mirror of
				https://github.com/Wan-Video/Wan2.1.git
				synced 2025-11-04 06:15:17 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			180 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			180 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
 | 
						|
import torch
 | 
						|
 | 
						|
try:
 | 
						|
    import flash_attn_interface
 | 
						|
    FLASH_ATTN_3_AVAILABLE = True
 | 
						|
except ModuleNotFoundError:
 | 
						|
    FLASH_ATTN_3_AVAILABLE = False
 | 
						|
 | 
						|
try:
 | 
						|
    import flash_attn
 | 
						|
    FLASH_ATTN_2_AVAILABLE = True
 | 
						|
except ModuleNotFoundError:
 | 
						|
    FLASH_ATTN_2_AVAILABLE = False
 | 
						|
 | 
						|
import warnings
 | 
						|
 | 
						|
__all__ = [
 | 
						|
    'flash_attention',
 | 
						|
    'attention',
 | 
						|
]
 | 
						|
 | 
						|
 | 
						|
def flash_attention(
 | 
						|
    q,
 | 
						|
    k,
 | 
						|
    v,
 | 
						|
    q_lens=None,
 | 
						|
    k_lens=None,
 | 
						|
    dropout_p=0.,
 | 
						|
    softmax_scale=None,
 | 
						|
    q_scale=None,
 | 
						|
    causal=False,
 | 
						|
    window_size=(-1, -1),
 | 
						|
    deterministic=False,
 | 
						|
    dtype=torch.bfloat16,
 | 
						|
    version=None,
 | 
						|
):
 | 
						|
    """
 | 
						|
    q:              [B, Lq, Nq, C1].
 | 
						|
    k:              [B, Lk, Nk, C1].
 | 
						|
    v:              [B, Lk, Nk, C2]. Nq must be divisible by Nk.
 | 
						|
    q_lens:         [B].
 | 
						|
    k_lens:         [B].
 | 
						|
    dropout_p:      float. Dropout probability.
 | 
						|
    softmax_scale:  float. The scaling of QK^T before applying softmax.
 | 
						|
    causal:         bool. Whether to apply causal attention mask.
 | 
						|
    window_size:    (left right). If not (-1, -1), apply sliding window local attention.
 | 
						|
    deterministic:  bool. If True, slightly slower and uses more memory.
 | 
						|
    dtype:          torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
 | 
						|
    """
 | 
						|
    half_dtypes = (torch.float16, torch.bfloat16)
 | 
						|
    assert dtype in half_dtypes
 | 
						|
    assert q.device.type == 'cuda' and q.size(-1) <= 256
 | 
						|
 | 
						|
    # params
 | 
						|
    b, lq, lk, out_dtype = q.size(0), q.size(1), k.size(1), q.dtype
 | 
						|
 | 
						|
    def half(x):
 | 
						|
        return x if x.dtype in half_dtypes else x.to(dtype)
 | 
						|
 | 
						|
    # preprocess query
 | 
						|
    if q_lens is None:
 | 
						|
        q = half(q.flatten(0, 1))
 | 
						|
        q_lens = torch.tensor(
 | 
						|
            [lq] * b, dtype=torch.int32).to(
 | 
						|
                device=q.device, non_blocking=True)
 | 
						|
    else:
 | 
						|
        q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
 | 
						|
 | 
						|
    # preprocess key, value
 | 
						|
    if k_lens is None:
 | 
						|
        k = half(k.flatten(0, 1))
 | 
						|
        v = half(v.flatten(0, 1))
 | 
						|
        k_lens = torch.tensor(
 | 
						|
            [lk] * b, dtype=torch.int32).to(
 | 
						|
                device=k.device, non_blocking=True)
 | 
						|
    else:
 | 
						|
        k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
 | 
						|
        v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
 | 
						|
 | 
						|
    q = q.to(v.dtype)
 | 
						|
    k = k.to(v.dtype)
 | 
						|
 | 
						|
    if q_scale is not None:
 | 
						|
        q = q * q_scale
 | 
						|
 | 
						|
    if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
 | 
						|
        warnings.warn(
 | 
						|
            'Flash attention 3 is not available, use flash attention 2 instead.'
 | 
						|
        )
 | 
						|
 | 
						|
    # apply attention
 | 
						|
    if (version is None or version == 3) and FLASH_ATTN_3_AVAILABLE:
 | 
						|
        # Note: dropout_p, window_size are not supported in FA3 now.
 | 
						|
        x = flash_attn_interface.flash_attn_varlen_func(
 | 
						|
            q=q,
 | 
						|
            k=k,
 | 
						|
            v=v,
 | 
						|
            cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
 | 
						|
                0, dtype=torch.int32).to(q.device, non_blocking=True),
 | 
						|
            cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
 | 
						|
                0, dtype=torch.int32).to(q.device, non_blocking=True),
 | 
						|
            seqused_q=None,
 | 
						|
            seqused_k=None,
 | 
						|
            max_seqlen_q=lq,
 | 
						|
            max_seqlen_k=lk,
 | 
						|
            softmax_scale=softmax_scale,
 | 
						|
            causal=causal,
 | 
						|
            deterministic=deterministic)[0].unflatten(0, (b, lq))
 | 
						|
    else:
 | 
						|
        assert FLASH_ATTN_2_AVAILABLE
 | 
						|
        x = flash_attn.flash_attn_varlen_func(
 | 
						|
            q=q,
 | 
						|
            k=k,
 | 
						|
            v=v,
 | 
						|
            cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
 | 
						|
                0, dtype=torch.int32).to(q.device, non_blocking=True),
 | 
						|
            cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
 | 
						|
                0, dtype=torch.int32).to(q.device, non_blocking=True),
 | 
						|
            max_seqlen_q=lq,
 | 
						|
            max_seqlen_k=lk,
 | 
						|
            dropout_p=dropout_p,
 | 
						|
            softmax_scale=softmax_scale,
 | 
						|
            causal=causal,
 | 
						|
            window_size=window_size,
 | 
						|
            deterministic=deterministic).unflatten(0, (b, lq))
 | 
						|
 | 
						|
    # output
 | 
						|
    return x.type(out_dtype)
 | 
						|
 | 
						|
 | 
						|
def attention(
 | 
						|
    q,
 | 
						|
    k,
 | 
						|
    v,
 | 
						|
    q_lens=None,
 | 
						|
    k_lens=None,
 | 
						|
    dropout_p=0.,
 | 
						|
    softmax_scale=None,
 | 
						|
    q_scale=None,
 | 
						|
    causal=False,
 | 
						|
    window_size=(-1, -1),
 | 
						|
    deterministic=False,
 | 
						|
    dtype=torch.bfloat16,
 | 
						|
    fa_version=None,
 | 
						|
):
 | 
						|
    if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
 | 
						|
        return flash_attention(
 | 
						|
            q=q,
 | 
						|
            k=k,
 | 
						|
            v=v,
 | 
						|
            q_lens=q_lens,
 | 
						|
            k_lens=k_lens,
 | 
						|
            dropout_p=dropout_p,
 | 
						|
            softmax_scale=softmax_scale,
 | 
						|
            q_scale=q_scale,
 | 
						|
            causal=causal,
 | 
						|
            window_size=window_size,
 | 
						|
            deterministic=deterministic,
 | 
						|
            dtype=dtype,
 | 
						|
            version=fa_version,
 | 
						|
        )
 | 
						|
    else:
 | 
						|
        if q_lens is not None or k_lens is not None:
 | 
						|
            warnings.warn(
 | 
						|
                'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.'
 | 
						|
            )
 | 
						|
        attn_mask = None
 | 
						|
 | 
						|
        q = q.transpose(1, 2).to(dtype)
 | 
						|
        k = k.transpose(1, 2).to(dtype)
 | 
						|
        v = v.transpose(1, 2).to(dtype)
 | 
						|
 | 
						|
        out = torch.nn.functional.scaled_dot_product_attention(
 | 
						|
            q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
 | 
						|
 | 
						|
        out = out.transpose(1, 2).contiguous()
 | 
						|
        return out
 |