mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 22:26:36 +00:00
198 lines
7.6 KiB
Python
198 lines
7.6 KiB
Python
from attr import attr
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
class CustomSTFT(nn.Module):
|
|
"""
|
|
STFT/iSTFT without unfold/complex ops, using conv1d and conv_transpose1d.
|
|
|
|
- forward STFT => Real-part conv1d + Imag-part conv1d
|
|
- inverse STFT => Real-part conv_transpose1d + Imag-part conv_transpose1d + sum
|
|
- avoids F.unfold, so easier to export to ONNX
|
|
- uses replicate or constant padding for 'center=True' to approximate 'reflect'
|
|
(reflect is not supported for dynamic shapes in ONNX)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
filter_length=800,
|
|
hop_length=200,
|
|
win_length=800,
|
|
window="hann",
|
|
center=True,
|
|
pad_mode="replicate", # or 'constant'
|
|
):
|
|
super().__init__()
|
|
self.filter_length = filter_length
|
|
self.hop_length = hop_length
|
|
self.win_length = win_length
|
|
self.n_fft = filter_length
|
|
self.center = center
|
|
self.pad_mode = pad_mode
|
|
|
|
# Number of frequency bins for real-valued STFT with onesided=True
|
|
self.freq_bins = self.n_fft // 2 + 1
|
|
|
|
# Build window
|
|
assert window == 'hann', window
|
|
window_tensor = torch.hann_window(win_length, periodic=True, dtype=torch.float32)
|
|
if self.win_length < self.n_fft:
|
|
# Zero-pad up to n_fft
|
|
extra = self.n_fft - self.win_length
|
|
window_tensor = F.pad(window_tensor, (0, extra))
|
|
elif self.win_length > self.n_fft:
|
|
window_tensor = window_tensor[: self.n_fft]
|
|
self.register_buffer("window", window_tensor)
|
|
|
|
# Precompute forward DFT (real, imag)
|
|
# PyTorch stft uses e^{-j 2 pi k n / N} => real=cos(...), imag=-sin(...)
|
|
n = np.arange(self.n_fft)
|
|
k = np.arange(self.freq_bins)
|
|
angle = 2 * np.pi * np.outer(k, n) / self.n_fft # shape (freq_bins, n_fft)
|
|
dft_real = np.cos(angle)
|
|
dft_imag = -np.sin(angle) # note negative sign
|
|
|
|
# Combine window and dft => shape (freq_bins, filter_length)
|
|
# We'll make 2 conv weight tensors of shape (freq_bins, 1, filter_length).
|
|
forward_window = window_tensor.numpy() # shape (n_fft,)
|
|
forward_real = dft_real * forward_window # (freq_bins, n_fft)
|
|
forward_imag = dft_imag * forward_window
|
|
|
|
# Convert to PyTorch
|
|
forward_real_torch = torch.from_numpy(forward_real).float()
|
|
forward_imag_torch = torch.from_numpy(forward_imag).float()
|
|
|
|
# Register as Conv1d weight => (out_channels, in_channels, kernel_size)
|
|
# out_channels = freq_bins, in_channels=1, kernel_size=n_fft
|
|
self.register_buffer(
|
|
"weight_forward_real", forward_real_torch.unsqueeze(1)
|
|
)
|
|
self.register_buffer(
|
|
"weight_forward_imag", forward_imag_torch.unsqueeze(1)
|
|
)
|
|
|
|
# Precompute inverse DFT
|
|
# Real iFFT formula => scale = 1/n_fft, doubling for bins 1..freq_bins-2 if n_fft even, etc.
|
|
# For simplicity, we won't do the "DC/nyquist not doubled" approach here.
|
|
# If you want perfect real iSTFT, you can add that logic.
|
|
# This version just yields good approximate reconstruction with Hann + typical overlap.
|
|
inv_scale = 1.0 / self.n_fft
|
|
n = np.arange(self.n_fft)
|
|
angle_t = 2 * np.pi * np.outer(n, k) / self.n_fft # shape (n_fft, freq_bins)
|
|
idft_cos = np.cos(angle_t).T # => (freq_bins, n_fft)
|
|
idft_sin = np.sin(angle_t).T # => (freq_bins, n_fft)
|
|
|
|
# Multiply by window again for typical overlap-add
|
|
# We also incorporate the scale factor 1/n_fft
|
|
inv_window = window_tensor.numpy() * inv_scale
|
|
backward_real = idft_cos * inv_window # (freq_bins, n_fft)
|
|
backward_imag = idft_sin * inv_window
|
|
|
|
# We'll implement iSTFT as real+imag conv_transpose with stride=hop.
|
|
self.register_buffer(
|
|
"weight_backward_real", torch.from_numpy(backward_real).float().unsqueeze(1)
|
|
)
|
|
self.register_buffer(
|
|
"weight_backward_imag", torch.from_numpy(backward_imag).float().unsqueeze(1)
|
|
)
|
|
|
|
|
|
|
|
def transform(self, waveform: torch.Tensor):
|
|
"""
|
|
Forward STFT => returns magnitude, phase
|
|
Output shape => (batch, freq_bins, frames)
|
|
"""
|
|
# waveform shape => (B, T). conv1d expects (B, 1, T).
|
|
# Optional center pad
|
|
if self.center:
|
|
pad_len = self.n_fft // 2
|
|
waveform = F.pad(waveform, (pad_len, pad_len), mode=self.pad_mode)
|
|
|
|
x = waveform.unsqueeze(1) # => (B, 1, T)
|
|
# Convolution to get real part => shape (B, freq_bins, frames)
|
|
real_out = F.conv1d(
|
|
x,
|
|
self.weight_forward_real,
|
|
bias=None,
|
|
stride=self.hop_length,
|
|
padding=0,
|
|
)
|
|
# Imag part
|
|
imag_out = F.conv1d(
|
|
x,
|
|
self.weight_forward_imag,
|
|
bias=None,
|
|
stride=self.hop_length,
|
|
padding=0,
|
|
)
|
|
|
|
# magnitude, phase
|
|
magnitude = torch.sqrt(real_out**2 + imag_out**2 + 1e-14)
|
|
phase = torch.atan2(imag_out, real_out)
|
|
# Handle the case where imag_out is 0 and real_out is negative to correct ONNX atan2 to match PyTorch
|
|
# In this case, PyTorch returns pi, ONNX returns -pi
|
|
correction_mask = (imag_out == 0) & (real_out < 0)
|
|
phase[correction_mask] = torch.pi
|
|
return magnitude, phase
|
|
|
|
|
|
def inverse(self, magnitude: torch.Tensor, phase: torch.Tensor, length=None):
|
|
"""
|
|
Inverse STFT => returns waveform shape (B, T).
|
|
"""
|
|
# magnitude, phase => (B, freq_bins, frames)
|
|
# Re-create real/imag => shape (B, freq_bins, frames)
|
|
real_part = magnitude * torch.cos(phase)
|
|
imag_part = magnitude * torch.sin(phase)
|
|
|
|
# conv_transpose wants shape (B, freq_bins, frames). We'll treat "frames" as time dimension
|
|
# so we do (B, freq_bins, frames) => (B, freq_bins, frames)
|
|
# But PyTorch conv_transpose1d expects (B, in_channels, input_length)
|
|
real_part = real_part # (B, freq_bins, frames)
|
|
imag_part = imag_part
|
|
|
|
# real iSTFT => convolve with "backward_real", "backward_imag", and sum
|
|
# We'll do 2 conv_transpose calls, each giving (B, 1, time),
|
|
# then add them => (B, 1, time).
|
|
real_rec = F.conv_transpose1d(
|
|
real_part,
|
|
self.weight_backward_real, # shape (freq_bins, 1, filter_length)
|
|
bias=None,
|
|
stride=self.hop_length,
|
|
padding=0,
|
|
)
|
|
imag_rec = F.conv_transpose1d(
|
|
imag_part,
|
|
self.weight_backward_imag,
|
|
bias=None,
|
|
stride=self.hop_length,
|
|
padding=0,
|
|
)
|
|
# sum => (B, 1, time)
|
|
waveform = real_rec - imag_rec # typical real iFFT has minus for imaginary part
|
|
|
|
# If we used "center=True" in forward, we should remove pad
|
|
if self.center:
|
|
pad_len = self.n_fft // 2
|
|
# Because of transposed convolution, total length might have extra samples
|
|
# We remove `pad_len` from start & end if possible
|
|
waveform = waveform[..., pad_len:-pad_len]
|
|
|
|
# If a specific length is desired, clamp
|
|
if length is not None:
|
|
waveform = waveform[..., :length]
|
|
|
|
# shape => (B, T)
|
|
return waveform
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
"""
|
|
Full STFT -> iSTFT pass: returns time-domain reconstruction.
|
|
Same interface as your original code.
|
|
"""
|
|
mag, phase = self.transform(x)
|
|
return self.inverse(mag, phase, length=x.shape[-1])
|