# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import torch from importlib.metadata import version from mmgp import offload import torch.nn.functional as F try: import flash_attn_interface FLASH_ATTN_3_AVAILABLE = True except ModuleNotFoundError: FLASH_ATTN_3_AVAILABLE = False try: import flash_attn FLASH_ATTN_2_AVAILABLE = True except ModuleNotFoundError: FLASH_ATTN_2_AVAILABLE = False flash_attn = None try: from sageattention import sageattn_varlen def sageattn_varlen_wrapper( q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv, ): return sageattn_varlen(q, k, v, cu_seqlens_q, cu_seqlens_kv, max_seqlen_q, max_seqlen_kv) except ImportError: sageattn_varlen_wrapper = None import warnings try: from sageattention import sageattn @torch.compiler.disable() def sageattn_wrapper( qkv_list, attention_length ): q,k, v = qkv_list padding_length = q.shape[0] -attention_length q = q[:attention_length, :, : ].unsqueeze(0) k = k[:attention_length, :, : ].unsqueeze(0) v = v[:attention_length, :, : ].unsqueeze(0) o = sageattn(q, k, v, tensor_layout="NHD").squeeze(0) del q, k ,v qkv_list.clear() if padding_length > 0: o = torch.cat([o, torch.empty( (padding_length, *o.shape[-2:]), dtype= o.dtype, device=o.device ) ], 0) return o except ImportError: sageattn = None @torch.compiler.disable() def sdpa_wrapper( qkv_list, attention_length ): q,k, v = qkv_list padding_length = q.shape[0] -attention_length q = q[:attention_length, :].transpose(0,1).unsqueeze(0) k = k[:attention_length, :].transpose(0,1).unsqueeze(0) v = v[:attention_length, :].transpose(0,1).unsqueeze(0) o = F.scaled_dot_product_attention( q, k, v, attn_mask=None, is_causal=False ).squeeze(0).transpose(0,1) del q, k ,v qkv_list.clear() if padding_length > 0: o = torch.cat([o, torch.empty( (padding_length, *o.shape[-2:]), dtype= o.dtype, device=o.device ) ], 0) return o def get_attention_modes(): ret = ["sdpa", "auto"] if flash_attn != None: ret.append("flash") # if memory_efficient_attention != None: # ret.append("xformers") if sageattn_varlen_wrapper != None: ret.append("sage") if sageattn != None and version("sageattention").startswith("2") : ret.append("sage2") return ret __all__ = [ 'pay_attention', 'attention', ] def pay_attention( qkv_list, # q, # k, # v, q_lens=None, k_lens=None, dropout_p=0., softmax_scale=None, q_scale=None, causal=False, window_size=(-1, -1), deterministic=False, dtype=torch.bfloat16, version=None, force_attention= None ): """ q: [B, Lq, Nq, C1]. k: [B, Lk, Nk, C1]. v: [B, Lk, Nk, C2]. Nq must be divisible by Nk. q_lens: [B]. k_lens: [B]. dropout_p: float. Dropout probability. softmax_scale: float. The scaling of QK^T before applying softmax. causal: bool. Whether to apply causal attention mask. window_size: (left right). If not (-1, -1), apply sliding window local attention. deterministic: bool. If True, slightly slower and uses more memory. dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16. """ attn = offload.shared_state["_attention"] if force_attention== None else force_attention q,k,v = qkv_list qkv_list.clear() half_dtypes = (torch.float16, torch.bfloat16) assert dtype in half_dtypes assert q.device.type == 'cuda' and q.size(-1) <= 256 # params b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype def half(x): return x if x.dtype in half_dtypes else x.to(dtype) # preprocess query if q_lens is None: q = half(q.flatten(0, 1)) q_lens = torch.tensor( [lq] * b, dtype=torch.int32).to( device=q.device, non_blocking=True) else: q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)])) # preprocess key, value if k_lens is None: k = half(k.flatten(0, 1)) v = half(v.flatten(0, 1)) k_lens = torch.tensor( [lk] * b, dtype=torch.int32).to( device=k.device, non_blocking=True) else: k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)])) v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)])) q = q.to(v.dtype) k = k.to(v.dtype) if q_scale is not None: q = q * q_scale if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE: warnings.warn( 'Flash attention 3 is not available, use flash attention 2 instead.' ) # apply attention if attn=="sage": x = sageattn_varlen_wrapper( q=q, k=k, v=v, cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( 0, dtype=torch.int32).to(q.device, non_blocking=True), cu_seqlens_kv=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( 0, dtype=torch.int32).to(q.device, non_blocking=True), max_seqlen_q=lq, max_seqlen_kv=lk, ).unflatten(0, (b, lq)) elif attn=="sage2": qkv_list = [q,k,v] del q,k,v x = sageattn_wrapper(qkv_list, lq).unsqueeze(0) elif attn=="sdpa": qkv_list = [q, k, v] del q, k , v x = sdpa_wrapper( qkv_list, lq).unsqueeze(0) elif attn=="flash" and (version is None or version == 3): # Note: dropout_p, window_size are not supported in FA3 now. x = flash_attn_interface.flash_attn_varlen_func( q=q, k=k, v=v, cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( 0, dtype=torch.int32).to(q.device, non_blocking=True), cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( 0, dtype=torch.int32).to(q.device, non_blocking=True), seqused_q=None, seqused_k=None, max_seqlen_q=lq, max_seqlen_k=lk, softmax_scale=softmax_scale, causal=causal, deterministic=deterministic)[0].unflatten(0, (b, lq)) elif attn=="flash": x = flash_attn.flash_attn_varlen_func( q=q, k=k, v=v, cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum( 0, dtype=torch.int32).to(q.device, non_blocking=True), cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum( 0, dtype=torch.int32).to(q.device, non_blocking=True), max_seqlen_q=lq, max_seqlen_k=lk, dropout_p=dropout_p, softmax_scale=softmax_scale, causal=causal, window_size=window_size, deterministic=deterministic).unflatten(0, (b, lq)) # output return x.type(out_dtype) def attention( q, k, v, q_lens=None, k_lens=None, dropout_p=0., softmax_scale=None, q_scale=None, causal=False, window_size=(-1, -1), deterministic=False, dtype=torch.bfloat16, fa_version=None, ): if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE: return pay_attention( q=q, k=k, v=v, q_lens=q_lens, k_lens=k_lens, dropout_p=dropout_p, softmax_scale=softmax_scale, q_scale=q_scale, causal=causal, window_size=window_size, deterministic=deterministic, dtype=dtype, version=fa_version, ) else: if q_lens is not None or k_lens is not None: warnings.warn( 'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.' ) attn_mask = None q = q.transpose(1, 2).to(dtype) k = k.transpose(1, 2).to(dtype) v = v.transpose(1, 2).to(dtype) out = torch.nn.functional.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p) out = out.transpose(1, 2).contiguous() return out