mirror of
https://github.com/Wan-Video/Wan2.1.git
synced 2025-11-04 14:16:57 +00:00
47 lines
1.6 KiB
Python
47 lines
1.6 KiB
Python
from typing import Optional
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
class DiagonalGaussianDistribution:
|
|
|
|
def __init__(self, parameters, deterministic=False):
|
|
self.parameters = parameters
|
|
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
|
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
|
self.deterministic = deterministic
|
|
self.std = torch.exp(0.5 * self.logvar)
|
|
self.var = torch.exp(self.logvar)
|
|
if self.deterministic:
|
|
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
|
|
|
def sample(self, rng: Optional[torch.Generator] = None):
|
|
# x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
|
|
|
|
r = torch.empty_like(self.mean).normal_(generator=rng)
|
|
x = self.mean + self.std * r
|
|
|
|
return x
|
|
|
|
def kl(self, other=None):
|
|
if self.deterministic:
|
|
return torch.Tensor([0.])
|
|
else:
|
|
if other is None:
|
|
|
|
return 0.5 * torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar
|
|
else:
|
|
return 0.5 * (torch.pow(self.mean - other.mean, 2) / other.var +
|
|
self.var / other.var - 1.0 - self.logvar + other.logvar)
|
|
|
|
def nll(self, sample, dims=[1, 2, 3]):
|
|
if self.deterministic:
|
|
return torch.Tensor([0.])
|
|
logtwopi = np.log(2.0 * np.pi)
|
|
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
|
dim=dims)
|
|
|
|
def mode(self):
|
|
return self.mean
|