":
inputs = {k: v for k,v in inputs.items() if v != None }
return inputs
def get_function_arguments(func, locals):
args_names = list(inspect.signature(func).parameters)
kwargs = typing.OrderedDict()
for k in args_names:
kwargs[k] = locals[k]
return kwargs
def save_inputs(
target,
lset_name,
prompt,
negative_prompt,
resolution,
video_length,
seed,
num_inference_steps,
guidance_scale,
flow_shift,
embedded_guidance_scale,
repeat_generation,
multi_images_gen_type,
tea_cache_setting,
tea_cache_start_step_perc,
loras_choices,
loras_multipliers,
image_prompt_type,
image_start,
image_end,
video_prompt_type,
image_refs,
video_guide,
video_mask,
camera_type,
video_source,
keep_frames,
sliding_window_repeat,
sliding_window_overlap,
sliding_window_discard_last_frames,
remove_background_image_ref,
temporal_upsampling,
spatial_upsampling,
RIFLEx_setting,
slg_switch,
slg_layers,
slg_start_perc,
slg_end_perc,
cfg_star_switch,
cfg_zero_step,
state,
):
# if state.get("validate_success",0) != 1:
# return
model_filename = state["model_filename"]
inputs = get_function_arguments(save_inputs, locals())
inputs.pop("target")
cleaned_inputs = prepare_inputs_dict(target, inputs)
if target == "settings":
defaults_filename = get_settings_file_name(model_filename)
with open(defaults_filename, "w", encoding="utf-8") as f:
json.dump(cleaned_inputs, f, indent=4)
gr.Info("New Default Settings saved")
elif target == "state":
state[get_model_type(model_filename)] = cleaned_inputs
def download_loras():
from huggingface_hub import snapshot_download
yield gr.Row(visible=True), "Please wait while the Loras are being downloaded", *[gr.Column(visible=False)] * 2
lora_dir = get_lora_dir(get_model_filename("i2v", transformer_quantization))
log_path = os.path.join(lora_dir, "log.txt")
if not os.path.isfile(log_path):
tmp_path = os.path.join(lora_dir, "tmp_lora_dowload")
import glob
snapshot_download(repo_id="DeepBeepMeep/Wan2.1", allow_patterns="loras_i2v/*", local_dir= tmp_path)
for f in glob.glob(os.path.join(tmp_path, "loras_i2v", "*.*")):
target_file = os.path.join(lora_dir, Path(f).parts[-1] )
if os.path.isfile(target_file):
os.remove(f)
else:
shutil.move(f, lora_dir)
try:
os.remove(tmp_path)
except:
pass
yield gr.Row(visible=True), "Loras have been completely downloaded", *[gr.Column(visible=True)] * 2
from datetime import datetime
dt = datetime.today().strftime('%Y-%m-%d')
with open( log_path, "w", encoding="utf-8") as writer:
writer.write(f"Loras downloaded on the {dt} at {time.time()} on the {time.time()}")
return
def refresh_image_prompt_type(state, image_prompt_type):
if args.multiple_images:
return gr.Gallery(visible = "S" in image_prompt_type ), gr.Gallery(visible = "E" in image_prompt_type )
else:
return gr.Image(visible = "S" in image_prompt_type ), gr.Image(visible = "E" in image_prompt_type )
def refresh_video_prompt_type(state, video_prompt_type):
return gr.Gallery(visible = "I" in video_prompt_type), gr.Video(visible= "V" in video_prompt_type),gr.Video(visible= "M" in video_prompt_type ), gr.Text(visible= "V" in video_prompt_type) , gr.Checkbox(visible= "I" in video_prompt_type)
def handle_celll_selection(state, evt: gr.SelectData):
gen = get_gen_info(state)
queue = gen.get("queue", [])
if evt.index is None:
return gr.update(), gr.update(), gr.update(visible=False)
row_index, col_index = evt.index
cell_value = None
if col_index in [6, 7, 8]:
if col_index == 6: cell_value = "↑"
elif col_index == 7: cell_value = "↓"
elif col_index == 8: cell_value = "✖"
if col_index == 6:
new_df_data = move_up(queue, [row_index])
return new_df_data, gr.update(), gr.update(visible=False)
elif col_index == 7:
new_df_data = move_down(queue, [row_index])
return new_df_data, gr.update(), gr.update(visible=False)
elif col_index == 8:
new_df_data = remove_task(queue, [row_index])
gen["prompts_max"] = gen.get("prompts_max",0) - 1
update_status(state)
return new_df_data, gr.update(), gr.update(visible=False)
start_img_col_idx = 4
end_img_col_idx = 5
image_data_to_show = None
if col_index == start_img_col_idx:
with lock:
row_index += 1
if row_index < len(queue):
image_data_to_show = queue[row_index].get('start_image_data')
elif col_index == end_img_col_idx:
with lock:
row_index += 1
if row_index < len(queue):
image_data_to_show = queue[row_index].get('end_image_data')
if image_data_to_show:
return gr.update(), gr.update(value=image_data_to_show[0]), gr.update(visible=True)
else:
return gr.update(), gr.update(), gr.update(visible=False)
def change_model(state, model_choice):
if model_choice == None:
return
model_filename = get_model_filename(model_choice, transformer_quantization)
state["model_filename"] = model_filename
header = generate_header(model_filename, compile=compile, attention_mode=attention_mode)
return header
def fill_inputs(state):
model_filename = state["model_filename"]
prefix = get_model_type(model_filename)
ui_defaults = state.get(prefix, None)
if ui_defaults == None:
ui_defaults = get_default_settings(model_filename)
return generate_video_tab(update_form = True, state_dict = state, ui_defaults = ui_defaults)
def preload_model_when_switching(state):
global reload_needed, wan_model, offloadobj
if "S" in preload_model_policy:
model_filename = state["model_filename"]
if state["model_filename"] != transformer_filename:
wan_model = None
if offloadobj is not None:
offloadobj.release()
offloadobj = None
gc.collect()
yield f"Loading model {get_model_name(model_filename)}..."
wan_model, offloadobj, _ = load_models(model_filename)
yield f"Model loaded"
reload_needed= False
return
return gr.Text()
def unload_model_if_needed(state):
global reload_needed, wan_model, offloadobj
if "U" in preload_model_policy:
if wan_model != None:
wan_model = None
if offloadobj is not None:
offloadobj.release()
offloadobj = None
gc.collect()
reload_needed= True
def filter_letters(source_str, letters):
ret = ""
for letter in letters:
if letter in source_str:
ret += letter
return ret
def add_to_sequence(source_str, letters):
ret = source_str
for letter in letters:
if not letter in source_str:
ret += letter
return ret
def del_in_sequence(source_str, letters):
ret = source_str
for letter in letters:
if letter in source_str:
ret = ret.replace(letter, "")
return ret
def refresh_video_prompt_type_image_refs(video_prompt_type, video_prompt_type_image_refs):
# video_prompt_type = add_to_sequence(video_prompt_type, "I") if video_prompt_type_image_refs else del_in_sequence(video_prompt_type, "I")
video_prompt_type_image_refs = "I" in video_prompt_type_image_refs
video_prompt_type = add_to_sequence(video_prompt_type, "I") if video_prompt_type_image_refs else del_in_sequence(video_prompt_type, "I")
return video_prompt_type, gr.update(visible = video_prompt_type_image_refs),gr.update(visible = video_prompt_type_image_refs)
def refresh_video_prompt_type_video_guide(video_prompt_type, video_prompt_type_video_guide):
video_prompt_type = del_in_sequence(video_prompt_type, "ODPCMV")
video_prompt_type = add_to_sequence(video_prompt_type, video_prompt_type_video_guide)
visible = "V" in video_prompt_type
return video_prompt_type, gr.update(visible = visible), gr.update(visible = visible), gr.update(visible= "M" in video_prompt_type )
def refresh_video_prompt_video_guide_trigger(video_prompt_type, video_prompt_type_video_guide):
video_prompt_type_video_guide = video_prompt_type_video_guide.split("#")[0]
video_prompt_type = del_in_sequence(video_prompt_type, "ODPCMV")
video_prompt_type = add_to_sequence(video_prompt_type, video_prompt_type_video_guide)
return video_prompt_type, video_prompt_type_video_guide, gr.update(visible= "V" in video_prompt_type ), gr.update(visible= "M" in video_prompt_type) , gr.update(visible= "V" in video_prompt_type )
def generate_video_tab(update_form = False, state_dict = None, ui_defaults = None, model_choice = None, header = None):
global inputs_names #, advanced
if update_form:
model_filename = state_dict["model_filename"]
advanced_ui = state_dict["advanced"]
else:
model_filename = transformer_filename
advanced_ui = advanced
ui_defaults= get_default_settings(model_filename)
state_dict = {}
state_dict["model_filename"] = model_filename
state_dict["advanced"] = advanced_ui
gen = dict()
gen["queue"] = []
state_dict["gen"] = gen
preset_to_load = lora_preselected_preset if lora_preset_model == model_filename else ""
loras, loras_names, loras_presets, default_loras_choices, default_loras_multis_str, default_lora_preset_prompt, default_lora_preset = setup_loras(model_filename, None, get_lora_dir(model_filename), preset_to_load, None)
state_dict["loras"] = loras
state_dict["loras_presets"] = loras_presets
state_dict["loras_names"] = loras_names
launch_prompt = ""
launch_preset = ""
launch_loras = []
launch_multis_str = ""
if update_form:
pass
if len(default_lora_preset) > 0 and lora_preset_model == model_filename:
launch_preset = default_lora_preset
launch_prompt = default_lora_preset_prompt
launch_loras = default_loras_choices
launch_multis_str = default_loras_multis_str
if len(launch_preset) == 0:
launch_preset = ui_defaults.get("lset_name","")
if len(launch_prompt) == 0:
launch_prompt = ui_defaults.get("prompt","")
if len(launch_loras) == 0:
launch_multis_str = ui_defaults.get("loras_multipliers","")
activated_loras = ui_defaults.get("activated_loras",[])
if len(activated_loras) > 0:
lora_filenames = [os.path.basename(lora_path) for lora_path in loras]
activated_indices = []
for lora_file in ui_defaults["activated_loras"]:
try:
idx = lora_filenames.index(lora_file)
activated_indices.append(str(idx))
except ValueError:
print(f"Warning: Lora file {lora_file} from config not found in loras directory")
launch_loras = activated_indices
with gr.Row():
with gr.Column():
with gr.Column(visible=False, elem_id="image-modal-container") as modal_container:
with gr.Row(elem_id="image-modal-close-button-row"):
close_modal_button = gr.Button("❌", size="sm")
modal_image_display = gr.Image(label="Full Resolution Image", interactive=False, show_label=False)
with gr.Row(visible= True): #len(loras)>0) as presets_column:
lset_choices = [ (preset, preset) for preset in loras_presets ] + [(get_new_preset_msg(advanced_ui), "")]
with gr.Column(scale=6):
lset_name = gr.Dropdown(show_label=False, allow_custom_value= True, scale=5, filterable=True, choices= lset_choices, value=launch_preset)
with gr.Column(scale=1):
with gr.Row(height=17):
apply_lset_btn = gr.Button("Apply Lora Preset", size="sm", min_width= 1)
refresh_lora_btn = gr.Button("Refresh", size="sm", min_width= 1, visible=advanced_ui or not only_allow_edit_in_advanced)
save_lset_prompt_drop= gr.Dropdown(
choices=[
("Save Prompt Comments Only", 0),
("Save Full Prompt", 1)
], show_label= False, container=False, value =1, visible= False
)
with gr.Row(height=17, visible=False) as refresh2_row:
refresh_lora_btn2 = gr.Button("Refresh", size="sm", min_width= 1)
with gr.Row(height=17, visible=advanced_ui or not only_allow_edit_in_advanced) as preset_buttons_rows:
confirm_save_lset_btn = gr.Button("Go Ahead Save it !", size="sm", min_width= 1, visible=False)
confirm_delete_lset_btn = gr.Button("Go Ahead Delete it !", size="sm", min_width= 1, visible=False)
save_lset_btn = gr.Button("Save", size="sm", min_width= 1)
delete_lset_btn = gr.Button("Delete", size="sm", min_width= 1)
cancel_lset_btn = gr.Button("Don't do it !", size="sm", min_width= 1 , visible=False)
if not update_form:
state = gr.State(state_dict)
trigger_refresh_input_type = gr.Text(interactive= False, visible= False)
with gr.Column(visible= test_class_i2v(model_filename) ) as image_prompt_column:
image_prompt_type_value= ui_defaults.get("image_prompt_type","S")
image_prompt_type = gr.Radio( [("Use only a Start Image", "S"),("Use both a Start and an End Image", "SE")], value =image_prompt_type_value, label="Location", show_label= False, scale= 3)
if args.multiple_images:
image_start = gr.Gallery(
label="Images as starting points for new videos", type ="pil", #file_types= "image",
columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, value= ui_defaults.get("image_start", None), visible= "S" in image_prompt_type_value)
else:
image_start = gr.Image(label= "Image as a starting point for a new video", type ="pil",value= ui_defaults.get("image_start", None), visible= "S" in image_prompt_type_value )
if args.multiple_images:
image_end = gr.Gallery(
label="Images as ending points for new videos", type ="pil", #file_types= "image",
columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, visible="E" in image_prompt_type_value, value= ui_defaults.get("image_end", None))
else:
image_end = gr.Image(label= "Last Image for a new video", type ="pil", visible="E" in image_prompt_type_value, value= ui_defaults.get("image_end", None))
with gr.Column(visible= "recam" in model_filename ) as recam_column:
camera_type = gr.Dropdown(
choices=[
("Pan Right", 1),
("Pan Left", 2),
("Tilt Up", 3),
("Tilt Down", 4),
("Zoom In", 5),
("Zoom Out", 6),
("Translate Up (with rotation)", 7),
("Translate Down (with rotation)", 8),
("Arc Left (with rotation)", 9),
("Arc Right (with rotation)", 10),
],
value=ui_defaults.get("camera_type", 1),
label="Camera Movement Type", scale = 3
)
video_source = gr.Video(label= "Video Source", value= ui_defaults.get("video_source", None),)
with gr.Column(visible= "Vace" in model_filename ) as video_prompt_column:
video_prompt_type_value= ui_defaults.get("video_prompt_type","")
video_prompt_type = gr.Text(value= video_prompt_type_value, visible= False)
with gr.Row():
video_prompt_type_video_guide = gr.Dropdown(
choices=[
("None", ""),
("Transfer Human Motion from the Control Video", "PV"),
("Transfer Depth from the Control Video", "DV"),
("Recolorize the Control Video", "CV"),
# ("Alternate Video Ending", "OV"),
("Video contains Open Pose, Depth, Black & White, Inpainting ", "V"),
("Control Video and Mask video for stronger Inpainting ", "MV"),
],
value=filter_letters(video_prompt_type_value, "ODPCMV"),
label="Video to Video", scale = 3
)
video_prompt_video_guide_trigger = gr.Text(visible=False, value="")
video_prompt_type_image_refs = gr.Dropdown(
choices=[
("None", ""),
("Inject custom Faces / Objects", "I"),
],
value="I" if "I" in video_prompt_type_value else "",
label="Reference Images", scale = 2
)
# video_prompt_type_image_refs = gr.Checkbox(value="I" in video_prompt_type_value , label= "Use References Images (Faces, Objects) to customize New Video", scale =1 )
video_guide = gr.Video(label= "Control Video", visible= "V" in video_prompt_type_value, value= ui_defaults.get("video_guide", None),)
keep_frames = gr.Text(value=ui_defaults.get("keep_frames","") , visible= "V" in video_prompt_type_value, scale = 2, label= "Frames to keep in Control Video (empty=All, 1=first, a:b for a range, space to separate values)" ) #, -1=last
image_refs = gr.Gallery( label ="Reference Images",
type ="pil", show_label= True,
columns=[3], rows=[1], object_fit="contain", height="auto", selected_index=0, interactive= True, visible= "I" in video_prompt_type_value,
value= ui_defaults.get("image_refs", None) )
# with gr.Row():
remove_background_image_ref = gr.Checkbox(value=ui_defaults.get("remove_background_image_ref",1), label= "Remove Background of Images References", visible= "I" in video_prompt_type_value, scale =1 )
video_mask = gr.Video(label= "Video Mask (for Inpainting or Outpaing, white pixels = Mask)", visible= "M" in video_prompt_type_value, value= ui_defaults.get("video_mask", None))
advanced_prompt = advanced_ui
prompt_vars=[]
if advanced_prompt:
default_wizard_prompt, variables, values= None, None, None
else:
default_wizard_prompt, variables, values, errors = extract_wizard_prompt(launch_prompt)
advanced_prompt = len(errors) > 0
with gr.Column(visible= advanced_prompt) as prompt_column_advanced:
prompt = gr.Textbox( visible= advanced_prompt, label="Prompts (each new line of prompt will generate a new video, # lines = comments, ! lines = macros)", value=launch_prompt, lines=3)
with gr.Column(visible=not advanced_prompt and len(variables) > 0) as prompt_column_wizard_vars:
gr.Markdown("Please fill the following input fields to adapt automatically the Prompt:")
wizard_prompt_activated = "off"
wizard_variables = ""
with gr.Row():
if not advanced_prompt:
for variable in variables:
value = values.get(variable, "")
prompt_vars.append(gr.Textbox( placeholder=variable, min_width=80, show_label= False, info= variable, visible= True, value= "\n".join(value) ))
wizard_prompt_activated = "on"
if len(variables) > 0:
wizard_variables = "\n".join(variables)
for _ in range( PROMPT_VARS_MAX - len(prompt_vars)):
prompt_vars.append(gr.Textbox(visible= False, min_width=80, show_label= False))
with gr.Column(not advanced_prompt) as prompt_column_wizard:
wizard_prompt = gr.Textbox(visible = not advanced_prompt, label="Prompts (each new line of prompt will generate a new video, # lines = comments)", value=default_wizard_prompt, lines=3)
wizard_prompt_activated_var = gr.Text(wizard_prompt_activated, visible= False)
wizard_variables_var = gr.Text(wizard_variables, visible = False)
with gr.Row():
if test_class_i2v(model_filename):
resolution = gr.Dropdown(
choices=[
# 720p
("720p", "1280x720"),
("480p", "832x480"),
],
value=ui_defaults.get("resolution","480p"),
label="Resolution (video will have the same height / width ratio than the original image)"
)
else:
resolution = gr.Dropdown(
choices=[
# 720p
("1280x720 (16:9, 720p)", "1280x720"),
("720x1280 (9:16, 720p)", "720x1280"),
("1024x1024 (4:3, 720p)", "1024x024"),
# ("832x1104 (3:4, 720p)", "832x1104"),
# ("960x960 (1:1, 720p)", "960x960"),
# 480p
# ("960x544 (16:9, 480p)", "960x544"),
("832x480 (16:9, 480p)", "832x480"),
("480x832 (9:16, 480p)", "480x832"),
# ("832x624 (4:3, 540p)", "832x624"),
# ("624x832 (3:4, 540p)", "624x832"),
# ("720x720 (1:1, 540p)", "720x720"),
],
value=ui_defaults.get("resolution","832x480"),
label="Resolution"
)
with gr.Row():
if "recam" in model_filename:
video_length = gr.Slider(5, 193, value=ui_defaults.get("video_length", 81), step=4, label="Number of frames (16 = 1s), locked", interactive= False)
else:
video_length = gr.Slider(5, 193, value=ui_defaults.get("video_length", 81), step=4, label="Number of frames (16 = 1s)", interactive= True)
num_inference_steps = gr.Slider(1, 100, value=ui_defaults.get("num_inference_steps",30), step=1, label="Number of Inference Steps")
show_advanced = gr.Checkbox(label="Advanced Mode", value=advanced_ui)
with gr.Tabs(visible=advanced_ui) as advanced_row:
# with gr.Row(visible=advanced_ui) as advanced_row:
with gr.Tab("Generation"):
with gr.Column():
seed = gr.Slider(-1, 999999999, value=ui_defaults["seed"], step=1, label="Seed (-1 for random)")
with gr.Row():
repeat_generation = gr.Slider(1, 25.0, value=ui_defaults.get("repeat_generation",1), step=1, label="Default Number of Generated Videos per Prompt")
multi_images_gen_type = gr.Dropdown( value=ui_defaults.get("multi_images_gen_type",0),
choices=[
("Generate every combination of images and texts", 0),
("Match images and text prompts", 1),
], visible= args.multiple_images, label= "Multiple Images as Texts Prompts"
)
with gr.Row():
guidance_scale = gr.Slider(1.0, 20.0, value=ui_defaults.get("guidance_scale",5), step=0.5, label="Guidance Scale", visible=True)
embedded_guidance_scale = gr.Slider(1.0, 20.0, value=6.0, step=0.5, label="Embedded Guidance Scale", visible=False)
flow_shift = gr.Slider(0.0, 25.0, value=ui_defaults.get("flow_shift",3), step=0.1, label="Shift Scale")
with gr.Row():
negative_prompt = gr.Textbox(label="Negative Prompt", value=ui_defaults.get("negative_prompt", "") )
with gr.Tab("Loras"):
with gr.Column(visible = True): #as loras_column:
gr.Markdown("Loras can be used to create special effects on the video by mentioning a trigger word in the Prompt. You can save Loras combinations in presets.")
loras_choices = gr.Dropdown(
choices=[
(lora_name, str(i) ) for i, lora_name in enumerate(loras_names)
],
value= launch_loras,
multiselect= True,
label="Activated Loras"
)
loras_multipliers = gr.Textbox(label="Loras Multipliers (1.0 by default) separated by space characters or carriage returns, line that starts with # are ignored", value=launch_multis_str)
with gr.Row():
gr.Markdown("Tea Cache accelerates by skipping intelligently some steps, the more steps are skipped the lower the quality of the video (Tea Cache consumes also VRAM)")
with gr.Tab("Speed"):
with gr.Column():
gr.Markdown("Tea Cache accelerates the Video generation by skipping denoising steps. This may impact the quality")
tea_cache_setting = gr.Dropdown(
choices=[
("Tea Cache Disabled", 0),
("around x1.5 speed up", 1.5),
("around x1.75 speed up", 1.75),
("around x2 speed up", 2.0),
("around x2.25 speed up", 2.25),
("around x2.5 speed up", 2.5),
],
value=float(ui_defaults.get("tea_cache_setting",0)),
visible=True,
label="Tea Cache Global Acceleration"
)
tea_cache_start_step_perc = gr.Slider(0, 100, value=ui_defaults.get("tea_cache_start_step_perc",0), step=1, label="Tea Cache starting moment in % of generation")
with gr.Tab("Upsampling"):
with gr.Column():
gr.Markdown("Upsampling - postprocessing that may improve fluidity and the size of the video")
temporal_upsampling = gr.Dropdown(
choices=[
("Disabled", ""),
("Rife x2 (32 frames/s)", "rife2"),
("Rife x4 (64 frames/s)", "rife4"),
],
value=ui_defaults.get("temporal_upsampling", ""),
visible=True,
scale = 1,
label="Temporal Upsampling"
)
spatial_upsampling = gr.Dropdown(
choices=[
("Disabled", ""),
("Lanczos x1.5", "lanczos1.5"),
("Lanczos x2.0", "lanczos2"),
],
value=ui_defaults.get("spatial_upsampling", ""),
visible=True,
scale = 1,
label="Spatial Upsampling"
)
with gr.Tab("Quality"):
with gr.Row():
gr.Markdown("Experimental: Skip Layer Guidance, should improve video quality")
with gr.Row():
slg_switch = gr.Dropdown(
choices=[
("OFF", 0),
("ON", 1),
],
value=ui_defaults.get("slg_switch",0),
visible=True,
scale = 1,
label="Skip Layer guidance"
)
slg_layers = gr.Dropdown(
choices=[
(str(i), i ) for i in range(40)
],
value=ui_defaults.get("slg_layers", ["9"]),
multiselect= True,
label="Skip Layers",
scale= 3
)
with gr.Row():
slg_start_perc = gr.Slider(0, 100, value=ui_defaults.get("slg_start_perc",10), step=1, label="Denoising Steps % start")
slg_end_perc = gr.Slider(0, 100, value=ui_defaults.get("slg_end_perc",90), step=1, label="Denoising Steps % end")
with gr.Row():
gr.Markdown("Experimental: Classifier-Free Guidance Zero Star, better adherence to Text Prompt")
with gr.Row():
cfg_star_switch = gr.Dropdown(
choices=[
("OFF", 0),
("ON", 1),
],
value=ui_defaults.get("cfg_star_switch",0),
visible=True,
scale = 1,
label="CFG Star"
)
with gr.Row():
cfg_zero_step = gr.Slider(-1, 39, value=ui_defaults.get("cfg_zero_step",-1), step=1, label="CFG Zero below this Layer (Extra Process)")
with gr.Tab("Sliding Window", visible= "Vace" in model_filename ) as sliding_window_tab:
with gr.Column():
gr.Markdown("A Sliding Window allows you to generate video with a duration not limited by the Model")
sliding_window_repeat = gr.Slider(0, 20, value=ui_defaults.get("sliding_window_repeat", 0), step=1, label="Sliding Window Iterations (O=Disabled)")
sliding_window_overlap = gr.Slider(1, 32, value=ui_defaults.get("sliding_window_overlap",16), step=1, label="Windows Frames Overlap (needed to maintain continuity between windows, a higher value will require more windows)")
sliding_window_discard_last_frames = gr.Slider(1, 10, value=ui_defaults.get("sliding_window_discard_last_frames", 4), step=1, label="Discard Last Frames of a Window (that may have bad quality)")
with gr.Tab("Miscellaneous", visible= not "recam" in model_filename):
gr.Markdown("With Riflex you can generate videos longer than 5s which is the default duration of videos used to train the model")
RIFLEx_setting = gr.Dropdown(
choices=[
("Auto (ON if Video longer than 5s)", 0),
("Always ON", 1),
("Always OFF", 2),
],
value=ui_defaults.get("RIFLEx_setting",0),
label="RIFLEx positional embedding to generate long video"
)
with gr.Row():
save_settings_btn = gr.Button("Set Settings as Default", visible = not args.lock_config)
if not update_form:
with gr.Column():
gen_status = gr.Text(interactive= False, label = "Status")
output = gr.Gallery( label="Generated videos", show_label=False, elem_id="gallery" , columns=[3], rows=[1], object_fit="contain", height=450, selected_index=0, interactive= False)
generate_btn = gr.Button("Generate")
add_to_queue_btn = gr.Button("Add New Prompt To Queue", visible = False)
with gr.Column(visible= False) as current_gen_column:
with gr.Row():
gen_info = gr.HTML(visible=False, min_height=1)
with gr.Row():
onemore_btn = gr.Button("One More Sample Please !")
abort_btn = gr.Button("Abort")
with gr.Accordion("Queue Management", open=False) as queue_accordion:
queue_df = gr.DataFrame(
headers=["Qty","Prompt", "Length","Steps","", "", "", "", ""],
datatype=[ "str","markdown","str", "markdown", "markdown", "markdown", "str", "str", "str"],
column_widths= ["5%", None, "7%", "7%", "10%", "10%", "3%", "3%", "34"],
interactive=False,
col_count=(9, "fixed"),
wrap=True,
value=[],
line_breaks= True,
visible= True,
elem_id="queue_df"
)
with gr.Row():
queue_zip_base64_output = gr.Text(visible=False)
save_queue_btn = gr.DownloadButton("Save Queue", size="sm")
load_queue_btn = gr.UploadButton("Load Queue", file_types=[".zip"], size="sm")
clear_queue_btn = gr.Button("Clear Queue", size="sm", variant="stop")
quit_button = gr.Button("Save and Quit", size="sm", variant="secondary")
with gr.Row(visible=False) as quit_confirmation_row:
confirm_quit_button = gr.Button("Confirm", elem_id="comfirm_quit_btn_hidden", size="sm", variant="stop")
cancel_quit_button = gr.Button("Cancel", size="sm", variant="secondary")
hidden_force_quit_trigger = gr.Button("force_quit", visible=False, elem_id="force_quit_btn_hidden")
hidden_countdown_state = gr.Number(value=-1, visible=False, elem_id="hidden_countdown_state_num")
single_hidden_trigger_btn = gr.Button("trigger_countdown", visible=False, elem_id="trigger_info_single_btn")
start_quit_timer_js = """
() => {
function findAndClickGradioButton(elemId) {
const gradioApp = document.querySelector('gradio-app') || document;
const button = gradioApp.querySelector(`#${elemId}`);
if (button) { button.click(); }
}
if (window.quitCountdownTimeoutId) clearTimeout(window.quitCountdownTimeoutId);
let js_click_count = 0;
const max_clicks = 5;
function countdownStep() {
if (js_click_count < max_clicks) {
findAndClickGradioButton('trigger_info_single_btn');
js_click_count++;
window.quitCountdownTimeoutId = setTimeout(countdownStep, 1000);
} else {
findAndClickGradioButton('force_quit_btn_hidden');
}
}
countdownStep();
}
"""
cancel_quit_timer_js = """
() => {
if (window.quitCountdownTimeoutId) {
clearTimeout(window.quitCountdownTimeoutId);
window.quitCountdownTimeoutId = null;
console.log("Quit countdown cancelled (single trigger).");
}
}
"""
trigger_zip_download_js = """
(base64String) => {
if (!base64String) {
console.log("No base64 zip data received, skipping download.");
return;
}
try {
const byteCharacters = atob(base64String);
const byteNumbers = new Array(byteCharacters.length);
for (let i = 0; i < byteCharacters.length; i++) {
byteNumbers[i] = byteCharacters.charCodeAt(i);
}
const byteArray = new Uint8Array(byteNumbers);
const blob = new Blob([byteArray], { type: 'application/zip' });
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.style.display = 'none';
a.href = url;
a.download = 'queue.zip';
document.body.appendChild(a);
a.click();
window.URL.revokeObjectURL(url);
document.body.removeChild(a);
console.log("Zip download triggered.");
} catch (e) {
console.error("Error processing base64 data or triggering download:", e);
}
}
"""
single_hidden_trigger_btn.click(
fn=show_countdown_info_from_state,
inputs=[hidden_countdown_state],
outputs=[hidden_countdown_state]
)
quit_button.click(
fn=start_quit_process,
inputs=[],
outputs=[hidden_countdown_state, quit_button, quit_confirmation_row]
).then(
fn=None, inputs=None, outputs=None, js=start_quit_timer_js
)
confirm_quit_button.click(
fn=quit_application,
inputs=[],
outputs=[]
).then(
fn=None, inputs=None, outputs=None, js=cancel_quit_timer_js
)
cancel_quit_button.click(
fn=cancel_quit_process,
inputs=[],
outputs=[hidden_countdown_state, quit_button, quit_confirmation_row]
).then(
fn=None, inputs=None, outputs=None, js=cancel_quit_timer_js
)
hidden_force_quit_trigger.click(
fn=quit_application,
inputs=[],
outputs=[]
)
save_queue_btn.click(
fn=save_queue_action,
inputs=[state],
outputs=[queue_zip_base64_output]
).then(
fn=None,
inputs=[queue_zip_base64_output],
outputs=None,
js=trigger_zip_download_js
)
should_start_flag = gr.State(False)
load_queue_btn.upload(
fn=load_queue_action,
inputs=[load_queue_btn, state],
outputs=[queue_df]
).then(
fn=lambda s: (gr.update(visible=bool(get_gen_info(s).get("queue",[]))), gr.Accordion(open=True)) if bool(get_gen_info(s).get("queue",[])) else (gr.update(visible=False), gr.update()),
inputs=[state],
outputs=[current_gen_column, queue_accordion]
).then(
fn=lambda s: (
(gr.Button(visible=False), gr.Button(visible=True), gr.Column(visible=True), True)
if bool(get_gen_info(s).get("queue",[]))
else (gr.Button(visible=True), gr.Button(visible=False), gr.Column(visible=False), False)
),
inputs=[state],
outputs=[generate_btn, add_to_queue_btn, current_gen_column, should_start_flag]
).then(
fn=start_processing_if_needed,
inputs=[should_start_flag, state],
outputs=[gen_status],
trigger_mode="once"
).then(
fn=finalize_generation_with_state,
inputs=[state],
outputs=[output, abort_btn, generate_btn, add_to_queue_btn, current_gen_column, gen_info, queue_accordion, state],
trigger_mode="always_last"
).then(
unload_model_if_needed,
inputs= [state],
outputs= []
)
clear_queue_btn.click(
fn=clear_queue_action,
inputs=[state],
outputs=[queue_df]
).then(
fn=lambda: (gr.update(visible=False), gr.Accordion(open=False)),
inputs=None,
outputs=[current_gen_column, queue_accordion]
)
extra_inputs = prompt_vars + [wizard_prompt, wizard_variables_var, wizard_prompt_activated_var, video_prompt_column, image_prompt_column,
prompt_column_advanced, prompt_column_wizard_vars, prompt_column_wizard, lset_name, advanced_row, sliding_window_tab,
video_prompt_type_video_guide, video_prompt_type_image_refs, recam_column] # show_advanced presets_column,
if update_form:
locals_dict = locals()
gen_inputs = [state_dict if k=="state" else locals_dict[k] for k in inputs_names] + [state_dict] + extra_inputs
return gen_inputs
else:
target_state = gr.Text(value = "state", interactive= False, visible= False)
target_settings = gr.Text(value = "settings", interactive= False, visible= False)
image_prompt_type.change(fn=refresh_image_prompt_type, inputs=[state, image_prompt_type], outputs=[image_start, image_end])
video_prompt_video_guide_trigger.change(fn=refresh_video_prompt_video_guide_trigger, inputs=[video_prompt_type, video_prompt_video_guide_trigger], outputs=[video_prompt_type, video_prompt_type_video_guide, video_guide, video_mask, keep_frames])
video_prompt_type_image_refs.input(fn=refresh_video_prompt_type_image_refs, inputs = [video_prompt_type, video_prompt_type_image_refs], outputs = [video_prompt_type, image_refs, remove_background_image_ref ])
video_prompt_type_video_guide.input(fn=refresh_video_prompt_type_video_guide, inputs = [video_prompt_type, video_prompt_type_video_guide], outputs = [video_prompt_type, video_guide, keep_frames, video_mask])
show_advanced.change(fn=switch_advanced, inputs=[state, show_advanced, lset_name], outputs=[advanced_row, preset_buttons_rows, refresh_lora_btn, refresh2_row ,lset_name ]).then(
fn=switch_prompt_type, inputs = [state, wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, *prompt_vars], outputs = [wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, prompt_column_advanced, prompt_column_wizard, prompt_column_wizard_vars, *prompt_vars])
queue_df.select( fn=handle_celll_selection, inputs=state, outputs=[queue_df, modal_image_display, modal_container])
save_lset_btn.click(validate_save_lset, inputs=[lset_name], outputs=[apply_lset_btn, refresh_lora_btn, delete_lset_btn, save_lset_btn,confirm_save_lset_btn, cancel_lset_btn, save_lset_prompt_drop])
confirm_save_lset_btn.click(fn=validate_wizard_prompt, inputs =[state, wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, *prompt_vars] , outputs= [prompt]).then(
save_lset, inputs=[state, lset_name, loras_choices, loras_multipliers, prompt, save_lset_prompt_drop], outputs=[lset_name, apply_lset_btn,refresh_lora_btn, delete_lset_btn, save_lset_btn, confirm_save_lset_btn, cancel_lset_btn, save_lset_prompt_drop])
delete_lset_btn.click(validate_delete_lset, inputs=[lset_name], outputs=[apply_lset_btn, refresh_lora_btn, delete_lset_btn, save_lset_btn,confirm_delete_lset_btn, cancel_lset_btn ])
confirm_delete_lset_btn.click(delete_lset, inputs=[state, lset_name], outputs=[lset_name, apply_lset_btn, refresh_lora_btn, delete_lset_btn, save_lset_btn,confirm_delete_lset_btn, cancel_lset_btn ])
cancel_lset_btn.click(cancel_lset, inputs=[], outputs=[apply_lset_btn, refresh_lora_btn, delete_lset_btn, save_lset_btn, confirm_delete_lset_btn,confirm_save_lset_btn, cancel_lset_btn,save_lset_prompt_drop ])
apply_lset_btn.click(apply_lset, inputs=[state, wizard_prompt_activated_var, lset_name,loras_choices, loras_multipliers, prompt], outputs=[wizard_prompt_activated_var, loras_choices, loras_multipliers, prompt]).then(
fn = fill_wizard_prompt, inputs = [state, wizard_prompt_activated_var, prompt, wizard_prompt], outputs = [ wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, prompt_column_advanced, prompt_column_wizard, prompt_column_wizard_vars, *prompt_vars]
)
refresh_lora_btn.click(refresh_lora_list, inputs=[state, lset_name,loras_choices], outputs=[lset_name, loras_choices])
refresh_lora_btn2.click(refresh_lora_list, inputs=[state, lset_name,loras_choices], outputs=[lset_name, loras_choices])
output.select(select_video, state, None )
gen_status.change(refresh_gallery,
inputs = [state, gen_status],
outputs = [output, gen_info, generate_btn, add_to_queue_btn, current_gen_column, queue_df, abort_btn])
abort_btn.click(abort_generation, [state], [gen_status, abort_btn] ) #.then(refresh_gallery, inputs = [state, gen_info], outputs = [output, gen_info, queue_df] )
onemore_btn.click(fn=one_more_sample,inputs=[state], outputs= [state])
inputs_names= list(inspect.signature(save_inputs).parameters)[1:-1]
locals_dict = locals()
gen_inputs = [locals_dict[k] for k in inputs_names] + [state]
save_settings_btn.click( fn=validate_wizard_prompt, inputs =[state, wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, *prompt_vars] , outputs= [prompt]).then(
save_inputs, inputs =[target_settings] + gen_inputs, outputs = [])
model_choice.change(fn=validate_wizard_prompt,
inputs= [state, wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, *prompt_vars] ,
outputs= [prompt]
).then(fn=save_inputs,
inputs =[target_state] + gen_inputs,
outputs= None
).then(fn= change_model,
inputs=[state, model_choice],
outputs= [header]
).then(fn= fill_inputs,
inputs=[state],
outputs=gen_inputs + extra_inputs
).then(fn= preload_model_when_switching,
inputs=[state],
outputs=[gen_status])
generate_btn.click(fn=validate_wizard_prompt,
inputs= [state, wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, *prompt_vars] ,
outputs= [prompt]
).then(fn=save_inputs,
inputs =[target_state] + gen_inputs,
outputs= None
).then(fn=process_prompt_and_add_tasks,
inputs = [state, model_choice],
outputs= queue_df
).then(fn=prepare_generate_video,
inputs= [state],
outputs= [generate_btn, add_to_queue_btn, current_gen_column]
).then(fn=process_tasks,
inputs= [state],
outputs= [gen_status],
).then(finalize_generation,
inputs= [state],
outputs= [output, abort_btn, generate_btn, add_to_queue_btn, current_gen_column, gen_info]
).then(
fn=lambda s: gr.Accordion(open=False) if len(get_gen_info(s).get("queue", [])) <= 1 else gr.update(),
inputs=[state],
outputs=[queue_accordion]
).then(unload_model_if_needed,
inputs= [state],
outputs= []
)
add_to_queue_btn.click(fn=validate_wizard_prompt,
inputs =[state, wizard_prompt_activated_var, wizard_variables_var, prompt, wizard_prompt, *prompt_vars] ,
outputs= [prompt]
).then(fn=save_inputs,
inputs =[target_state] + gen_inputs,
outputs= None
).then(fn=process_prompt_and_add_tasks,
inputs = [state, model_choice],
outputs=queue_df
).then(
fn=lambda s: gr.Accordion(open=True) if len(get_gen_info(s).get("queue", [])) > 1 else gr.update(),
inputs=[state],
outputs=[queue_accordion]
).then(
fn=update_status,
inputs = [state],
)
close_modal_button.click(
lambda: gr.update(visible=False),
inputs=[],
outputs=[modal_container]
)
return ( state,
loras_choices, lset_name, state, queue_df, current_gen_column,
gen_status, output, abort_btn, generate_btn, add_to_queue_btn,
gen_info, queue_accordion, video_guide, video_mask, video_prompt_video_guide_trigger
)
def generate_download_tab(lset_name,loras_choices, state):
with gr.Row():
with gr.Row(scale =2):
gr.Markdown("WanGP's Lora Festival ! Press the following button to download i2v Remade_AI Loras collection (and bonuses Loras).")
with gr.Row(scale =1):
download_loras_btn = gr.Button("---> Let the Lora's Festival Start !", scale =1)
with gr.Row(scale =1):
gr.Markdown("")
with gr.Row() as download_status_row:
download_status = gr.Markdown()
download_loras_btn.click(fn=download_loras, inputs=[], outputs=[download_status_row, download_status]).then(fn=refresh_lora_list, inputs=[state, lset_name,loras_choices], outputs=[lset_name, loras_choices])
def generate_configuration_tab(state, blocks, header, model_choice):
gr.Markdown("Please click Apply Changes at the bottom so that the changes are effective. Some choices below may be locked if the app has been launched by specifying a config preset.")
with gr.Column():
model_list = []
for model_type in model_types:
choice = get_model_filename(model_type, transformer_quantization)
model_list.append(choice)
dropdown_choices = [ ( get_model_name(choice), get_model_type(choice) ) for choice in model_list]
transformer_types_choices = gr.Dropdown(
choices= dropdown_choices,
value= transformer_types,
label= "Selectable Wan Transformer Models (keep empty to get All of them)",
scale= 2,
multiselect= True
)
quantization_choice = gr.Dropdown(
choices=[
("Int8 Quantization (recommended)", "int8"),
("16 bits (no quantization)", "bf16"),
],
value= transformer_quantization,
label="Wan Transformer Model Quantization Type (if available)",
)
index = text_encoder_choices.index(text_encoder_filename)
index = 0 if index ==0 else index
text_encoder_choice = gr.Dropdown(
choices=[
("UMT5 XXL 16 bits - unquantized text encoder, better quality uses more RAM", 0),
("UMT5 XXL quantized to 8 bits - quantized text encoder, slightly worse quality but uses less RAM", 1),
],
value= index,
label="Text Encoder model"
)
save_path_choice = gr.Textbox(
label="Output Folder for Generated Videos",
value=server_config.get("save_path", save_path)
)
def check(mode):
if not mode in attention_modes_installed:
return " (NOT INSTALLED)"
elif not mode in attention_modes_supported:
return " (NOT SUPPORTED)"
else:
return ""
attention_choice = gr.Dropdown(
choices=[
("Auto : pick sage2 > sage > sdpa depending on what is installed", "auto"),
("Scale Dot Product Attention: default, always available", "sdpa"),
("Flash" + check("flash")+ ": good quality - requires additional install (usually complex to set up on Windows without WSL)", "flash"),
("Xformers" + check("xformers")+ ": good quality - requires additional install (usually complex, may consume less VRAM to set up on Windows without WSL)", "xformers"),
("Sage" + check("sage")+ ": 30% faster but slightly worse quality - requires additional install (usually complex to set up on Windows without WSL)", "sage"),
("Sage2" + check("sage2")+ ": 40% faster but slightly worse quality - requires additional install (usually complex to set up on Windows without WSL)", "sage2"),
],
value= attention_mode,
label="Attention Type",
interactive= not lock_ui_attention
)
gr.Markdown("Beware: when restarting the server or changing a resolution or video duration, the first step of generation for a duration / resolution may last a few minutes due to recompilation")
compile_choice = gr.Dropdown(
choices=[
("ON: works only on Linux / WSL", "transformer"),
("OFF: no other choice if you have Windows without using WSL", "" ),
],
value= compile,
label="Compile Transformer (up to 50% faster and 30% more frames but requires Linux / WSL and Flash or Sage attention)",
interactive= not lock_ui_compile
)
vae_config_choice = gr.Dropdown(
choices=[
("Auto", 0),
("Disabled (faster but may require up to 22 GB of VRAM)", 1),
("256 x 256 : If at least 8 GB of VRAM", 2),
("128 x 128 : If at least 6 GB of VRAM", 3),
],
value= vae_config,
label="VAE Tiling - reduce the high VRAM requirements for VAE decoding and VAE encoding (if enabled it will be slower)"
)
boost_choice = gr.Dropdown(
choices=[
# ("Auto (ON if Video longer than 5s)", 0),
("ON", 1),
("OFF", 2),
],
value=boost,
label="Boost: Give a 10% speed speedup without losing quality at the cost of a litle VRAM (up to 1GB for max frames and resolution)"
)
profile_choice = gr.Dropdown(
choices=[
("HighRAM_HighVRAM, profile 1: at least 48 GB of RAM and 24 GB of VRAM, the fastest for short videos a RTX 3090 / RTX 4090", 1),
("HighRAM_LowVRAM, profile 2 (Recommended): at least 48 GB of RAM and 12 GB of VRAM, the most versatile profile with high RAM, better suited for RTX 3070/3080/4070/4080 or for RTX 3090 / RTX 4090 with large pictures batches or long videos", 2),
("LowRAM_HighVRAM, profile 3: at least 32 GB of RAM and 24 GB of VRAM, adapted for RTX 3090 / RTX 4090 with limited RAM for good speed short video",3),
("LowRAM_LowVRAM, profile 4 (Default): at least 32 GB of RAM and 12 GB of VRAM, if you have little VRAM or want to generate longer videos",4),
("VerylowRAM_LowVRAM, profile 5: (Fail safe): at least 16 GB of RAM and 10 GB of VRAM, if you don't have much it won't be fast but maybe it will work",5)
],
value= profile,
label="Profile (for power users only, not needed to change it)"
)
# default_ui_choice = gr.Dropdown(
# choices=[
# ("Text to Video", "t2v"),
# ("Image to Video", "i2v"),
# ],
# value= default_ui,
# label="Default mode when launching the App if not '--t2v' ot '--i2v' switch is specified when launching the server ",
# )
metadata_choice = gr.Dropdown(
choices=[
("Export JSON files", "json"),
("Add metadata to video", "metadata"),
("Neither", "none")
],
value=server_config.get("metadata_type", "metadata"),
label="Metadata Handling"
)
preload_model_policy_choice = gr.CheckboxGroup([("Preload Model while Launching the App","P"), ("Preload Model while Switching Model", "S"), ("Unload Model when Queue is Done", "U")],
value=server_config.get("preload_model_policy",[]),
label="RAM Loading / Unloading Model Policy (in any case VRAM will be freed once the queue has been processed)"
)
clear_file_list_choice = gr.Dropdown(
choices=[
("None", 0),
("Keep the last video", 1),
("Keep the last 5 videos", 5),
("Keep the last 10 videos", 10),
("Keep the last 20 videos", 20),
("Keep the last 30 videos", 30),
],
value=server_config.get("clear_file_list", 5),
label="Keep Previously Generated Videos when starting a Generation Batch"
)
UI_theme_choice = gr.Dropdown(
choices=[
("Blue Sky", "default"),
("Classic Gradio", "gradio"),
],
value=server_config.get("UI_theme_choice", "default"),
label="User Interface Theme. You will need to restart the App the see new Theme."
)
msg = gr.Markdown()
apply_btn = gr.Button("Apply Changes")
apply_btn.click(
fn=apply_changes,
inputs=[
state,
transformer_types_choices,
text_encoder_choice,
save_path_choice,
attention_choice,
compile_choice,
profile_choice,
vae_config_choice,
metadata_choice,
quantization_choice,
boost_choice,
clear_file_list_choice,
preload_model_policy_choice,
UI_theme_choice
],
outputs= [msg , header, model_choice]
)
def generate_about_tab():
gr.Markdown("WanGP - Wan 2.1 model for the GPU Poor by DeepBeepMeep (GitHub)
")
gr.Markdown("Original Wan 2.1 Model by Alibaba (GitHub)")
gr.Markdown("Many thanks to:")
gr.Markdown("- Alibaba Wan team for the best open source video generator")
gr.Markdown("- Alibaba Vace and Fun Teams for their incredible control net models")
gr.Markdown("- Cocktail Peanuts : QA and simple installation via Pinokio.computer")
gr.Markdown("- Tophness : created (former) multi tabs and queuing frameworks")
gr.Markdown("- AmericanPresidentJimmyCarter : added original support for Skip Layer Guidance")
gr.Markdown("- Remade_AI : for their awesome Loras collection")
gr.Markdown("
Huge acknowlegments to these great open source projects used in WanGP:")
gr.Markdown("- Rife: temporal upsampler (https://github.com/hzwer/ECCV2022-RIFE)")
gr.Markdown("- DwPose: Open Pose extractor (https://github.com/IDEA-Research/DWPose)")
gr.Markdown("- Midas: Depth extractor (https://github.com/isl-org/MiDaS")
gr.Markdown("- Matanyone and SAM2: Mask Generation (https://github.com/pq-yang/MatAnyone) and (https://github.com/facebookresearch/sam2)")
def generate_info_tab():
gr.Markdown("Welcome to WanGP a super fast and low VRAM AI Video Generator !")
gr.Markdown("The VRAM requirements will depend greatly of the resolution and the duration of the video, for instance :")
gr.Markdown("- 848 x 480 with a 14B model: 80 frames (5s) : 8 GB of VRAM")
gr.Markdown("- 848 x 480 with the 1.3B model: 80 frames (5s) : 5 GB of VRAM")
gr.Markdown("- 1280 x 720 with a 14B model: 80 frames (5s): 11 GB of VRAM")
gr.Markdown("It is not recommmended to generate a video longer than 8s (128 frames) even if there is still some VRAM left as some artifacts may appear")
gr.Markdown("Please note that if your turn on compilation, the first denoising step of the first video generation will be slow due to the compilation. Therefore all your tests should be done with compilation turned off.")
def generate_dropdown_model_list():
dropdown_types= transformer_types if len(transformer_types) > 0 else model_types
current_model_type = get_model_type(transformer_filename)
if current_model_type not in dropdown_types:
dropdown_types.append(current_model_type)
model_list = []
for model_type in dropdown_types:
choice = get_model_filename(model_type, transformer_quantization)
model_list.append(choice)
dropdown_choices = [ ( get_model_name(choice), get_model_type(choice) ) for choice in model_list]
return gr.Dropdown(
choices= dropdown_choices,
value= current_model_type,
show_label= False,
scale= 2,
elem_id="model_list",
elem_classes="model_list_class",
)
def select_tab(tab_state, evt:gr.SelectData):
tab_video_mask_creator = 2
old_tab_no = tab_state.get("tab_no",0)
new_tab_no = evt.index
if old_tab_no == tab_video_mask_creator:
vmc_event_handler(False)
elif new_tab_no == tab_video_mask_creator:
if gen_in_progress:
gr.Info("Unable to access this Tab while a Generation is in Progress. Please come back later")
tab_state["tab_no"] = 0
return gr.Tabs(selected="video_gen")
else:
vmc_event_handler(True)
tab_state["tab_no"] = new_tab_no
return gr.Tabs()
def create_demo():
global vmc_event_handler
css = """
#model_list{
background-color:black;
padding:1px}
#model_list input {
font-size:25px}
.title-with-lines {
display: flex;
align-items: center;
margin: 25px 0;
}
.line {
flex-grow: 1;
height: 1px;
background-color: #333;
}
h2 {
margin: 0 20px;
white-space: nowrap;
}
.queue-item {
border: 1px solid #ccc;
padding: 10px;
margin: 5px 0;
border-radius: 5px;
}
.current {
background: #f8f9fa;
border-left: 4px solid #007bff;
}
.task-header {
display: flex;
justify-content: space-between;
margin-bottom: 5px;
}
.progress-container {
height: 10px;
background: #e9ecef;
border-radius: 5px;
overflow: hidden;
}
.progress-bar {
height: 100%;
background: #007bff;
transition: width 0.3s ease;
}
.task-details {
display: flex;
justify-content: space-between;
font-size: 0.9em;
color: #6c757d;
margin-top: 5px;
}
.task-prompt {
font-size: 0.8em;
color: #868e96;
margin-top: 5px;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
#queue_df th {
pointer-events: none;
text-align: center;
vertical-align: middle;
font-size:11px;
}
#xqueue_df table {
width: 100%;
overflow: hidden !important;
}
#xqueue_df::-webkit-scrollbar {
display: none !important;
}
#xqueue_df {
scrollbar-width: none !important;
-ms-overflow-style: none !important;
}
.selection-button {
display: none;
}
.cell-selected {
--ring-color: none;
}
#queue_df th:nth-child(1),
#queue_df td:nth-child(1) {
width: 60px;
text-align: center;
vertical-align: middle;
cursor: default !important;
pointer-events: none;
}
#xqueue_df th:nth-child(2),
#queue_df td:nth-child(2) {
text-align: center;
vertical-align: middle;
white-space: normal;
}
#queue_df td:nth-child(2) {
cursor: default !important;
}
#queue_df th:nth-child(3),
#queue_df td:nth-child(3) {
width: 60px;
text-align: center;
vertical-align: middle;
cursor: default !important;
pointer-events: none;
}
#queue_df th:nth-child(4),
#queue_df td:nth-child(4) {
width: 60px;
text-align: center;
white-space: nowrap;
cursor: default !important;
pointer-events: none;
}
#queue_df th:nth-child(5), #queue_df td:nth-child(7),
#queue_df th:nth-child(6), #queue_df td:nth-child(8) {
width: 60px;
text-align: center;
vertical-align: middle;
}
#queue_df td:nth-child(5) img,
#queue_df td:nth-child(6) img {
max-width: 50px;
max-height: 50px;
object-fit: contain;
display: block;
margin: auto;
cursor: pointer;
}
#queue_df th:nth-child(7), #queue_df td:nth-child(9),
#queue_df th:nth-child(8), #queue_df td:nth-child(10),
#queue_df th:nth-child(9), #queue_df td:nth-child(11) {
width: 20px;
padding: 2px !important;
cursor: pointer;
text-align: center;
font-weight: bold;
vertical-align: middle;
}
#queue_df td:nth-child(5):hover,
#queue_df td:nth-child(6):hover,
#queue_df td:nth-child(7):hover,
#queue_df td:nth-child(8):hover,
#queue_df td:nth-child(9):hover {
background-color: #e0e0e0;
}
#image-modal-container {
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background-color: rgba(0, 0, 0, 0.7);
justify-content: center;
align-items: center;
z-index: 1000;
padding: 20px;
box-sizing: border-box;
}
#image-modal-container > div {
background-color: white;
padding: 15px;
border-radius: 8px;
max-width: 90%;
max-height: 90%;
overflow: auto;
position: relative;
display: flex;
flex-direction: column;
}
#image-modal-container img {
max-width: 100%;
max-height: 80vh;
object-fit: contain;
margin-top: 10px;
}
#image-modal-close-button-row {
display: flex;
justify-content: flex-end;
}
#image-modal-close-button-row button {
cursor: pointer;
}
.progress-container-custom {
width: 100%;
background-color: #e9ecef;
border-radius: 0.375rem;
overflow: hidden;
height: 25px;
position: relative;
margin-top: 5px;
margin-bottom: 5px;
}
.progress-bar-custom {
height: 100%;
background-color: #0d6efd;
transition: width 0.3s ease-in-out;
display: flex;
align-items: center;
justify-content: center;
color: white;
font-size: 0.9em;
font-weight: bold;
white-space: nowrap;
overflow: hidden;
}
.progress-bar-custom.idle {
background-color: #6c757d;
}
.progress-bar-text {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
display: flex;
align-items: center;
justify-content: center;
color: white;
mix-blend-mode: difference;
font-size: 0.9em;
font-weight: bold;
white-space: nowrap;
z-index: 2;
pointer-events: none;
}
"""
UI_theme = server_config.get("UI_theme", "default")
UI_theme = args.theme if len(args.theme) > 0 else UI_theme
if UI_theme == "gradio":
theme = None
else:
theme = gr.themes.Soft(font=["Verdana"], primary_hue="sky", neutral_hue="slate", text_size="md")
with gr.Blocks(css=css, theme=theme, title= "Wan2GP") as demo:
gr.Markdown("WanGP v4.2 by DeepBeepMeep ") # (Updates)
")
global model_list
tab_state = gr.State({ "tab_no":0 })
with gr.Tabs(selected="video_gen", ) as main_tabs:
with gr.Tab("Video Generator", id="video_gen"):
with gr.Row():
if args.lock_model:
gr.Markdown("" + get_model_name(transformer_filename) + "
")
model_choice = gr.Dropdown(visible=False, value= get_model_type(transformer_filename))
else:
gr.Markdown("
")
model_choice = generate_dropdown_model_list()
gr.Markdown("
")
with gr.Row():
header = gr.Markdown(generate_header(transformer_filename, compile, attention_mode), visible= True)
with gr.Row():
( state,
loras_choices, lset_name, state, queue_df, current_gen_column,
gen_status, output, abort_btn, generate_btn, add_to_queue_btn,
gen_info, queue_accordion, video_guide, video_mask, video_prompt_type_video_trigger
) = generate_video_tab(model_choice=model_choice, header=header)
with gr.Tab("Informations", id="info"):
generate_info_tab()
with gr.Tab("Video Mask Creator", id="video_mask_creator") as video_mask_creator:
from preprocessing.matanyone import app as matanyone_app
vmc_event_handler = matanyone_app.get_vmc_event_handler()
matanyone_app.display(main_tabs, model_choice, video_guide, video_mask, video_prompt_type_video_trigger)
if not args.lock_config:
with gr.Tab("Downloads", id="downloads") as downloads_tab:
generate_download_tab(lset_name, loras_choices, state)
with gr.Tab("Configuration", id="configuration"):
generate_configuration_tab(state, demo, header, model_choice)
with gr.Tab("About"):
generate_about_tab()
should_start_flag = gr.State(False)
demo.load(
fn=run_autoload_and_prepare_ui,
inputs=[state],
outputs=[queue_df, current_gen_column, queue_accordion, should_start_flag, state]
).then(
fn=start_processing_if_needed,
inputs=[should_start_flag, state],
outputs=[gen_status],
trigger_mode="once"
).then(
fn=finalize_generation_with_state,
inputs=[state],
outputs=[output, abort_btn, generate_btn, add_to_queue_btn, current_gen_column, gen_info, queue_accordion, state],
trigger_mode="always_last"
)
main_tabs.select(fn=select_tab, inputs= [tab_state], outputs= main_tabs)
return demo
if __name__ == "__main__":
atexit.register(autosave_queue)
# download_ffmpeg()
# threading.Thread(target=runner, daemon=True).start()
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
server_port = int(args.server_port)
if os.name == "nt":
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
if server_port == 0:
server_port = int(os.getenv("SERVER_PORT", "7860"))
server_name = args.server_name
if args.listen:
server_name = "0.0.0.0"
if len(server_name) == 0:
server_name = os.getenv("SERVER_NAME", "localhost")
demo = create_demo()
if args.open_browser:
import webbrowser
if server_name.startswith("http"):
url = server_name
else:
url = "http://" + server_name
webbrowser.open(url + ":" + str(server_port), new = 0, autoraise = True)
demo.launch(server_name=server_name, server_port=server_port, share=args.share, allowed_paths=[save_path])