mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			893 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			893 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
# limitations under the License.
 | 
						|
 | 
						|
from mmgp import offload
 | 
						|
import inspect
 | 
						|
from typing import Any, Callable, Dict, List, Optional, Union
 | 
						|
 | 
						|
import numpy as np
 | 
						|
import torch, json
 | 
						|
 | 
						|
from diffusers.image_processor import VaeImageProcessor
 | 
						|
from .transformer_qwenimage import QwenImageTransformer2DModel
 | 
						|
 | 
						|
from diffusers.utils import logging, replace_example_docstring
 | 
						|
from diffusers.utils.torch_utils import randn_tensor
 | 
						|
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, AutoTokenizer
 | 
						|
from .autoencoder_kl_qwenimage import AutoencoderKLQwenImage
 | 
						|
from diffusers import FlowMatchEulerDiscreteScheduler
 | 
						|
from PIL import Image
 | 
						|
 | 
						|
XLA_AVAILABLE = False
 | 
						|
 | 
						|
PREFERRED_QWENIMAGE_RESOLUTIONS = [
 | 
						|
    (672, 1568),
 | 
						|
    (688, 1504),
 | 
						|
    (720, 1456),
 | 
						|
    (752, 1392),
 | 
						|
    (800, 1328),
 | 
						|
    (832, 1248),
 | 
						|
    (880, 1184),
 | 
						|
    (944, 1104),
 | 
						|
    (1024, 1024),
 | 
						|
    (1104, 944),
 | 
						|
    (1184, 880),
 | 
						|
    (1248, 832),
 | 
						|
    (1328, 800),
 | 
						|
    (1392, 752),
 | 
						|
    (1456, 720),
 | 
						|
    (1504, 688),
 | 
						|
    (1568, 672),
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name
 | 
						|
 | 
						|
EXAMPLE_DOC_STRING = """
 | 
						|
    Examples:
 | 
						|
        ```py
 | 
						|
        >>> import torch
 | 
						|
        >>> from diffusers import QwenImagePipeline
 | 
						|
 | 
						|
        >>> pipe = QwenImagePipeline.from_pretrained("Qwen/QwenImage-20B", torch_dtype=torch.bfloat16)
 | 
						|
        >>> pipe.to("cuda")
 | 
						|
        >>> prompt = "A cat holding a sign that says hello world"
 | 
						|
        >>> # Depending on the variant being used, the pipeline call will slightly vary.
 | 
						|
        >>> # Refer to the pipeline documentation for more details.
 | 
						|
        >>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
 | 
						|
        >>> image.save("qwenimage.png")
 | 
						|
        ```
 | 
						|
"""
 | 
						|
 | 
						|
 | 
						|
def calculate_shift(
 | 
						|
    image_seq_len,
 | 
						|
    base_seq_len: int = 256,
 | 
						|
    max_seq_len: int = 4096,
 | 
						|
    base_shift: float = 0.5,
 | 
						|
    max_shift: float = 1.15,
 | 
						|
):
 | 
						|
    m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
 | 
						|
    b = base_shift - m * base_seq_len
 | 
						|
    mu = image_seq_len * m + b
 | 
						|
    return mu
 | 
						|
 | 
						|
 | 
						|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
 | 
						|
def retrieve_timesteps(
 | 
						|
    scheduler,
 | 
						|
    num_inference_steps: Optional[int] = None,
 | 
						|
    device: Optional[Union[str, torch.device]] = None,
 | 
						|
    timesteps: Optional[List[int]] = None,
 | 
						|
    sigmas: Optional[List[float]] = None,
 | 
						|
    **kwargs,
 | 
						|
):
 | 
						|
    r"""
 | 
						|
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
 | 
						|
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
 | 
						|
 | 
						|
    Args:
 | 
						|
        scheduler (`SchedulerMixin`):
 | 
						|
            The scheduler to get timesteps from.
 | 
						|
        num_inference_steps (`int`):
 | 
						|
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
 | 
						|
            must be `None`.
 | 
						|
        device (`str` or `torch.device`, *optional*):
 | 
						|
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
 | 
						|
        timesteps (`List[int]`, *optional*):
 | 
						|
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
 | 
						|
            `num_inference_steps` and `sigmas` must be `None`.
 | 
						|
        sigmas (`List[float]`, *optional*):
 | 
						|
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
 | 
						|
            `num_inference_steps` and `timesteps` must be `None`.
 | 
						|
 | 
						|
    Returns:
 | 
						|
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
 | 
						|
        second element is the number of inference steps.
 | 
						|
    """
 | 
						|
    if timesteps is not None and sigmas is not None:
 | 
						|
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
 | 
						|
    if timesteps is not None:
 | 
						|
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
 | 
						|
        if not accepts_timesteps:
 | 
						|
            raise ValueError(
 | 
						|
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
 | 
						|
                f" timestep schedules. Please check whether you are using the correct scheduler."
 | 
						|
            )
 | 
						|
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
 | 
						|
        timesteps = scheduler.timesteps
 | 
						|
        num_inference_steps = len(timesteps)
 | 
						|
    elif sigmas is not None:
 | 
						|
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
 | 
						|
        if not accept_sigmas:
 | 
						|
            raise ValueError(
 | 
						|
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
 | 
						|
                f" sigmas schedules. Please check whether you are using the correct scheduler."
 | 
						|
            )
 | 
						|
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
 | 
						|
        timesteps = scheduler.timesteps
 | 
						|
        num_inference_steps = len(timesteps)
 | 
						|
    else:
 | 
						|
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
 | 
						|
        timesteps = scheduler.timesteps
 | 
						|
    return timesteps, num_inference_steps
 | 
						|
 | 
						|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
 | 
						|
def retrieve_latents(
 | 
						|
    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
 | 
						|
):
 | 
						|
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
 | 
						|
        return encoder_output.latent_dist.sample(generator)
 | 
						|
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
 | 
						|
        return encoder_output.latent_dist.mode()
 | 
						|
    elif hasattr(encoder_output, "latents"):
 | 
						|
        return encoder_output.latents
 | 
						|
    else:
 | 
						|
        raise AttributeError("Could not access latents of provided encoder_output")
 | 
						|
 | 
						|
class QwenImagePipeline(): #DiffusionPipeline
 | 
						|
    r"""
 | 
						|
    The QwenImage pipeline for text-to-image generation.
 | 
						|
 | 
						|
    Args:
 | 
						|
        transformer ([`QwenImageTransformer2DModel`]):
 | 
						|
            Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
 | 
						|
        scheduler ([`FlowMatchEulerDiscreteScheduler`]):
 | 
						|
            A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
 | 
						|
        vae ([`AutoencoderKL`]):
 | 
						|
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
 | 
						|
        text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
 | 
						|
            [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
 | 
						|
            [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
 | 
						|
        tokenizer (`QwenTokenizer`):
 | 
						|
            Tokenizer of class
 | 
						|
            [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
 | 
						|
    """
 | 
						|
 | 
						|
    model_cpu_offload_seq = "text_encoder->transformer->vae"
 | 
						|
    _callback_tensor_inputs = ["latents", "prompt_embeds"]
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        vae,
 | 
						|
        text_encoder,
 | 
						|
        tokenizer,
 | 
						|
        transformer,
 | 
						|
        processor,
 | 
						|
    ):
 | 
						|
        
 | 
						|
        self.vae=vae
 | 
						|
        self.text_encoder=text_encoder
 | 
						|
        self.tokenizer=tokenizer
 | 
						|
        self.transformer=transformer
 | 
						|
        self.processor = processor
 | 
						|
 | 
						|
        self.latent_channels = self.vae.config.z_dim if getattr(self, "vae", None) else 16
 | 
						|
        self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
 | 
						|
        # QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
 | 
						|
        # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
 | 
						|
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
 | 
						|
        self.tokenizer_max_length = 1024
 | 
						|
        if processor is not None:
 | 
						|
            self.prompt_template_encode = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n"
 | 
						|
            self.prompt_template_encode_start_idx = 64
 | 
						|
        else:
 | 
						|
            self.prompt_template_encode = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
 | 
						|
            self.prompt_template_encode_start_idx = 34
 | 
						|
        self.default_sample_size = 128
 | 
						|
 | 
						|
    def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor):
 | 
						|
        bool_mask = mask.bool()
 | 
						|
        valid_lengths = bool_mask.sum(dim=1)
 | 
						|
        selected = hidden_states[bool_mask]
 | 
						|
        split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
 | 
						|
 | 
						|
        return split_result
 | 
						|
 | 
						|
    def _get_qwen_prompt_embeds(
 | 
						|
        self,
 | 
						|
        prompt: Union[str, List[str]] = None,
 | 
						|
        image: Optional[torch.Tensor] = None,
 | 
						|
        device: Optional[torch.device] = None,
 | 
						|
        dtype: Optional[torch.dtype] = None,
 | 
						|
    ):
 | 
						|
        device = device or self._execution_device
 | 
						|
        dtype = dtype or self.text_encoder.dtype
 | 
						|
 | 
						|
        prompt = [prompt] if isinstance(prompt, str) else prompt
 | 
						|
 | 
						|
        template = self.prompt_template_encode
 | 
						|
        drop_idx = self.prompt_template_encode_start_idx
 | 
						|
        txt = [template.format(e) for e in prompt]
 | 
						|
 | 
						|
        if self.processor is not None and image is not None:
 | 
						|
            model_inputs = self.processor(
 | 
						|
                text=txt,
 | 
						|
                images=image,
 | 
						|
                padding=True,
 | 
						|
                return_tensors="pt",
 | 
						|
            ).to(device)
 | 
						|
 | 
						|
            outputs = self.text_encoder(
 | 
						|
                input_ids=model_inputs.input_ids,
 | 
						|
                attention_mask=model_inputs.attention_mask,
 | 
						|
                pixel_values=model_inputs.pixel_values,
 | 
						|
                image_grid_thw=model_inputs.image_grid_thw,
 | 
						|
                output_hidden_states=True,
 | 
						|
            )
 | 
						|
            hidden_states = outputs.hidden_states[-1]
 | 
						|
            split_hidden_states = self._extract_masked_hidden(hidden_states, model_inputs.attention_mask)
 | 
						|
        else:
 | 
						|
            txt_tokens = self.tokenizer(
 | 
						|
                txt, max_length=self.tokenizer_max_length + drop_idx, padding=True, truncation=True, return_tensors="pt"
 | 
						|
            ).to(device)
 | 
						|
            encoder_hidden_states = self.text_encoder(
 | 
						|
                input_ids=txt_tokens.input_ids,
 | 
						|
                attention_mask=txt_tokens.attention_mask,
 | 
						|
                output_hidden_states=True,
 | 
						|
            )
 | 
						|
            hidden_states = encoder_hidden_states.hidden_states[-1]
 | 
						|
            split_hidden_states = self._extract_masked_hidden(hidden_states, txt_tokens.attention_mask)
 | 
						|
            
 | 
						|
        split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
 | 
						|
        attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
 | 
						|
        max_seq_len = max([e.size(0) for e in split_hidden_states])
 | 
						|
        prompt_embeds = torch.stack(
 | 
						|
            [torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
 | 
						|
        )
 | 
						|
        encoder_attention_mask = torch.stack(
 | 
						|
            [torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
 | 
						|
        )
 | 
						|
 | 
						|
        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
 | 
						|
 | 
						|
        return prompt_embeds, encoder_attention_mask
 | 
						|
 | 
						|
    def encode_prompt(
 | 
						|
        self,
 | 
						|
        prompt: Union[str, List[str]],
 | 
						|
        image: Optional[torch.Tensor] = None,
 | 
						|
        device: Optional[torch.device] = None,
 | 
						|
        num_images_per_prompt: int = 1,
 | 
						|
        prompt_embeds: Optional[torch.Tensor] = None,
 | 
						|
        prompt_embeds_mask: Optional[torch.Tensor] = None,
 | 
						|
        max_sequence_length: int = 1024,
 | 
						|
    ):
 | 
						|
        r"""
 | 
						|
 | 
						|
        Args:
 | 
						|
            prompt (`str` or `List[str]`, *optional*):
 | 
						|
                prompt to be encoded
 | 
						|
            image (`torch.Tensor`, *optional*):
 | 
						|
                image to be encoded
 | 
						|
            device: (`torch.device`):
 | 
						|
                torch device
 | 
						|
            num_images_per_prompt (`int`):
 | 
						|
                number of images that should be generated per prompt
 | 
						|
            prompt_embeds (`torch.Tensor`, *optional*):
 | 
						|
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
 | 
						|
                provided, text embeddings will be generated from `prompt` input argument.
 | 
						|
        """
 | 
						|
        device = device or self._execution_device
 | 
						|
 | 
						|
        prompt = [prompt] if isinstance(prompt, str) else prompt
 | 
						|
        batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0]
 | 
						|
 | 
						|
        if prompt_embeds is None:
 | 
						|
            prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, image, device)
 | 
						|
 | 
						|
        _, seq_len, _ = prompt_embeds.shape
 | 
						|
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
 | 
						|
        prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
 | 
						|
        prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1)
 | 
						|
        prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len)
 | 
						|
 | 
						|
        return prompt_embeds, prompt_embeds_mask
 | 
						|
 | 
						|
 | 
						|
    def check_inputs(
 | 
						|
        self,
 | 
						|
        prompt,
 | 
						|
        height,
 | 
						|
        width,
 | 
						|
        negative_prompt=None,
 | 
						|
        prompt_embeds=None,
 | 
						|
        negative_prompt_embeds=None,
 | 
						|
        prompt_embeds_mask=None,
 | 
						|
        negative_prompt_embeds_mask=None,
 | 
						|
        callback_on_step_end_tensor_inputs=None,
 | 
						|
        max_sequence_length=None,
 | 
						|
    ):
 | 
						|
        if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
 | 
						|
            logger.warning(
 | 
						|
                f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
 | 
						|
            )
 | 
						|
 | 
						|
        if callback_on_step_end_tensor_inputs is not None and not all(
 | 
						|
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
 | 
						|
        ):
 | 
						|
            raise ValueError(
 | 
						|
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
 | 
						|
            )
 | 
						|
 | 
						|
        if prompt is not None and prompt_embeds is not None:
 | 
						|
            raise ValueError(
 | 
						|
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
 | 
						|
                " only forward one of the two."
 | 
						|
            )
 | 
						|
        elif prompt is None and prompt_embeds is None:
 | 
						|
            raise ValueError(
 | 
						|
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
 | 
						|
            )
 | 
						|
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
 | 
						|
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
 | 
						|
 | 
						|
        if negative_prompt is not None and negative_prompt_embeds is not None:
 | 
						|
            raise ValueError(
 | 
						|
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
 | 
						|
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
 | 
						|
            )
 | 
						|
 | 
						|
        if prompt_embeds is not None and prompt_embeds_mask is None:
 | 
						|
            raise ValueError(
 | 
						|
                "If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
 | 
						|
            )
 | 
						|
        if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
 | 
						|
            raise ValueError(
 | 
						|
                "If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
 | 
						|
            )
 | 
						|
 | 
						|
        if max_sequence_length is not None and max_sequence_length > 1024:
 | 
						|
            raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}")
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
 | 
						|
        latent_image_ids = torch.zeros(height, width, 3)
 | 
						|
        latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
 | 
						|
        latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
 | 
						|
 | 
						|
        latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
 | 
						|
 | 
						|
        latent_image_ids = latent_image_ids.reshape(
 | 
						|
            latent_image_id_height * latent_image_id_width, latent_image_id_channels
 | 
						|
        )
 | 
						|
 | 
						|
        return latent_image_ids.to(device=device, dtype=dtype)
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def _pack_latents(latents, batch_size, num_channels_latents, height, width):
 | 
						|
        latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
 | 
						|
        latents = latents.permute(0, 2, 4, 1, 3, 5)
 | 
						|
        latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
 | 
						|
 | 
						|
        return latents
 | 
						|
 | 
						|
    @staticmethod
 | 
						|
    def _unpack_latents(latents, height, width, vae_scale_factor):
 | 
						|
        batch_size, num_patches, channels = latents.shape
 | 
						|
 | 
						|
        # VAE applies 8x compression on images but we must also account for packing which requires
 | 
						|
        # latent height and width to be divisible by 2.
 | 
						|
        height = 2 * (int(height) // (vae_scale_factor * 2))
 | 
						|
        width = 2 * (int(width) // (vae_scale_factor * 2))
 | 
						|
 | 
						|
        latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
 | 
						|
        latents = latents.permute(0, 3, 1, 4, 2, 5)
 | 
						|
 | 
						|
        latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width)
 | 
						|
 | 
						|
        return latents
 | 
						|
 | 
						|
 | 
						|
    def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
 | 
						|
        if isinstance(generator, list):
 | 
						|
            image_latents = [
 | 
						|
                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i], sample_mode="argmax")
 | 
						|
                for i in range(image.shape[0])
 | 
						|
            ]
 | 
						|
            image_latents = torch.cat(image_latents, dim=0)
 | 
						|
        else:
 | 
						|
            image_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode="argmax")
 | 
						|
        latents_mean = (
 | 
						|
            torch.tensor(self.vae.config.latents_mean)
 | 
						|
            .view(1, self.latent_channels, 1, 1, 1)
 | 
						|
            .to(image_latents.device, image_latents.dtype)
 | 
						|
        )
 | 
						|
        latents_std = (
 | 
						|
            torch.tensor(self.vae.config.latents_std)
 | 
						|
            .view(1, self.latent_channels, 1, 1, 1)
 | 
						|
            .to(image_latents.device, image_latents.dtype)
 | 
						|
        )
 | 
						|
        image_latents = (image_latents - latents_mean) / latents_std
 | 
						|
 | 
						|
        return image_latents
 | 
						|
    def enable_vae_slicing(self):
 | 
						|
        r"""
 | 
						|
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
 | 
						|
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
 | 
						|
        """
 | 
						|
        self.vae.enable_slicing()
 | 
						|
 | 
						|
    def disable_vae_slicing(self):
 | 
						|
        r"""
 | 
						|
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
 | 
						|
        computing decoding in one step.
 | 
						|
        """
 | 
						|
        self.vae.disable_slicing()
 | 
						|
 | 
						|
    def enable_vae_tiling(self):
 | 
						|
        r"""
 | 
						|
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
 | 
						|
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
 | 
						|
        processing larger images.
 | 
						|
        """
 | 
						|
        self.vae.enable_tiling()
 | 
						|
 | 
						|
    def disable_vae_tiling(self):
 | 
						|
        r"""
 | 
						|
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
 | 
						|
        computing decoding in one step.
 | 
						|
        """
 | 
						|
        self.vae.disable_tiling()
 | 
						|
 | 
						|
    def prepare_latents(
 | 
						|
        self,
 | 
						|
        image,
 | 
						|
        batch_size,
 | 
						|
        num_channels_latents,
 | 
						|
        height,
 | 
						|
        width,
 | 
						|
        dtype,
 | 
						|
        device,
 | 
						|
        generator,
 | 
						|
        latents=None,
 | 
						|
    ):
 | 
						|
        # VAE applies 8x compression on images but we must also account for packing which requires
 | 
						|
        # latent height and width to be divisible by 2.
 | 
						|
        height = 2 * (int(height) // (self.vae_scale_factor * 2))
 | 
						|
        width = 2 * (int(width) // (self.vae_scale_factor * 2))
 | 
						|
 | 
						|
        shape = (batch_size, 1, num_channels_latents, height, width)
 | 
						|
 | 
						|
        image_latents = None
 | 
						|
        if image is not None:
 | 
						|
            image = image.to(device=device, dtype=dtype)
 | 
						|
            if image.shape[1] != self.latent_channels:
 | 
						|
                image_latents = self._encode_vae_image(image=image, generator=generator)
 | 
						|
            else:
 | 
						|
                image_latents = image
 | 
						|
            if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
 | 
						|
                # expand init_latents for batch_size
 | 
						|
                additional_image_per_prompt = batch_size // image_latents.shape[0]
 | 
						|
                image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
 | 
						|
            elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
 | 
						|
                raise ValueError(
 | 
						|
                    f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                image_latents = torch.cat([image_latents], dim=0)
 | 
						|
 | 
						|
            image_latent_height, image_latent_width = image_latents.shape[3:]
 | 
						|
            image_latents = self._pack_latents(
 | 
						|
                image_latents, batch_size, num_channels_latents, image_latent_height, image_latent_width
 | 
						|
            )
 | 
						|
 | 
						|
        if isinstance(generator, list) and len(generator) != batch_size:
 | 
						|
            raise ValueError(
 | 
						|
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
 | 
						|
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
 | 
						|
            )
 | 
						|
        if latents is None:
 | 
						|
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
 | 
						|
            latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
 | 
						|
        else:
 | 
						|
            latents = latents.to(device=device, dtype=dtype)
 | 
						|
 | 
						|
        return latents, image_latents
 | 
						|
 | 
						|
    @property
 | 
						|
    def guidance_scale(self):
 | 
						|
        return self._guidance_scale
 | 
						|
 | 
						|
    @property
 | 
						|
    def attention_kwargs(self):
 | 
						|
        return self._attention_kwargs
 | 
						|
 | 
						|
    @property
 | 
						|
    def num_timesteps(self):
 | 
						|
        return self._num_timesteps
 | 
						|
 | 
						|
    @property
 | 
						|
    def current_timestep(self):
 | 
						|
        return self._current_timestep
 | 
						|
 | 
						|
    @property
 | 
						|
    def interrupt(self):
 | 
						|
        return self._interrupt
 | 
						|
 | 
						|
    @torch.no_grad()
 | 
						|
    @replace_example_docstring(EXAMPLE_DOC_STRING)
 | 
						|
    def __call__(
 | 
						|
        self,
 | 
						|
        prompt: Union[str, List[str]] = None,
 | 
						|
        negative_prompt: Union[str, List[str]] = None,
 | 
						|
        true_cfg_scale: float = 4.0,
 | 
						|
        height: Optional[int] = None,
 | 
						|
        width: Optional[int] = None,
 | 
						|
        num_inference_steps: int = 50,
 | 
						|
        sigmas: Optional[List[float]] = None,
 | 
						|
        guidance_scale: float = 1.0,
 | 
						|
        num_images_per_prompt: int = 1,
 | 
						|
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
 | 
						|
        latents: Optional[torch.Tensor] = None,
 | 
						|
        prompt_embeds: Optional[torch.Tensor] = None,
 | 
						|
        prompt_embeds_mask: Optional[torch.Tensor] = None,
 | 
						|
        negative_prompt_embeds: Optional[torch.Tensor] = None,
 | 
						|
        negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
 | 
						|
        output_type: Optional[str] = "pil",
 | 
						|
        return_dict: bool = True,
 | 
						|
        attention_kwargs: Optional[Dict[str, Any]] = None,
 | 
						|
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
 | 
						|
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
 | 
						|
        max_sequence_length: int = 512,
 | 
						|
        image = None,
 | 
						|
        callback=None,
 | 
						|
        pipeline=None,
 | 
						|
        loras_slists=None,
 | 
						|
        joint_pass= True,
 | 
						|
    ):
 | 
						|
        r"""
 | 
						|
        Function invoked when calling the pipeline for generation.
 | 
						|
 | 
						|
        Args:
 | 
						|
            prompt (`str` or `List[str]`, *optional*):
 | 
						|
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
 | 
						|
                instead.
 | 
						|
            negative_prompt (`str` or `List[str]`, *optional*):
 | 
						|
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
 | 
						|
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
 | 
						|
                not greater than `1`).
 | 
						|
            true_cfg_scale (`float`, *optional*, defaults to 1.0):
 | 
						|
                When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
 | 
						|
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
 | 
						|
                The height in pixels of the generated image. This is set to 1024 by default for the best results.
 | 
						|
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
 | 
						|
                The width in pixels of the generated image. This is set to 1024 by default for the best results.
 | 
						|
            num_inference_steps (`int`, *optional*, defaults to 50):
 | 
						|
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
 | 
						|
                expense of slower inference.
 | 
						|
            sigmas (`List[float]`, *optional*):
 | 
						|
                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
 | 
						|
                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
 | 
						|
                will be used.
 | 
						|
            guidance_scale (`float`, *optional*, defaults to 3.5):
 | 
						|
                Guidance scale as defined in [Classifier-Free Diffusion
 | 
						|
                Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
 | 
						|
                of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
 | 
						|
                `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
 | 
						|
                the text `prompt`, usually at the expense of lower image quality.
 | 
						|
            num_images_per_prompt (`int`, *optional*, defaults to 1):
 | 
						|
                The number of images to generate per prompt.
 | 
						|
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
 | 
						|
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
 | 
						|
                to make generation deterministic.
 | 
						|
            latents (`torch.Tensor`, *optional*):
 | 
						|
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
 | 
						|
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
 | 
						|
                tensor will be generated by sampling using the supplied random `generator`.
 | 
						|
            prompt_embeds (`torch.Tensor`, *optional*):
 | 
						|
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
 | 
						|
                provided, text embeddings will be generated from `prompt` input argument.
 | 
						|
            negative_prompt_embeds (`torch.Tensor`, *optional*):
 | 
						|
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
 | 
						|
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
 | 
						|
                argument.
 | 
						|
            output_type (`str`, *optional*, defaults to `"pil"`):
 | 
						|
                The output format of the generate image. Choose between
 | 
						|
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
 | 
						|
            return_dict (`bool`, *optional*, defaults to `True`):
 | 
						|
                Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
 | 
						|
            attention_kwargs (`dict`, *optional*):
 | 
						|
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
 | 
						|
                `self.processor` in
 | 
						|
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
 | 
						|
            callback_on_step_end (`Callable`, *optional*):
 | 
						|
                A function that calls at the end of each denoising steps during the inference. The function is called
 | 
						|
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
 | 
						|
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
 | 
						|
                `callback_on_step_end_tensor_inputs`.
 | 
						|
            callback_on_step_end_tensor_inputs (`List`, *optional*):
 | 
						|
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
 | 
						|
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
 | 
						|
                `._callback_tensor_inputs` attribute of your pipeline class.
 | 
						|
            max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
 | 
						|
 | 
						|
        Examples:
 | 
						|
 | 
						|
        Returns:
 | 
						|
            [`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`:
 | 
						|
            [`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
 | 
						|
            returning a tuple, the first element is a list with the generated images.
 | 
						|
        """
 | 
						|
 | 
						|
        kwargs = {'pipeline': pipeline, 'callback': callback}
 | 
						|
        if callback != None:
 | 
						|
            callback(-1, None, True)
 | 
						|
 | 
						|
 | 
						|
        height = height or self.default_sample_size * self.vae_scale_factor
 | 
						|
        width = width or self.default_sample_size * self.vae_scale_factor
 | 
						|
 | 
						|
        multiple_of = self.vae_scale_factor * 2
 | 
						|
        width = width // multiple_of * multiple_of
 | 
						|
        height = height // multiple_of * multiple_of
 | 
						|
 | 
						|
        # 1. Check inputs. Raise error if not correct
 | 
						|
        self.check_inputs(
 | 
						|
            prompt,
 | 
						|
            height,
 | 
						|
            width,
 | 
						|
            negative_prompt=negative_prompt,
 | 
						|
            prompt_embeds=prompt_embeds,
 | 
						|
            negative_prompt_embeds=negative_prompt_embeds,
 | 
						|
            prompt_embeds_mask=prompt_embeds_mask,
 | 
						|
            negative_prompt_embeds_mask=negative_prompt_embeds_mask,
 | 
						|
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
 | 
						|
            max_sequence_length=max_sequence_length,
 | 
						|
        )
 | 
						|
 | 
						|
        self._guidance_scale = guidance_scale
 | 
						|
        self._attention_kwargs = attention_kwargs
 | 
						|
        self._current_timestep = None
 | 
						|
        self._interrupt = False
 | 
						|
 | 
						|
        # 2. Define call parameters
 | 
						|
        if prompt is not None and isinstance(prompt, str):
 | 
						|
            batch_size = 1
 | 
						|
        elif prompt is not None and isinstance(prompt, list):
 | 
						|
            batch_size = len(prompt)
 | 
						|
        else:
 | 
						|
            batch_size = prompt_embeds.shape[0]
 | 
						|
        device = "cuda"
 | 
						|
 | 
						|
        prompt_image = None
 | 
						|
        if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == self.latent_channels):
 | 
						|
            image = image[0] if isinstance(image, list) else image
 | 
						|
            image_height, image_width = self.image_processor.get_default_height_width(image)
 | 
						|
            aspect_ratio = image_width / image_height
 | 
						|
            if True :
 | 
						|
                _, image_width, image_height = min(
 | 
						|
                    (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_QWENIMAGE_RESOLUTIONS
 | 
						|
                )
 | 
						|
            image_width = image_width // multiple_of * multiple_of
 | 
						|
            image_height = image_height // multiple_of * multiple_of
 | 
						|
            # image = self.image_processor.resize(image, image_height, image_width)
 | 
						|
            image = image.resize((image_width,image_height), resample=Image.Resampling.LANCZOS) 
 | 
						|
            prompt_image = image
 | 
						|
            image = self.image_processor.preprocess(image, image_height, image_width)
 | 
						|
            image = image.unsqueeze(2)
 | 
						|
 | 
						|
        has_neg_prompt = negative_prompt is not None or (
 | 
						|
            negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
 | 
						|
        )
 | 
						|
        do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
 | 
						|
        prompt_embeds, prompt_embeds_mask = self.encode_prompt(
 | 
						|
            image=prompt_image,
 | 
						|
            prompt=prompt,
 | 
						|
            prompt_embeds=prompt_embeds,
 | 
						|
            prompt_embeds_mask=prompt_embeds_mask,
 | 
						|
            device=device,
 | 
						|
            num_images_per_prompt=num_images_per_prompt,
 | 
						|
            max_sequence_length=max_sequence_length,
 | 
						|
        )
 | 
						|
        if do_true_cfg:
 | 
						|
            negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
 | 
						|
                image=prompt_image,
 | 
						|
                prompt=negative_prompt,
 | 
						|
                prompt_embeds=negative_prompt_embeds,
 | 
						|
                prompt_embeds_mask=negative_prompt_embeds_mask,
 | 
						|
                device=device,
 | 
						|
                num_images_per_prompt=num_images_per_prompt,
 | 
						|
                max_sequence_length=max_sequence_length,
 | 
						|
            )
 | 
						|
        dtype = torch.bfloat16
 | 
						|
        prompt_embeds = prompt_embeds.to(dtype)        
 | 
						|
        if do_true_cfg:
 | 
						|
            negative_prompt_embeds = negative_prompt_embeds.to(dtype)        
 | 
						|
 | 
						|
        # 4. Prepare latent variables
 | 
						|
        num_channels_latents = self.transformer.in_channels // 4
 | 
						|
        latents, image_latents = self.prepare_latents(
 | 
						|
            image,
 | 
						|
            batch_size * num_images_per_prompt,
 | 
						|
            num_channels_latents,
 | 
						|
            height,
 | 
						|
            width,
 | 
						|
            prompt_embeds.dtype,
 | 
						|
            device,
 | 
						|
            generator,
 | 
						|
            latents,
 | 
						|
        )
 | 
						|
        if image is not None:
 | 
						|
            img_shapes = [
 | 
						|
                [
 | 
						|
                    (1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2),
 | 
						|
                    (1, image_height // self.vae_scale_factor // 2, image_width // self.vae_scale_factor // 2),
 | 
						|
                ]
 | 
						|
            ] * batch_size
 | 
						|
        else:
 | 
						|
            img_shapes = [(1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2)] * batch_size
 | 
						|
 | 
						|
        # 5. Prepare timesteps
 | 
						|
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
 | 
						|
        image_seq_len = latents.shape[1]
 | 
						|
        mu = calculate_shift(
 | 
						|
            image_seq_len,
 | 
						|
            self.scheduler.config.get("base_image_seq_len", 256),
 | 
						|
            self.scheduler.config.get("max_image_seq_len", 4096),
 | 
						|
            self.scheduler.config.get("base_shift", 0.5),
 | 
						|
            self.scheduler.config.get("max_shift", 1.15),
 | 
						|
        )
 | 
						|
        timesteps, num_inference_steps = retrieve_timesteps(
 | 
						|
            self.scheduler,
 | 
						|
            num_inference_steps,
 | 
						|
            device,
 | 
						|
            sigmas=sigmas,
 | 
						|
            mu=mu,
 | 
						|
        )
 | 
						|
        num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
 | 
						|
        self._num_timesteps = len(timesteps)
 | 
						|
 | 
						|
        # handle guidance
 | 
						|
        if self.transformer.guidance_embeds:
 | 
						|
            guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
 | 
						|
            guidance = guidance.expand(latents.shape[0])
 | 
						|
        else:
 | 
						|
            guidance = None
 | 
						|
 | 
						|
        if self.attention_kwargs is None:
 | 
						|
            self._attention_kwargs = {}
 | 
						|
 | 
						|
        txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist() if prompt_embeds_mask is not None else None
 | 
						|
        negative_txt_seq_lens = (
 | 
						|
            negative_prompt_embeds_mask.sum(dim=1).tolist() if negative_prompt_embeds_mask is not None else None
 | 
						|
        )
 | 
						|
 | 
						|
        # 6. Denoising loop
 | 
						|
        self.scheduler.set_begin_index(0)
 | 
						|
        updated_num_steps= len(timesteps)
 | 
						|
        if callback != None:
 | 
						|
            from shared.utils.loras_mutipliers import update_loras_slists
 | 
						|
            update_loras_slists(self.transformer, loras_slists, updated_num_steps)
 | 
						|
            callback(-1, None, True, override_num_inference_steps = updated_num_steps)
 | 
						|
 | 
						|
        for i, t in enumerate(timesteps):
 | 
						|
            if self.interrupt:
 | 
						|
                continue
 | 
						|
 | 
						|
            self._current_timestep = t
 | 
						|
            # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
 | 
						|
            timestep = t.expand(latents.shape[0]).to(latents.dtype)
 | 
						|
 | 
						|
            latent_model_input = latents
 | 
						|
            if image_latents is not None:
 | 
						|
                latent_model_input = torch.cat([latents, image_latents], dim=1)
 | 
						|
 | 
						|
            if do_true_cfg and joint_pass:
 | 
						|
                noise_pred, neg_noise_pred = self.transformer(
 | 
						|
                    hidden_states=latent_model_input,
 | 
						|
                    timestep=timestep / 1000,
 | 
						|
                    guidance=guidance,
 | 
						|
                    encoder_hidden_states_mask_list=[prompt_embeds_mask,negative_prompt_embeds_mask],
 | 
						|
                    encoder_hidden_states_list=[prompt_embeds, negative_prompt_embeds],
 | 
						|
                    img_shapes=img_shapes,
 | 
						|
                    txt_seq_lens_list=[txt_seq_lens, negative_txt_seq_lens],
 | 
						|
                    attention_kwargs=self.attention_kwargs,
 | 
						|
                    **kwargs
 | 
						|
                )
 | 
						|
                if noise_pred == None: return None
 | 
						|
                noise_pred = noise_pred[:, : latents.size(1)]
 | 
						|
                neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
 | 
						|
            else:
 | 
						|
                noise_pred = self.transformer(
 | 
						|
                    hidden_states=latent_model_input,
 | 
						|
                    timestep=timestep / 1000,
 | 
						|
                    guidance=guidance,
 | 
						|
                    encoder_hidden_states_mask_list=[prompt_embeds_mask],
 | 
						|
                    encoder_hidden_states_list=[prompt_embeds],
 | 
						|
                    img_shapes=img_shapes,
 | 
						|
                    txt_seq_lens_list=[txt_seq_lens],
 | 
						|
                    attention_kwargs=self.attention_kwargs,
 | 
						|
                    **kwargs
 | 
						|
                )[0]
 | 
						|
                if noise_pred == None: return None
 | 
						|
                noise_pred = noise_pred[:, : latents.size(1)]
 | 
						|
 | 
						|
                if do_true_cfg:
 | 
						|
                    neg_noise_pred = self.transformer(
 | 
						|
                        hidden_states=latent_model_input,
 | 
						|
                        timestep=timestep / 1000,
 | 
						|
                        guidance=guidance,
 | 
						|
                        encoder_hidden_states_mask_list=[negative_prompt_embeds_mask],
 | 
						|
                        encoder_hidden_states_list=[negative_prompt_embeds],
 | 
						|
                        img_shapes=img_shapes,
 | 
						|
                        txt_seq_lens_list=[negative_txt_seq_lens],
 | 
						|
                        attention_kwargs=self.attention_kwargs,
 | 
						|
                        **kwargs
 | 
						|
                    )[0]
 | 
						|
                    if neg_noise_pred == None: return None
 | 
						|
                    neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
 | 
						|
 | 
						|
            if do_true_cfg:
 | 
						|
                comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
 | 
						|
                if comb_pred == None: return None
 | 
						|
 | 
						|
                cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
 | 
						|
                noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
 | 
						|
                noise_pred = comb_pred * (cond_norm / noise_norm)
 | 
						|
                neg_noise_pred = None
 | 
						|
            # compute the previous noisy sample x_t -> x_t-1
 | 
						|
            latents_dtype = latents.dtype
 | 
						|
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
 | 
						|
 | 
						|
            if latents.dtype != latents_dtype:
 | 
						|
                if torch.backends.mps.is_available():
 | 
						|
                    # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
 | 
						|
                    latents = latents.to(latents_dtype)
 | 
						|
 | 
						|
            if callback is not None:
 | 
						|
                # preview = unpack_latent(img).transpose(0,1)
 | 
						|
                callback(i, None, False)         
 | 
						|
 | 
						|
 | 
						|
        self._current_timestep = None
 | 
						|
        if output_type == "latent":
 | 
						|
            image = latents
 | 
						|
        else:
 | 
						|
            latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
 | 
						|
            latents = latents.to(self.vae.dtype)
 | 
						|
            latents_mean = (
 | 
						|
                torch.tensor(self.vae.config.latents_mean)
 | 
						|
                .view(1, self.vae.config.z_dim, 1, 1, 1)
 | 
						|
                .to(latents.device, latents.dtype)
 | 
						|
            )
 | 
						|
            latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
 | 
						|
                latents.device, latents.dtype
 | 
						|
            )
 | 
						|
            latents = latents / latents_std + latents_mean
 | 
						|
            image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
 | 
						|
 | 
						|
 | 
						|
        return image
 |