mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
388 lines
13 KiB
Python
388 lines
13 KiB
Python
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
|
import torch
|
|
import torch.nn as nn
|
|
from einops import rearrange, repeat
|
|
from .multitalk_utils import RotaryPositionalEmbedding1D, normalize_and_scale, split_token_counts_and_frame_ids
|
|
from shared.attention import pay_attention
|
|
|
|
# import xformers.ops
|
|
|
|
# try:
|
|
# import flash_attn_interface
|
|
# FLASH_ATTN_3_AVAILABLE = True
|
|
# except ModuleNotFoundError:
|
|
# FLASH_ATTN_3_AVAILABLE = False
|
|
|
|
# try:
|
|
# import flash_attn
|
|
# FLASH_ATTN_2_AVAILABLE = True
|
|
# except ModuleNotFoundError:
|
|
# FLASH_ATTN_2_AVAILABLE = False
|
|
|
|
import warnings
|
|
|
|
__all__ = [
|
|
'flash_attention',
|
|
'attention',
|
|
]
|
|
|
|
|
|
def flash_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
q_lens=None,
|
|
k_lens=None,
|
|
dropout_p=0.,
|
|
softmax_scale=None,
|
|
q_scale=None,
|
|
causal=False,
|
|
window_size=(-1, -1),
|
|
deterministic=False,
|
|
dtype=torch.bfloat16,
|
|
version=None,
|
|
):
|
|
"""
|
|
q: [B, Lq, Nq, C1].
|
|
k: [B, Lk, Nk, C1].
|
|
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk.
|
|
q_lens: [B].
|
|
k_lens: [B].
|
|
dropout_p: float. Dropout probability.
|
|
softmax_scale: float. The scaling of QK^T before applying softmax.
|
|
causal: bool. Whether to apply causal attention mask.
|
|
window_size: (left right). If not (-1, -1), apply sliding window local attention.
|
|
deterministic: bool. If True, slightly slower and uses more memory.
|
|
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
|
|
"""
|
|
half_dtypes = (torch.float16, torch.bfloat16)
|
|
assert dtype in half_dtypes
|
|
assert q.device.type == 'cuda' and q.size(-1) <= 256
|
|
|
|
# params
|
|
b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
|
|
|
|
def half(x):
|
|
return x if x.dtype in half_dtypes else x.to(dtype)
|
|
|
|
# preprocess query
|
|
if q_lens is None:
|
|
q = half(q.flatten(0, 1))
|
|
q_lens = torch.tensor(
|
|
[lq] * b, dtype=torch.int32).to(
|
|
device=q.device, non_blocking=True)
|
|
else:
|
|
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
|
|
|
|
# preprocess key, value
|
|
if k_lens is None:
|
|
k = half(k.flatten(0, 1))
|
|
v = half(v.flatten(0, 1))
|
|
k_lens = torch.tensor(
|
|
[lk] * b, dtype=torch.int32).to(
|
|
device=k.device, non_blocking=True)
|
|
else:
|
|
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
|
|
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
|
|
|
|
q = q.to(v.dtype)
|
|
k = k.to(v.dtype)
|
|
|
|
if q_scale is not None:
|
|
q = q * q_scale
|
|
|
|
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
|
|
warnings.warn(
|
|
'Flash attention 3 is not available, use flash attention 2 instead.'
|
|
)
|
|
|
|
# apply attention
|
|
if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
|
|
# Note: dropout_p, window_size are not supported in FA3 now.
|
|
x = flash_attn_interface.flash_attn_varlen_func(
|
|
q=q,
|
|
k=k,
|
|
v=v,
|
|
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
|
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
|
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
|
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
|
seqused_q=None,
|
|
seqused_k=None,
|
|
max_seqlen_q=lq,
|
|
max_seqlen_k=lk,
|
|
softmax_scale=softmax_scale,
|
|
causal=causal,
|
|
deterministic=deterministic)[0].unflatten(0, (b, lq))
|
|
else:
|
|
assert FLASH_ATTN_2_AVAILABLE
|
|
x = flash_attn.flash_attn_varlen_func(
|
|
q=q,
|
|
k=k,
|
|
v=v,
|
|
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
|
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
|
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
|
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
|
max_seqlen_q=lq,
|
|
max_seqlen_k=lk,
|
|
dropout_p=dropout_p,
|
|
softmax_scale=softmax_scale,
|
|
causal=causal,
|
|
window_size=window_size,
|
|
deterministic=deterministic).unflatten(0, (b, lq))
|
|
|
|
# output
|
|
return x.type(out_dtype)
|
|
|
|
|
|
def attention(
|
|
q,
|
|
k,
|
|
v,
|
|
q_lens=None,
|
|
k_lens=None,
|
|
dropout_p=0.,
|
|
softmax_scale=None,
|
|
q_scale=None,
|
|
causal=False,
|
|
window_size=(-1, -1),
|
|
deterministic=False,
|
|
dtype=torch.bfloat16,
|
|
fa_version=None,
|
|
):
|
|
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
|
|
return flash_attention(
|
|
q=q,
|
|
k=k,
|
|
v=v,
|
|
q_lens=q_lens,
|
|
k_lens=k_lens,
|
|
dropout_p=dropout_p,
|
|
softmax_scale=softmax_scale,
|
|
q_scale=q_scale,
|
|
causal=causal,
|
|
window_size=window_size,
|
|
deterministic=deterministic,
|
|
dtype=dtype,
|
|
version=fa_version,
|
|
)
|
|
else:
|
|
if q_lens is not None or k_lens is not None:
|
|
warnings.warn(
|
|
'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.'
|
|
)
|
|
attn_mask = None
|
|
|
|
q = q.transpose(1, 2).to(dtype)
|
|
k = k.transpose(1, 2).to(dtype)
|
|
v = v.transpose(1, 2).to(dtype)
|
|
|
|
out = torch.nn.functional.scaled_dot_product_attention(
|
|
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
|
|
|
|
out = out.transpose(1, 2).contiguous()
|
|
return out
|
|
|
|
|
|
class SingleStreamAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
encoder_hidden_states_dim: int,
|
|
num_heads: int,
|
|
qkv_bias: bool,
|
|
qk_norm: bool,
|
|
norm_layer: nn.Module,
|
|
attn_drop: float = 0.0,
|
|
proj_drop: float = 0.0,
|
|
eps: float = 1e-6,
|
|
) -> None:
|
|
super().__init__()
|
|
assert dim % num_heads == 0, "dim should be divisible by num_heads"
|
|
self.dim = dim
|
|
self.encoder_hidden_states_dim = encoder_hidden_states_dim
|
|
self.num_heads = num_heads
|
|
self.head_dim = dim // num_heads
|
|
self.scale = self.head_dim**-0.5
|
|
self.qk_norm = qk_norm
|
|
|
|
self.q_linear = nn.Linear(dim, dim, bias=qkv_bias)
|
|
|
|
self.q_norm = norm_layer(self.head_dim, eps=eps) if qk_norm else nn.Identity()
|
|
self.k_norm = norm_layer(self.head_dim,eps=eps) if qk_norm else nn.Identity()
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop)
|
|
self.proj = nn.Linear(dim, dim)
|
|
self.proj_drop = nn.Dropout(proj_drop)
|
|
|
|
self.kv_linear = nn.Linear(encoder_hidden_states_dim, dim * 2, bias=qkv_bias)
|
|
|
|
self.add_q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
|
self.add_k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
|
|
|
|
def forward(self, xlist: torch.Tensor, encoder_hidden_states: torch.Tensor, shape=None, enable_sp=False, kv_seq=None) -> torch.Tensor:
|
|
N_t, N_h, N_w = shape
|
|
|
|
x = xlist[0]
|
|
xlist.clear()
|
|
x = rearrange(x, "B (N_t S) C -> (B N_t) S C", N_t=N_t)
|
|
# get q for hidden_state
|
|
B, N, C = x.shape
|
|
q = self.q_linear(x)
|
|
del x
|
|
q_shape = (B, N, self.num_heads, self.head_dim)
|
|
q = q.view(q_shape).permute((0, 2, 1, 3))
|
|
|
|
if self.qk_norm:
|
|
q = self.q_norm(q)
|
|
|
|
# get kv from encoder_hidden_states
|
|
_, N_a, _ = encoder_hidden_states.shape
|
|
encoder_kv = self.kv_linear(encoder_hidden_states)
|
|
encoder_kv_shape = (B, N_a, 2, self.num_heads, self.head_dim)
|
|
encoder_kv = encoder_kv.view(encoder_kv_shape).permute((2, 0, 3, 1, 4))
|
|
encoder_k, encoder_v = encoder_kv.unbind(0)
|
|
|
|
if self.qk_norm:
|
|
encoder_k = self.add_k_norm(encoder_k)
|
|
|
|
q = rearrange(q, "B H M K -> B M H K")
|
|
encoder_k = rearrange(encoder_k, "B H M K -> B M H K")
|
|
encoder_v = rearrange(encoder_v, "B H M K -> B M H K")
|
|
qkv_list = [q, encoder_k, encoder_v]
|
|
q = encoder_k = encoder_v = None
|
|
x = pay_attention(qkv_list)
|
|
x = rearrange(x, "B M H K -> B H M K")
|
|
|
|
# linear transform
|
|
x_output_shape = (B, N, C)
|
|
x = x.transpose(1, 2)
|
|
x = x.reshape(x_output_shape)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
|
|
# reshape x to origin shape
|
|
x = rearrange(x, "(B N_t) S C -> B (N_t S) C", N_t=N_t)
|
|
|
|
return x
|
|
|
|
class SingleStreamMutiAttention(SingleStreamAttention):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
encoder_hidden_states_dim: int,
|
|
num_heads: int,
|
|
qkv_bias: bool,
|
|
qk_norm: bool,
|
|
norm_layer: nn.Module,
|
|
attn_drop: float = 0.0,
|
|
proj_drop: float = 0.0,
|
|
eps: float = 1e-6,
|
|
class_range: int = 24,
|
|
class_interval: int = 4,
|
|
) -> None:
|
|
super().__init__(
|
|
dim=dim,
|
|
encoder_hidden_states_dim=encoder_hidden_states_dim,
|
|
num_heads=num_heads,
|
|
qkv_bias=qkv_bias,
|
|
qk_norm=qk_norm,
|
|
norm_layer=norm_layer,
|
|
attn_drop=attn_drop,
|
|
proj_drop=proj_drop,
|
|
eps=eps,
|
|
)
|
|
self.class_interval = class_interval
|
|
self.class_range = class_range
|
|
self.rope_h1 = (0, self.class_interval)
|
|
self.rope_h2 = (self.class_range - self.class_interval, self.class_range)
|
|
self.rope_bak = int(self.class_range // 2)
|
|
|
|
self.rope_1d = RotaryPositionalEmbedding1D(self.head_dim)
|
|
|
|
def forward(self,
|
|
xlist: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor,
|
|
shape=None,
|
|
x_ref_attn_map=None,
|
|
) -> torch.Tensor:
|
|
|
|
encoder_hidden_states = encoder_hidden_states.squeeze(0)
|
|
if x_ref_attn_map == None:
|
|
return super().forward(xlist, encoder_hidden_states, shape)
|
|
|
|
N_t, _, _ = shape
|
|
x = xlist[0]
|
|
xlist.clear()
|
|
x = rearrange(x, "B (N_t S) C -> (B N_t) S C", N_t=N_t)
|
|
|
|
# get q for hidden_state
|
|
B, N, C = x.shape
|
|
q = self.q_linear(x)
|
|
del x
|
|
q_shape = (B, N, self.num_heads, self.head_dim)
|
|
q = q.view(q_shape).permute((0, 2, 1, 3))
|
|
|
|
if self.qk_norm:
|
|
q = self.q_norm(q)
|
|
|
|
max_values = x_ref_attn_map.max(1).values[:, None, None]
|
|
min_values = x_ref_attn_map.min(1).values[:, None, None]
|
|
max_min_values = torch.cat([max_values, min_values], dim=2)
|
|
|
|
human1_max_value, human1_min_value = max_min_values[0, :, 0].max(), max_min_values[0, :, 1].min()
|
|
human2_max_value, human2_min_value = max_min_values[1, :, 0].max(), max_min_values[1, :, 1].min()
|
|
|
|
human1 = normalize_and_scale(x_ref_attn_map[0], (human1_min_value, human1_max_value), (self.rope_h1[0], self.rope_h1[1]))
|
|
human2 = normalize_and_scale(x_ref_attn_map[1], (human2_min_value, human2_max_value), (self.rope_h2[0], self.rope_h2[1]))
|
|
back = torch.full((x_ref_attn_map.size(1),), self.rope_bak, dtype=human1.dtype, device=human1.device)
|
|
max_indices = x_ref_attn_map.argmax(dim=0)
|
|
normalized_map = torch.stack([human1, human2, back], dim=1)
|
|
normalized_pos = normalized_map[range(x_ref_attn_map.size(1)), max_indices] # N
|
|
|
|
q = rearrange(q, "(B N_t) H S C -> B H (N_t S) C", N_t=N_t)
|
|
qlist = [q]
|
|
del q
|
|
q = self.rope_1d(qlist, normalized_pos, "q")
|
|
q = rearrange(q, "B H (N_t S) C -> (B N_t) H S C", N_t=N_t)
|
|
|
|
_, N_a, _ = encoder_hidden_states.shape
|
|
encoder_kv = self.kv_linear(encoder_hidden_states)
|
|
encoder_kv_shape = (B, N_a, 2, self.num_heads, self.head_dim)
|
|
encoder_kv = encoder_kv.view(encoder_kv_shape).permute((2, 0, 3, 1, 4))
|
|
encoder_k, encoder_v = encoder_kv.unbind(0)
|
|
del encoder_kv
|
|
if self.qk_norm:
|
|
encoder_k = self.add_k_norm(encoder_k)
|
|
|
|
per_frame = torch.zeros(N_a, dtype=encoder_k.dtype, device=encoder_k.device)
|
|
per_frame[:per_frame.size(0)//2] = (self.rope_h1[0] + self.rope_h1[1]) / 2
|
|
per_frame[per_frame.size(0)//2:] = (self.rope_h2[0] + self.rope_h2[1]) / 2
|
|
encoder_pos = torch.concat([per_frame]*N_t, dim=0)
|
|
encoder_k = rearrange(encoder_k, "(B N_t) H S C -> B H (N_t S) C", N_t=N_t)
|
|
enclist = [encoder_k]
|
|
del encoder_k
|
|
encoder_k = self.rope_1d(enclist, encoder_pos, "encoder_k")
|
|
encoder_k = rearrange(encoder_k, "B H (N_t S) C -> (B N_t) H S C", N_t=N_t)
|
|
|
|
q = rearrange(q, "B H M K -> B M H K")
|
|
encoder_k = rearrange(encoder_k, "B H M K -> B M H K")
|
|
encoder_v = rearrange(encoder_v, "B H M K -> B M H K")
|
|
qkv_list = [q, encoder_k, encoder_v]
|
|
q = encoder_k = encoder_v = None
|
|
x = pay_attention(qkv_list)
|
|
|
|
x = rearrange(x, "B M H K -> B H M K")
|
|
|
|
# linear transform
|
|
x_output_shape = (B, N, C)
|
|
x = x.transpose(1, 2)
|
|
x = x.reshape(x_output_shape)
|
|
x = self.proj(x)
|
|
x = self.proj_drop(x)
|
|
|
|
# reshape x to origin shape
|
|
x = rearrange(x, "(B N_t) S C -> B (N_t S) C", N_t=N_t)
|
|
|
|
return x |